Search


Show only items where

Tools and approaches for analysing the role of mitochondria in health, development and disease using human cerebral organoids

TitleTools and approaches for analysing the role of mitochondria in health, development and disease using human cerebral organoids
Publication TypeJournal Article
Year of Publication2021
AuthorsLiput, M, Magliaro, C, Kuczyńska, Z, Zayat, V, Ahluwalia, A, Buzanska, L
JournalDevelopmental Neurobiology
Keywordscerebral organoids; computational models; mitochondria imaging; mitochondrial dyes; reporter fluorescent proteins.
Abstract

Mitochondria are cellular organelles involved in generating energy to power various processes in the cell. Although the pivotal role of mitochondria in neurogenesis was demonstrated (first in animal models), very little is known about their role in human embryonic neurodevelopment and its pathology. In this respect human-induced pluripotent stem cells (hiPSC)-derived cerebral organoids provide a tractable, alternative model system of the early neural development and disease that is responsive to pharmacological and genetic manipulations, not possible to apply in humans. Although the involvement of mitochondria in the pathogenesis and progression of neurodegenerative diseases and brain dysfunction has been demonstrated, the precise role they play in cell life and death remains unknown, compromising the development of new mitochondria-targeted approaches to treat human diseases. The cerebral organoid model of neurogenesis and disease in vitro provides an unprecedented opportunity to answer some of the most fundamental questions about mitochondrial function in early human neurodevelopment and neural pathology. Largely an unexplored territory due to the lack of tools and approaches, this review focuses on recent technological advancements in fluorescent and molecular tools, imaging systems, and computational approaches for quantitative and qualitative analyses of mitochondrial structure and function in three-dimensional cellular assemblies-cerebral organoids. Future developments in this direction will further facilitate our understanding of the important role or mitochondrial dynamics and energy requirements during early embryonic development. This in turn will provide a further understanding of how dysfunctional mitochondria contribute to disease processes.

URLhttps://pubmed.ncbi.nlm.nih.gov/33725382/
DOI10.1002/dneu.22818. Online ahead of print.

A Configurable Architecture for Two Degree-of-Freedom Variable Stiffness Actuators to Match the Compliant Behavior of Human Joints

TitleA Configurable Architecture for Two Degree-of-Freedom Variable Stiffness Actuators to Match the Compliant Behavior of Human Joints
Publication TypeJournal Article
Year of Publication2021
AuthorsLemerle, S, Catalano, MG, Bicchi, A, Grioli, G
JournalFrontiers in Robotics and AI
Volume8
Date Published03/2021
ISSN2296-9144
Keywordsarticulated soft robotics, artificial joints, humanoids, prostheses, variable stiffness
Abstract

Living beings modulate the impedance of their joints to interact proficiently, robustly, and safely with the environment. These observations inspired the design of soft articulated robots with the development of Variable Impedance and Variable Stiffness Actuators. However, designing them remains a challenging task due to their mechanical complexity, encumbrance, and weight, but also due to the different specifications that the wide range of applications requires. For instance, as prostheses or parts of humanoid systems, there is currently a need for multi-degree-of-freedom joints that have abilities similar to those of human articulations. Toward this goal, we propose a new compact and configurable design for a two-degree-of-freedom variable stiffness joint that can match the passive behavior of a human wrist and ankle. Using only three motors, this joint can control its equilibrium orientation around two perpendicular axes and its overall stiffness as a one-dimensional parameter, like the co-contraction of human muscles. The kinematic architecture builds upon a state-of-the-art rigid parallel mechanism with the addition of nonlinear elastic elements to allow the control of the stiffness. The mechanical parameters of the proposed system can be optimized to match desired passive compliant behaviors and to fit various applications (e.g., prosthetic wrists or ankles, artificial wrists, etc.). After describing the joint structure, we detail the kinetostatic analysis to derive the compliant behavior as a function of the design parameters and to prove the variable stiffness ability of the system. Besides, we provide sets of design parameters to match the passive compliance of either a human wrist or ankle. Moreover, to show the versatility of the proposed joint architecture and as guidelines for the future designer, we describe the influence of the main design parameters on the system stiffness characteristic and show the potential of the design for more complex applications

URLhttps://www.frontiersin.org/article/10.3389/frobt.2021.614145
DOI10.3389/frobt.2021.614145

Integrating Wearable Haptics and Obstacle Avoidance for the Visually Impaired in Indoor Navigation: A User-Centered Approach

TitleIntegrating Wearable Haptics and Obstacle Avoidance for the Visually Impaired in Indoor Navigation: A User-Centered Approach
Publication TypeJournal Article
Year of Publication2021
AuthorsBarontini, F, Catalano, MG, Pallottino, L, Leporini, B, Bianchi, M
JournalIEEE Transactions on Haptics
Volume14
Start Page109
Issue1
Pagination1-1
URLhttps://ieeexplore.ieee.org/document/9099604
DOI10.1109/TOH.2020.2996748