Heterogeneous

Wireless

Multirobot Syste

A Platform for Safety and Security
in Distributed Communication
Computing and Control

BY ANTONIO BICCHI, ANTONIO DANESI,
GIANLUCA DINI, SILVIO LA PORTA,
LUCIA PALLOTTINO, IDA M. SAVINO,
AND RICCARDO SCHIAVI

he convergence of communication, computing, and

control is considered by many the future of informa-

tion technology [1], [2]. This will provide the ability

for a large number of sensors, actuators, and compu-

tational units interconnected, wirelessly or over
wires, to interact with the physical environment. One of the
main expected consequences of such convergence is the possi-
bility to create large systems of many autonomous and inter-
connected units, which have capabilities of not only sensing
[3] but also acting in and on the environment. Several research
challenges raised by multiple autonomous mobile systems are
stimulating a keen interest in the robotics research community,
such as formation control and flocking (e.g., [4]-[6]), coordi-
nation (e.g., [7]-[9]), communication problems and protocols
(e.g., [10]), and algorithm distribution (e.g., [1], [11]). These
advances form the basis for addressing the application of multi-
agent robotic systems outside the labs in new scenarios, rang-
ing from the exploration of unknown environments to
surveillance, patrolling, and so forth.

In this article, we consider a scenario in which a group of’
vehicles move autonomously in a shared environment. Each
vehicle is given a specific task to accomplish, on its own or in
collaboration, such as monitoring the environment, recon-
structing a map, searching for an object, or detecting light or
heat sources. Agents can join or leave the group dynamically.
Typical agents are inexpensive, unmanned vehicles equipped
with embedded sensor systems with limited onboard pro-
cessing units and short-range wireless communication capa-
bilities. Contrary to what is often assumed in the current
state of art, we accept the realistic requirement that the

Digital Object Identifier 10.1109/M-RA.2007.914925

573 IEEE Robotics & Automation Magazine

1070-9932/08/$25.00©2008 IEEE

© DREAMSTIME

© ISTOCKPHOTO

Mobile Multirobot Systems

platform must accommodate for broadly heterogeneous
vehicles in terms of different tasks to accomplish, difterent
onboard sensors and computational capabilities, and also dif-
ferent dynamics or dimensions.

In particular, we focus on four crucial requirements on the
design of a component-based platform for multiagent systems,
which are safety, scalability, security, and reconfigurability. In
our context, safety means that motions of the robots are exe-
cuted so that any collision among them is avoided while they
attend to their tasks. The need to manage a possibly large num-
ber of vehicles imposes scalability of the platform. An immedi-
ate consequence of this requirement is that solutions using a
centralized traffic supervisor dispatching detailed instructions
to all vehicles are unacceptable.

To fulfill their tasks, including collision avoidance, coopera-
tive vehicles have to communicate, and ad hoc wireless network

MARCH 2008

technologies are apparently good candidates to provide support
for such architecture. Protecting wireless communication poses
unique challenges. Unlike traditional wired networks, an adver-
sary equipped with a simple radio receiver or transmitter can
easily eavesdrop communication and inject or modify packets.
Furthermore, to make them economically viable, embedded
devices are often limited in their energy, computation, storage,
and communication capabilities, and this leads to constraints on
the types of security solutions that can be applied. To address
these challenges, the platform should support security require-
ments in terms of secrecy, integrity, and authenticity of commu-
nications with respect to a potential active outsider.

A practical use of the platform also imposes the reconfigur-
ability requirement. Because of their tasks, vehicles typically
operate in critical environments that are subject to unpre-
dictable changes of operational conditions. This requires the
multiagent systems application to be able to reconfigure itself
so as to meet the changing conditions. The proposed platform
supports reconfigurability at different levels. At a physical level,
vehicles may dynamically join and leave the group. Hence,
candidate new members of the group can be accepted if safety
is not compromised. At a logical level, a vehicle may need to
reprogram tasks and the implementation of a given service
because of the changed operational conditions. Also, reprog-
ramming must not endanger the security of the vehicle soft-
ware platform and thus of the whole platform.

The platform described in this article has been designed and
implemented to fulfill the requirements described earlier. In
particular, for the heterogeneity requirement, the platform
must also be accessible to very simple vehicles with possibly low
computational and data storage capabilities. To realize a plat-
form that can deal with a larger class of mobile robots (from the
very simple to the advanced-technology examples), services
have been implemented taking into account possible techno-
logical limitations of the vehicles involved in the scenario.

Platform Architecture

In this section, the component-based agent architecture is
described. A component is an encapsulated unit of functionality
and deployment that provides services through its interface.
This architecture abstracts away from the actual platform imple-
mentation and provides a general design framework for multi-
agent systems. Furthermore, the component-based approach
supports and promotes encapsulation and modularity of design
and implementation and thus makes it possible to integrate
vehicle with hardware and software of completely difterent ori-
gin and make them safely and securely coexist and collaborate.
In addition, if the basic runtime software allows it, components
can be dynamically added and removed. This makes it possible
to retask a robot and change the implementation of a service
according to the changing operational conditions.

Agent Architecture

In Figure 1, the architecture of an agent in terms of its constituting
components and their relationships is reported. Components are of
different types. The network component provides network services
for sending and receiving packets. The application components

MARCH 2008

implement the task the agent has to fulfill. In the rest of this article,
we abstract away application components with the component
application in Figure 1 and do not specify them any further.

The control components and the security components allow
a vehicle to access to, or even participate to the implementation
of, the services described in the “Architecture Implementation”
section. More precisely, the control components comprise the
collision avoidance component (CAC), the self-localization
component, and the neighbor-localization component and deal
with collision avoidance and vehicle localization, respectively.
The security components comprise the security controller
component (SCC), the rekeying component, and the authenti-
cated loading component (ALC) and deal with secure com-
munication, rekeying, and secure software reconfiguration,
respectively. Finally, the actuation components deal with the
actual actuation of the motion commands issued by the CAC.

In the rest of the section, we provide a detailed description
of components, interfaces, and services provided. We describe
components interfaces, in a language-neutral interface descrip-
tion language (IDL). For each operation provided by an inter-
face, the IDL allows us to specify the name and the type of both
the arguments the operation takes as input (in parameters) and
the values the operation returns as output (out parameters).

1) CAC: The CAC coordinates the motion of agents pre-
venting collisions and guaranteeing that each agent eventually
reaches the final configuration required by its task, providing
to the agent a collision avoidance maneuver.

The component implements the following interface:

Interface ICollision{
setParameters (in Parametersp) ;
getParameters (out Parameters p) ;
join(inNamen, in Configuration initial, in
Configuration final) ;
leave (in Name n) ;

The operation setParameters initializes parameters
necessary for the correct execution of each collision avoidance

Application T

fJ\ Self- .

T — Localization Rekeying

CAC
e Neighbor Security

J\ Localization ——®— Controller

Actuation AT Network
Loader

A A A

Figure 1. The software architecture.

IEEE Robotics & Automation Magazine (¥}

algorithm the component implements. The actual implemen-
tation of Parameters depends on the specific collision
avoidance algorithm (e.g., dimension and speed of the vehicle).
The operation getParameters returns the current value of
parameters. The operation join makes a vehicle named n to
join the group. The operation takes the initial and the final
configuration of the vehicle as input arguments. Finally, the
operation 1leave makes vehicle named n to leave the group.

The CAC provides two services: the collision avoidance
service that guarantees that no collision will occur among
vehicles belonging to the group and the group membership
service (GMS) that guarantees that every new joining does not
endanger the safety property.

For every vehicle, the collision avoidance service requires both
the current configuration of the vehicle and the configurations of
its neighboring vehicles. The self-localization service provides the
former information whereas the neighbor-localization service
provides the latter. Such services are provided by the two follow-
ing components, respectively.

2) Self-localization component: The self-localization compo-
nent provides the agent with data about its own position. The
component provides the following interface:

Interface ISelflocalization{
getSelfPosition (out Configurationc);

Operation getSelfPosition returns the current agent
configuration.

3) Neighbor-localization components: The neighbor-
localization component provides each vehicle with configura-
tions of neighboring vehicles. The component provides the
following interface:

Interface INeighbourLocalization{
getParameters (out Parameters[] p);

The operation getParameters returns the parameters
of all neighbors necessary for the correct execution of each
collision avoidance algorithm.

4) Actuation component: The actuation component sets the
desired linear velocity and angular velocity of the vehicle. The
implementation of this component is strictly related to the dynamic
of the vehicle. The component provides the following interface:

Interface IActuation{
set (inint8 aVelocity, inint8 1Velocity);

Operation set sets as angular and linear velocity the values
specified by the aVelocity and 1Velocity arguments,
respectively.

The SCC tulfills the communication security requirements
in terms of confidentiality, integrity, and authenticity. The
component implements the same interface as the network
component:

'3 IEEE Robotics & Automation Magazine

Interface INetwork{
send (in Messagem, in Address a)
receive (out Messagem, out Address a)

By doing so, the SCC can be inserted and removed with-
out affecting the other components. This allows us to recon-
figure the software architecture by inserting the SCC only
when needed.

Operationally, the SCC intercepts incoming or outgoing
messages and applies to them the cryptographic transforma-
tions specified by the secure communication protocol. The
actual specification and implementation of the protocol
depends on several factors including the kind of embedded
computing device and the hardware and software platform on
which the SCC is deployed. The component can be imple-
mented via software. However, if an hardware cryptographic
device is present, the component can encapsulate and abstract
the cryptographic services oftered by that device.

5) The rekeying component: The rekeying component
performs key distribution and revocation and updates the key
repository on the vehicle. Usually, the keys are distributed in
such a way that both confidentiality and authenticity are guar-
anteed. Operationally, the rekeying component receives a
new key and performs the cryptographic transformation
specified by the rekeying protocol to guarantee the key confi-
dentiality. If required, it also verifies that the key comes from a
trusted part.

In distributed rekeying protocols, the vehicles could gener-
ate the keys and securely transmit them to other nodes. In this
case, the rekeying component provides the following interface:

Interface IRekeying{
void renewKey (in Key k, inKeyValuev) ;

The operation renewKey renews key k with the new
value v. The implementation of Key and KeyValue depends
on the actual implementation of the rekeying protocol.

6) The ALC: On downloading a new software component
through the network, a vehicle needs a proof that the compo-
nent comes from a trusted source (component authenticity)
and that the component has not been modified (component
integrity). The ALC downloads a component from a remote
trusted source, buffers the component during the download-
ing, verifies the component authenticity, and finally loads the
component into memory from the bufter. The ALC can also
guarantee the component confidentiality, if necessary. This
component provides the following interface:

Interface TAuthLoad({
load (in String cname, out ComponentType t) ;

The operation load downloads the component whose
name is specified by the string cname and returns the compo-
nent type.

MARCH 2008

Architecture Implementation
In this section, we present our implementation of the architec-
ture services described in the “Agent Architecture”section.

Collision Avoidance Service

The collision avoidance service is one of the two services offered
from the CAC. It coordinates the motion of vehicles within the
group, preventing collisions and guaranteeing that each vehicle
eventually accomplishes its individual task. The service imple-
mentation is based on a decentralized collision avoidance policy,
called generalized roundabout policy (GRP), that has been
recently proposed for vehicles evolving on the plane [14]. The
GRP is now briefly reported for the reader’s convenience.
However, a complete, formal, and detailed description of it can
be found in the cited literature with references to other existing
decentralized conflict avoidance approaches.

Since we are dealing with heterogeneous vehicles, we con-
sider vehicles with nontrivial kinematics; for example, they are
not able to stop their motion and have nonholonomic con-
straints. Those assumption are not restrictive since vehicles that
are able to stop or are holonomic can always perform trajecto-
ries obtained with the proposed policy. Indeed, we consider a
number of vehicles moving on the plane at a constant speed,
along paths with bounded curvature. The state of each vehicle
is represented by the coordinates (x, y) and the heading angle 0.
According to the policy, a first circle is assigned to each vehicle,
called the safety disk, being the circle centered at the vehicle
position (x, y) with heading given by 0. A collision is said to
occur whenever two or more safety disks overlap.

As mentioned earlier, the proposed policy also applies to
vehicles that cannot stop their motions. For dealing with such
a case, the policy defines a reserved disk for each vehicle as the
circle that contains the path traveled by the safety disk when its
associated vehicle turns right at the minimum allowable curva-
ture. The center of a reserved disk can easily be obtained from
its vehicle state, and its heading is directly inherited from that
of the corresponding vehicle. In spite of the vehicle constraint,
the motion of the reserved disk can be stopped at any time by
making the vehicle turn right at the minimum curvature rate.

Referring to Figure 2, suppose that each vehicle has to reach
a desired final position and heading to accomplish its task. The
motion strategy followed by the vehicle is based on four distinct
modes of operation, each assigning a suitable value to the con-
trol input (i.e., curvature rate) of the vehicle. Each vehicle
enters the straight mode if the motion along the line directed
toward the desired configuration is permitted, that is, a motion
in that direction does not cause an overlap with other reserved
disks. Whenever its reserved disk becomes tangent to the one
of another vehicle, a test is made based on the current motion
heading 0. If a further movement in the direction specified by 0
causes an overlapping, then the vehicle enters the hold mode.
Otherwise, the vehicle is able to proceed and remains in the
straight mode. When the hold mode is entered, the vehicle’s
curvature rate is set to the minimum allowable, and the motion
of its reserved disk is stopped. As soon as the vehicle heading is
permitted but not directed toward the target destination, the
vehicle enters the roll mode and tries to go around the other

MARCH 2008

reserved disk. This is achieved by selecting a suitable value for
the curvature rate of the vehicle such that the two disks never
overlap. An example of possible trajectory of a vehicle that
moves according to the GRP is pictorially depicted in Figure 2.
The proposed policy satisfies the safety and scalability require-
ments [14]. In particular, the decentralized characteristic of the
policy allows the CAC to be implemented on board of the vehi-
cle. As a matter of fact, each vehicle is able to make a safe decision
about its motion, based only on the locally available information.
This information consists of the position and orientation of
vehicles that are within a certain sensing or communication
radius. For this reason, each vehicle communicates its state via
the wireless network, though it is not required to explicitly
declare its task or goal. The policy can be easily adapted in case of
nonexact information on neighbors by enlarging the reserved
disk radius and relaxing switching conditions between modes.

Group Membership Service

The second service offered by the CAC is the GMS. The
motion strategy described in the “Collision Avoidance Service”
section guarantees that no collision will occur among vehicles
belonging to the group (safety property) and that all the vehicles
eventually reach their final destinations (liveness property).
These two properties are guaranteed provided that initial and
final vehicles” configurations satisfy suitable conditions. In par-
ticular, safety is obtained if the vehicles’ reserved disks do not
initially overlap whereas liveness is guaranteed if the vehicles’
destinations are not concentrated in the plane. Details on the
target sparsity requested for liveness can be found in [14].

Taking into account the fact that vehicles can dynamically
join or leave the group, the GMS purpose is to guarantee that
such conditions are never violated. Thus, on joining, a new
vehicle sends the configuration of its reserved disk to the GMS
that verifies whether its entrance may compromise the overall
system safety and liveness (join phase). Later, on reaching its final
destination, the vehicle leaves the group and alerts the GMS that
cancels its data (leave phase). This event may allow new vehicles

Hold

Figure 2. Example of possible trajectory of a vehicle applying
the proposed collision avoidance policy. Smaller circles are
safety disks and larger circles are reserved disks.

IEEE Robotics & Automation Magazine 3}

to enter the group. The GMS must be managed by a centralized
server as the conditions guaranteeing safety and liveness are
based on the information provided by all the vehicles.

Self-Localization Service
The self-localization component is responsible for providing
the vehicle with the information about its own state. This
component can be implemented in several different ways
depending on the sensors mounted onboard the vehicle. In
case of very simple vehicles, a possible implementation is a set
of cameras that monitor the environment and detect position
and direction of motion for all the vehicles. The data are col-
lected in a centralized server that will send to any vehicle
through the wireless network its own state information.
Otherwise, if some of the vehicles have some localization
sensors, the component may have an onboard implementation
based on the particular sensors. For example, in case of sonar,
the localization component may be implemented as it has been
proposed in [15].

Secure Communication Service

The secure communication service is provided by the SCC on
board of vehicles that implements a secure communication proto-
col. Conceptually, a secure communication protocol is defined as
a set of rules, each of which consists of a transformation, a crypto-
graphic suite, and a set of selectors. A transformation specifies the
set of cryptographic processing to be applied to messages before or
after sending or receiving them to/from the network. A transfor-
mation can be either a cryptographic primitive or a combination
of primitives. Cryptographic primitives can use cryptographic
keys. A cryptographic suite specifies the actual cryptographic
primitives, and the related keys, to be used in a transformation.
Keys are specified by a key unique identifier. Finally, selectors
make it possible to specify which messages a transformation has to
be applied to. Selectors include at least the type of message (e.g.,
the port), the destination address, the source address, whether the
message Is Incoming or outgoing, and so forth.

For example, let us assume that both confidentiality and
integrity must be guaranteed for messages addressed to port p.
One way to achieve these goals is to hash and encrypt the mes-
sage according to the following transformation f : E(m||H(m)),
where E specifies symmetric encryption, H specifies hash, and ||

SCC

Rule Store

7

Application —(e Eﬁ:iie —-(@— Network C
=]
1)
o]
KeyDB Primitive

Figure 3. The secure communication component.

]9 IEEE Robotics & Automation Magazine

is the concatenation operation. For example, if we would like to
use the hash function SHA-1 [16] and the symmetric cipher
RC5 [17] keyed by the K key, then we specify the cryptographic
suite ¢ : (e = RC5,keyid = K; H = SHA — 1). Finally, selec-
tors specifying that the relevant messages are addressed to port
p are s : (port = p, direction = outgoing). It follows that the
secure communication protocol is specified by the rule (s, t, ¢).
SCC is itself conceptually structured in components as speci-
fied in Figure 3. When the application sends or receives a mes-
sage through network, SecEngine intercepts the message,
retrieves the rule whose selector matches the message from the
RuleStore, and applies the corresponding transformations to the
message using the specified cryptographic suite implemented by
CryptoPrimites. If the performed algorithms need crypto-
graphic keys, SCC retrieves them from the KeyDB component.

Rekeying Service

The rekeying service is managed by the centralized rekeying
server (RKS). So, the vehicles only have to verify the authen-
ticity and the freshness of the received keys. That is, they have
to verify that the key comes from the RKS and has not been
used before, respectively.

Rekeying may occur either periodically, as requested by
good cryptographic practices, or on events such as the leaving of
a vehicle. So, GMS has to inform RKS that a vehicle leaves the
group communication so that RKS distributes the new group
key to all vehicles except the leaving one. The scalability of the
rekeying service depends on the chosen rekeying protocol.

In our implementation, we chose S?RP, the secure and scal-
able rekeying protocol for devices with low-computational capa-
bilities [18]. SRP guarantees the key authenticity by using only
one-way hash functions that are computationally affordable even
by the simplest devices. In short, the key authentication mecha-
nism levers on keychains, a technique based on the Lamport’s
one-time passwords. A keychain is a set of symmetric keys so that
each key is the hash preimage of the previous one. Hence, given
a key in the keychain, anybody can compute all the previous
keys, but nobody can compute any of the next keys. Keys are
revealed in the reversed order with respect to creation. Given an
authenticated key in the keychain, the vehicles can authenticate
the next keys by simply applying an hash function.

To reduce the communication overhead, RKS maintains a
tree structure of keys according to S?RP (Figure 4). Each internal
node is associated with a keychain, whereas each leaf is associated
with a vehicle. More in detail, a leaf is associated with the sym-
metric vehicle-key that the corresponding vehicle secretly shares
with RKS. Let us refer to the last-revealed key associated with the
node j as Kj and to the hash preimage of Kj as K. Each vehicle
stores the key K if the subtree rooted at the node j contains the
leaf associated with the vehicle-key. Hence, the key K associated
to the tree root is shared by all group members and it acts as the
group key. Let us suppose vehicle D leaves the group. All its keys
K; withj € {1,2,5} are considered compromised and RKS has
to securely broadcast the new keys ij“ with j € {1,2,5}. The
rekeying messages are shown in the right-hand side of Figure 4,
where E(K, K*) is the encryption of key K* by using the key K.
So, the rekeying protocol is scalable because RKS has to broadcast

MARCH 2008

O(log 1) messages where n is the number of vehicles. The rekey-
ing component constitutes the vehicle side of the rekeying ser-
vice. The component is implemented by an security controller
component SCC and an AuthKey component (Figure 5). SCC
performs the secure communication and is responsible for guar-
anteeing the key confidentiality whereas the AuthKey compo-
nent performs the check required by the keychain for verifying
the key authenticity.

Authenticated Loading Service

The authenticated loading service is managed by the central-
ized authenticated loading server (ALS) that is responsible for
guaranteeing the component authenticity.

A typical approach to authenticate a component on down-
loading consists in authenticating it as a whole. However, this
approach requires that the component is entirely received
before being verified, and this can be exploited by an adversary
to mount a denial of service attack. More in detail, an attacker
can make the device waste resources by causing it to buffer
long strings of bytes that in the end fail the authenticity verifi-
cation. An alternative approach is based on the observation
that a component is typically transmitted in several packets
[12]. If every packet is authenticated, a device stores only
authenticated material and reduces the risk of denial of service
at minimum. Nevertheless, this solution introduces overhead
as now each packet needs to be authenticated.

A trade-off between security and performance can be
achieved by authenticating bursts of packets. A burst contains a
fixed predefined number Nj of packets. If N is the total num-
ber of packets conveying the components, N is comprised
between 1 and N. Each burst is linked to the one that will be
transmitted next by a hash function. ALS computes the hash of
each burst and transmits the result with the previous burst. The
hash value associated with the last transmitted burst is filled
with the null value. It follows that, if the vehicle can authenti-
cate the first burst, then it can sequentially authenticate all the
subsequent bursts. On receiving a burst, the vehicle computes
the hash and compares it with the hash value conveyed by the
previously received burst. If the two values are equal, the
received burst is authentic.

The authenticity of the first burst must be proven in a different
way. In a scenario with many vehicles equipped with reduced
computing capabilities, the digital signature might not be efficient.
Therefore, we chose to prove the authenticity of the first burst by
means of a message authentication code (MAC) computed with
the pairwise key that the vehicle secretly shares with ALS or with
the group key (see “Rekeying Service” section). Let us consider
the example in Figure 6. Given N = 6 and N = 3, each burst
contains two component-packets and the hash of the next burst.
The first burst also contains an authenticator constituted by a
MAC computed with the current group key. In this method, par-
ticular attention must be paid to whether an adversary can capture
a device or not. Whenever a device is suspected of being compro-
mised, the rekeying service has to revoke and then redistribute the
group key to every device except the suspected one.

It follows that the proposed authentication scheme is efficient in
that it requires 1 < Np < N hash function computations and the

MARCH 2008

authentication of the first burst. It is also flexible in that the value of
Npg and the authentication method for the first burst (MAC or
digital signature) are design parameters. It is also worthwhile to
notice that the proposed scheme does not negatively affect scalabil-
ity especially if one considers that the choice of the design parame-
ters 1s not influenced by the number of vehicles to which a
component has to be sent. Of course, a component could be
potentially broadcast to all vehicles. In this case, the broadcast
protocol is crucial for scalability. However, this is a general problem
that is beyond our interests and is not addressed in this article. If
necessary, we will resort to proposals in the literature [21].

The ALC constitutes the vehicle side of the authenticated
loading service. In principle, the component includes an SCC
and an AuthComp component (Figure 7). The SCC performs
the secure communication protocol aimed at protecting packets

$5C: E(K,, Ks™)

SC: (K™, K™
SA,B: E(Ky, Ko™
SA,B,C: E(K,™, K™
S>E,F,G,H: E(Kg, Ky™)

[als[clp]EF]a]H]

Figure 4. Hierarchical structure of key chains in S*RP.

REC

AuthKey —@— SCC (—

|—|—,

)

T

KeyDB

Network

_C

Figure 5. The rekeying component.

Generation Order

Transmission Order

Figure 6. A chain of bursts.

IEEE Robotics & Automation Magazine

carrying the component, whereas the AuthComp component
is responsible for component buftering and authentication.

Platform Prototype

This section describes a platform prototype that has been real-
ized according to the proposed architecture. The platform is
composed of a fixed main infrastructure and a number of
homogeneous mobile robotic vehicles. As already mentioned,
our architecture implementation is tailored to a large number
of low-cost vehicles equipped with limited sensor systems.
Indeed, vehicle prototypes have been developed with such
requirements. Details about vehicle hardware and software
components are reported in the following subsections.

Vehicle Prototype

Robotic vehicles have been built, consisting of a chassis of
14 cm X 13 cm X 9 cm size that hosts motors, batteries, and
electronics. The vehicles are also equipped with a Tmote-Sky
sensor board, which enables communications with the 802.15.4

ALC

e AuthComp—@— SCC —(— Network

[E——

)

T

KeyDB

—(C

Figure 7. The ALC.

/<

Figure 9. GRP trajectories of two vehicles with assigned initial
and final configurations.

[4:) IEEE Robotics & Automation Magazine

protocol, and some programmable system on chip (PSoC)
mixed-signal array controllers that serve as servodriving, odome-
try, and CAC implementation (Figure 8). The Tmote-Sky board
has been adopted for its high compatibility with the Zigbee
protocol and low power consumption. An interface between
microcontrollers and Tmote-Sky has been developed. To take
advantage of every resources offered by all the units, the load of
computing algorithms has been divided among the Tmote-Sky
and PSoCs CPUs. With such an approach, performances have
been improved with respect to the performance achievable only
with the Tmote board. Indeed, a 40-Hz CAC computation and
a 200-Hz servo driver control have been obtained. Extensive
tests have been done on a test bed composed of two and three
robotic vehicles (see Figure 9 for a two-vehicle example) as
reported in the “Experimental R esults” section.

The chosen operating system is Contiki [19], which was
developed for devices with low memory and computational
capabilities. The implementation of the component model for
Contiki is known as the component runtime kernel [13]. It has
been chosen for the Contiki operating system since it is a light-
weight and flexible operating system for tiny networked sen-
sors and has a dynamic structure that allows to replace
components during runtime.

As a consequence of the low-cost implementation of the
vehicle, the peer- and self-localization have not been imple-
mented on board. Indeed, the excessive cost and the insuffi-
cient precision of available sensor technologies have induced
us to implement the location service (LS) localization service.
The self-localization is achieved by means of aperiodic
requests to a fixed infrastructure localization service that relies
on computer vision to identify the vehicles’ states. Further-
more, the peer-localization module is performed by listening
to periodic messages of other vehicles communicating data
about position and reserved disk radius.

From a security perspective, each vehicle implements an
early prototype of the SSC (see “Secure Communication
Service” section), the rekeying protocol (see “Rekeying Ser-
vice” section), and the authenticated loading protocol (see
“Authenticated Loading Service” section). The security con-
troller uses Skipjack as a symmetric cipher to encrypt applica-
tion and rekeying messages; the rekeying protocol (AuthKey
component) uses SHA-1 to build and verify keychains; and
finally, the authenticated loading protocol (AuthComp) uses a
keyed-hash message authentication code based on SHA-1 to
authenticate the first slice of a component. Furthermore, in
our prototype, we do not consider it necessary to protect the
confidentiality of a component during downloading. So ALC
contains only the AuthComp component responsible for the
authenticity of component slices.

Infrastructure

The infrastructure enables the LS by detecting the states of every

vehicles and providing the common reference frame shared

within the group. Second, the infrastructure enables the RKS

by generating new keys and distributing them when necessary.
Oft-the-shelf cameras have been exploited for monitoring

the environment. Vision algorithms have been developed to

MARCH 2008

identify the state of every vehicle by means of markers placed
over the chassis. By precisely calibrating the cameras, an accu-
rate estimate of the position and orientation of each vehicle
has been obtained. Despite the use of the low-cost cameras,
the chosen algorithms are robust to illumination changes in an
indoor test bed. Cameras and algorithms are hosted on a sys-
tem composed of three PCs, connected in a LAN.

Communication Protocol

To test the platform, a simple ad hoc wireless communication
protocol has been implemented for both periodic (required by
the LS) and aperiodic communications (required by other ser-
vices). The communication protocol realizes a time-division
multiple access protocol briefly described in the following.

A central authority is responsible for the temporal synchroniza-
tion and a time slice-based subdivisions. In large, multihop wireless
networks, an accurate distributed time synchronization is a nontri-
vial problem [20]. Each time slice is composed of 2N + K slots,
where N is the number of vehicles, and K > 2 is an integer value
used to avoid starvation. Any time the group membership changes,
the communication protocol assigns a slot index and the time slice
duration to each vehicles. A time slice is composed of two phases:
periodic communication phase and aperiodic communication
phase. The periodic communication phase starts with a synchroni-
zation message, and it is composed of N slots. Every vehicle has its
own slot to perform peer localization (broadcast of position and
reserved disk radius), and it can submit a request to the central
authority for self-localization and permission for further aperiodic
communications. At the end of this phase, all vehicles have col-
lected information regarding neighboring vehicles. In the aperi-
odic communication phase, the central authority replies to requests
for self-localization (in no more than N slots), and it gives acknowl-
edgments to vehicles that performed a request for an aperiodic slot.

Experimental Results
Components proposed in previous sections have been sepa-
rately implemented and tested to verify their effectiveness
before the integration of the overall platform. Details on
technical data of the implemented components are reported.

In the proposed implementation of the SCC and the ALS, the
time required for encrypting a packet of 48 B is 9.92 ms by using
by SkipJack whereas the time for applying the hash function
SHA-1 on a packet of 28 B is 14.3 ms. Furthermore, the time
required for key authentication is 32.2 ms by using SkipJack as
symmetric cipher and SHA-1 as hash function. To authenticate a
component of 1,264 B, the computational overhead is 1.84 S.

The localization service is provided with resolution of
0.23 ¢cm and 0.03 rd in an environment of 290 cm X 133 c¢cm
using two cameras. The truncation error during the transmis-
sion process is at most 0.04 mm for lengths and 107> rd for
angles. The average errors measured during experiments is
around 1 cm and 0.06 rd for lengths and angles, respectively.
On a PC Pentium of 43 GHz with 1 GB RAM, the proposed
implementation is able to process ten frames per second.

As reported in the “Platform Prototype” section, a basic
component for the wireless network management has been
implemented to allow wireless communication between agents.

MARCH 2008

Each localization packet is composed of 12 B where the first is
the identifier of the localized vehicle, while the others represent
the status of the vehicle (x, y, and 0 on two bytes) and the posi-
tion of its center (x. and y. on two bytes). The short time
needed to send a localization packet (approximately 0.006 s)
allows the system to manage a large number of vehicles under
the bandwidth constrains of the 802.15.4 wireless protocol.

Finally, several experiments have been performed to prove
the effectiveness and the reliability of the overall platform. As
the particular task for each robot involved does not influence
the testing of the platform, a scenario in which two or three
vehicles were assigned a final configuration without any spe-
cific task has been considered. The trajectory performed by
two robots during an experiments is shown in Figure 9.

In all the conducted experiments, vehicles have forward
velocity of 3cm/s, angular velocity during the hold mode of
0.385rd / s, reserved disk radius of 13 cm, and safety disk diameter
of 15 ¢cm. On each vehicle a battery pack of 9.6 V, 1,800 mA
has been mounted to provide energy to the Tmote-Sky and the
PSoCs. With such a power supply, this kind of experiments can be
conducted for around 90min. It is important to notice that during
the experiments, intensive use of the wireless communication is
required by the architecture. Most of the energy supply is used for
vehicles” motion, while the communication and the security pro-
tocols are less energy demanding.

Partial overlapping of reserved disks has occurred during
experiments for at most 4.1cm because of nonexact integration of
motion and delay on data communicated through the network.
Indeed, as reported in the “Collision Avoidance Service” section,
the GRP policy ensures the safety of the system only theoretically.
In the real framework, the system safety can be recovered enlarg-
ing the reserved disk size according to estimated errors on the
localization system and to a forecast of communication delays.

Conclusions and Future Work

A scalable platform for decentralized traffic management of a multi-
agent system has been proposed. Safety of the platform is achieved
with a cooperative conflict avoidance policy. Security of communi-
cations among vehicles with respect to potential external adversa-
ries is obtained through use of cryptographic keys and rekeying
policies. A prototypical implementation of the architecture has
been described, and some experimental results have been reported.
Future work will be devoted to addressing further decentralization
of the check-out and security procedures, intrusion detection, and
noncollaborative collision avoidance protocols.

Acknowledgments

‘We thank M. Dell’'Unto and G. De Paolis for having contrib-
uted in the implementation of the platform prototype. The
work has been done with partial support from EC project
RUNES (Contract IST-2004-004536) and EC Network of
Excellence HY CON (Contract IST-2004-511368).

Keywords

Networked heterogeneous mobile robots, component-based
b
platform, collision avoidance, safe communication.

IEEE Robotics & Automation Magazine 3]

References

[1] B. Sinopoli, C. Sharp, L. Schenato, S. Schaffert, and S. Sastry, “Distributed
control applications,” Proc. IEEE, vol. 91, no. 8, pp. 1235-1246, 2003.

[2] S. Graham and P. Kumar, Eds., “Proceedings of PWC 2003,” in Personal
Wireless Communication (Lecture Notes in Computer Science),
vol. 2775. New York: Springer-Verlag, 2003.

[3] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sen-
sor networks: A survey,” Comput. Neti., vol. 38, no. 4, pp. 393-422, 2002.

[4] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of
mobile autonomous agents using nearest neighbor rules,” IEEE Tians.
Automat. Contr., vol. 48, no. 6, pp. 988—1001, 2003.

[5] H. Tanner, A. Jadbabaie, and G. Pappas, “Flocking in fixed and switching
networks,” IEEE Trans. Automat. Contr., vol. 52, no. 5, pp. 863—-868, 2007.

[6] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms
and theory,” IEEE Tians. Automat. Contr., vol. 51, no. 3, pp. 401-420, 2006.

[7] S. Oh, L. Schenato, P. Chen, and S. Sastry, “Tracking and coordination
of multiple agents using sensor networks: System design, algorithms and
experiments,” Proc. IEEE, vol. 95, no. 1, pp. 234-254, 2007.

[8] P. Ogren, E. Fiorelli, and N. Leonard, “Cooperative control of mobile
sensor networks: Adaptive gradient climbing in a distributed environ-
ment,” IEEE Tians. Automat. Contr., vol. 49, no. 8, pp. 1292-1302, 2004.

[9] J. Fax and R. Murray, “Information flow and cooperative control of
vehicle formations,” IEEE Tians. Automat. 49, no. 9,
pp. 14651476, 2004.

[10] Y. Mostofi, T. Chung, R. Murray, and J. Burdick, “Communication
and sensing trade-offs in decentralized mobile sensor networks: A cross-

Contr., vol.

layer design approach,” in Proc. Int. Symp. Information Processing in Sensor
Networks, 2005, pp. 118-125.

[11] N. Lynch, Distributed Algorithms. San Mateo, CA: Morgan Kaufmann, 1996.

[12] J. W. Hui and D. Culler, “The dynamic behavior of a data dissemina-
tion protocol for network programming at scale,” in Proc. 2nd Int. Conf.
Embedded Networked Sensor Systems, Baltimore, MD, 2004, pp. 81-94.

[13] P. Costa, G. Coulson, C. Mascolo, G. P. Picco, and S. Zachariadis,
“The runes middleware: A reconfigurable component-based approach
to networked embedded systems,” in Proc. 16th IEEE Int. Symp. Per-
sonal, Indoor and Mobile Radio Communications (PIMRC 2005), Berlin,
Germany, 2005, vol. 2, pp. 806-810.

[14] L. Pallottino, V. G. Scordio, E. Frazzoli, and A. Bicchi, “Decentralized
cooperative policy for conflict resolution in multi-vehicle systems,” IEEE
Tians. Robot., vol. 23, no. 6, pp. 1170-1183.

[15] P. Alriksson, J. Nordh, K.-E. Arzen, A. Bicchi, A. Danesi, R. Schiavi,
and L. Pallottino, “A component-based approach to localization and
collision avoidance for mobile multi-agent systems,” in Proc. European
Control Conference, 2007, pp. 4285-4292.

[16] Secure Hash Standard, National Institute of Science and Technology,
Federal Information Processing Standard (FIPS) 180-1, 1993.

[17] R. Rivest, “The RC5 encryption algorithm,” in Fast Software Encryp-
tion—Second International Workshop, vol. LNCS 1008. Heidelberg, Ger-
many: Springer-Verlag, 1995, pp. 86-96.

[18] G. Dini and 1. M. Savino, “S?RP: A secure and scalable rekeying
protocol for wireless sensor networks,” in Proc. 3rd IEEE Int. Conf.
Mobile Ad-Hoc and Sensor systems, 2006, pp. 457—466.

[19] A. Dunkels, B. Groonvall, and T. Voigt, “Contiki—A lightweight and
flexible operating system for tiny networked sensors,” in Proc. IEEE
Workshop on Embedded Networked Sensors, 2004, pp. 455—462.

[20] R. Solis, V. Borkar, and P. Kumar, “A new distributed time synchroniza-
tion protocol for multihop wireless networks,” in Proc. 44th IEEE Conf.
Decision and Control, 2005, pp. 2734-2739.

[21] J. Wu and E Dai, “Efficient broadcasting in ad hoc wireless networks
using directional antennas,” in IEEE Tians. Parallel and Distributed Sys-
tems, 2006, vol. 17, no. 4, pp. 335-347.

Antonio Bicchi is a professor of automatic control and
robotics at the University of Pisa. His main research interests
include dynamics, kinematics, and control of complex
mechanical systems, including robots, autonomous vehicles,

¥[\) IEEE Robotics & Automation Magazine

and automotive systems; haptics and dexterous manipulation;
and theory and control of nonlinear systems, in particular,
hybrid (logic/dynamic, symbol/signal) systems. He has pub-
lished more than 200 articles in international journals,
books, and refereed conferences.

Antonio Danesi works in software specification for space
launchers for European Space Agency. He obtained his
Ph.D. in robotics and automation in 2007 at Centro “E.
Piaggio,” Universita di Pisa, with a research on component-
based control software on networked mobile agents for
visual navigation and mapping. He participated in European
project RUNES for the advanced control group.

Gianluca Dini received the Laurea degree in electronic
engineering from the University of Pisa in 1990 and a Ph.D.
in computer engineering from Scuola Superiore S. Anna,
Pisa, in 1995. Since 2000, he has been an associate professor
of computer engineering at the University of Pisa. His main
research interests are in distributed computing, with particu-
lar reference to security and fault tolerance.

Silvio La Porta received the Laurea degree in computer engi-
neering in 2006 from the Faculty of Engineering, University of
Pisa. Currently, he is a Ph.D. student in computer engineering
at the Department of Ingegneria della Informazione, Pisa. His
research interests are in network security and network forensics.

Lucia Pallottino received the Laurea degree in mathemat-
ics from the University of Pisa in 1996/97 with a thesis in
numerical analysis. She received a Ph.D. in robotics and
industrial automation at the Department of Electrical Sys-
tems and Automation of the University of Pisa in 2002. She
is currently a researcher in the Interdepartmental Research
Center “E. Piaggio” in the University of Pisa. Her main
research interests within robotics are in motion planning and
control for nonholonomic vehicles, air traffic management
systems, and quantized control.

Ida M. Savino received the Laurea degree in computer
engineering in 2004 from the Faculty of Engineering,
University of Pisa. Currently, he is a Ph.D. student in
computer engineering at the Department of Ingegneria della
Informazione, Pisa. His research interests are in security of
networked embedded systems.

Riccardo Schiavi received the Laurea degree in computer
engineering in 2004 from the Faculty of Engineering, Univer-
sity of Pisa. Currently, he is a Ph.D. student in robotics auto-
mation and bioengineering at the Centro Interdipartimentale
di Ricerca “E. Piaggio” and at the Dipartimento di Sistemi
Elettrici e Automazione. His research involves the development
and control of embedded systems.

Addpress for Correspondence: Lucia Pallottino, Centro “Enrico

Piaggio,” via Diotisalvi, 2, 56100 Pisa, Italy. E-mail: 1.pallottino@
Ing.unipi.it.

MARCH 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

