
Decentralized Cooperative Conflict Resolution
Among Multiple Autonomous Mobile Agents

Lucia Pallottino, Vincenzo Giovanni Scordio, Antonio Bicchi

Abstract— In this paper we consider policies for coopera-
tive, decentralized traffic management among a number of
autonomous mobile agents. The conflict resolution problem
is addressed considering realistic restrictions on possible
maneuvers. We formulate this problem as one in Mixed
Integer Linear Programming (MILP). The method, which
proves successful in a centralized implementation with a
large number of cooperating agents, is also extended to a
decentralized setting. Conditions for the existence of conflict
avoidance maneuvers for a system of 5 autonomous agents
with a transitive information structure are provided, alon g
with the explicit policy to be applied by each agent.

I. I NTRODUCTION

In recent years, multi-agent system (MASs) have at-
tracted increasing attention and have been proposed for sev-
eral applications, such as air traffic mangement, planetary
exploration, surveillance etc.. MASs offer many potential
advantages with respect to single-agent systems such as
speedup in task execution, robustness with respect to failure
of one or more agents, and scalability. On the other hand,
MASs introduce challenging issues such as the handling of
distributed information data, the coordination among agents,
the choice of communication protocols, and the design and
verification of decentralized control laws [19].

In this paper, we consider the problem of managing the
traffic of MASs for which the start and goal configuration
of each agent is assigned, and a path has to be decided for
each so that any collision between them is avoided. This
can be done by using a centralized approach in which safe
trajectories for all agents are computed by a unique decision
maker (see e.g. [18],[13],[10],[6], [16] for air traffic conflict
management). Although correct and complete algorithms
for the centralized traffic management problem may exist,
they typically require a large amount of computational
resources. Furthermore, centralized approaches typically are
very prone to faults of the decision maker. Alternatively,
decentralized approaches can be adopted, by which each
agent plans its own trajectory based only on information
limited to neighboring agents. A decentralized approach
is typically faster to react to unexpected situations, but
safety verification is an issue as domino effects of possible
conflicts may prevent convergence to solutions in some
conditions.
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Several authors have considerd decentralized control of
multiple mobile agents. In [4] authors propose a hybrid
control architecture with parallel problem solving which
guarantees collision avoidance. In [8] the problem of path
planning is divided into global and local path planning,
and AI techniques are used in combination with real-
time techniques. In [9] and [20], formations of robots are
considered, where a motion plan for the overall formation is
used to control a single ”lead” robot while the ”followers”
are governed by local control laws, sensing their positions
relative to neighboring robots. In [7] a framework exploiting
the advantages of centralized and decentralized planning
for multiple mobile robots with limited ranges of sensing
and communication maneuvering in dynamic environments,
is presented. In aircraft management system, decentralized
conflict resolution schemes, which are often referred to as
“free-flight” strategies, are a topic of growing recent interest
([1], [2], [6],[15],[17]).

In this paper, we propose a policy for cooperative,
decentralized traffic management among several MASs ad-
dressing realistic restrictions on possible maneuvers of the
agents. We formulate this problem using Mixed Integer
Linear Programming (MILP) techniques. The method builds
upon a technique proposed in [16], which proved success-
ful in centralized implementations with large numbers of
cooperating agents, and is extended here to a decentralized
setting. The strategy is modeled within a hybrid system
framework, and safety is studied using tools from the
relative theory. A theorem that ensure safety up to the 5
agents case is proven and safety of the hybrid system is
verified. In particular, within the theorem conditions for the
existence of conflict avoidance maneuvers for a system of
up to 5 autonomous agents with a transitive information
structure are provided, along with the explicit policy to be
applied by each agent.

The paper is organized as follows. In section II cen-
tralized and decentralized cooperative control schemes are
proposed and relative information structures reported. The
N agents decentralized transitive and cooperative scheme
is described with more details in section III. In section
IV conflict avoidance constraints are described. Finally,
in section V sufficient conditions for the safety of the
decentralized transitive information structure are provided.
In particular the proof of the theorem is provided.



II. CENTRALIZATION , DECENTRALIZATION, AND

INFORMATION STRUCTURES

Let the configuration of thei–th autonomous mobile
agent be described by a point(xi, yi, θi) ∈ IR × IR × S1

wherexi, yi are the coordinates of the center of thei-th
agent andθi is the direction of motion orheading angle. A
conflict (or collision) between agentsi and j occurs if for
some value oft, the distanceAi,j is less than the sum of
their safety radiiRi, Rj , i.e.,

Ai,j :=
√

(xi(t) − xj(t))2 + (yi(t) − yj(t))2 < Ri + Rj .

(1)
For the sake of simplicity, and without loss of generality,
we will assume henceforth thatRi = Rj , ∀i, j, and let
d = Ri + Rj denote thesafety distance. Hence, agents
are considered as discs centered inxi, yi of diameterd. In
the following, we suppose that inequality (1) is satisfied
pairwise for the initial configuration of all agents.

Maneuvering limitations of most vehicles are such that
omnidirectional models are inadequate to realistically ap-
proach MASs. Hence, we assume that the kinematic model
of the i-th agent is subject to nonholonomic motion con-
straints and is given by







ẋi = vi cos θi

ẏi = vi sin θi

θ̇i = ωi

(2)

where vi and ωi are the linear and angular velocities
respectively. We also take in due account a constraint on
the maximum curvature of trajectories, or equivalently on
the minimum steering radiusρi, by consideringωi ≤ vi/ρi.

For computational purposes, the model in (2) will have
to be considered in discrete time. In this case, we use
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 , (3)

where δi represents the length of a forward step andpi

the heading angle change taken in a unit sampling time.
The curvature limitation is implemented here by imposing
an upper bound on possible instantaneous heading angle
changes|pi| ≤ pb.

A. Centralized Cooperative Schemes

In a centralized control scheme, positions and directions
of motion of all agents moving in a predefined region
of the workspace are known by a singleDecision Maker
(DM). All possible conflicts must be solved by the DM
by finding admissible controls for each of theN agents in
the controlled workspace so as to minimize a given cost
function. A cooperative centralized cost function is usually
written as a (weighted) sum of individual costs,

J =

N
∑

1

Li,
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Fig. 1. A traffic management problem for 17 agents (left) can be managed
by the centralized MILP-based algorithm (right) in less than 15 sec. on a
common workstation.

where Li may represent e.g. the path length for agenti
[6], or the maximum deviation from its nominal direction
[16]. Hence, in a centralized cooperative control scheme a
single high-dimensional optimal control problem is solved
by a single DM (e.g., thecontrol towerin traditional airport
traffic management systems).

In [14], a centralized cooperative control scheme has
been developed for agents with bounded angular velocity
as in (2). An optimal nonlinear control problem must be
solved with nonlinear constraints given by minimum safety
distance conditions. Necessary conditions for optimality
have been obtained by applying Pontryagin’s Minimum
Principle, and an algorithm has been developed to obtain
numerical solution of the optimal nonlinear control problem.
The complexity of the algorithm grows combinatorially with
the number of agents and could handle up to 5 agents in
the same workspace ([5], [6], [14]).

Conflict resolution maneuvers using a simplified model,
allowing for bounded instantaneous changes of heading
angle and velocity, have been considered in [15] and [16].
In this case, maneuvers are obtained as solutions to a
mixed-integer linear optimization problem. The algorithm
has proven efficient and fast for tens of agents in a common
workspace (see fig. 1). The two approaches of [6] and
[16] are complementary: the latter addresses large scale
problems involving tens of agents moving in relatively large
space, while the former represents a smaller scale scenario
with few agents, moving by closely knitted trajectories.

B. Decentralized Cooperative Schemes

In decentralized cooperative control schemes, each agent
is allowed to take decisions autonomously, based on the
information that is available in real time. Several models of
decentralized schemes are conceivable, which may differ
in the degree of cooperative/competitive behaviour of the
agents, and in the information structure [13],[18],[7]. In
this paper, we consider cooperative schemes, which can be
regarded as instantiations of classical team theory problems
(cf. e.g. [11]).

We assume that two agents communicate with each other
when and only when their distance is less than a fixedalert
distance. The size of the alert distance can then be regarded
as a degree of centralization/decentralization. Indeed, very
large alert distances relative to the maneuvering capabilities



Fig. 2. Several different information structures for threevehicles. Left:
S1 = {1}, S2 = {1, 2}, S3 = {3}. Middle, non transitive:S1 = {1, 2},
S2 = {1, 2, 3}, S3 = {2, 3}; transitive:S1 = S2 = S3 = {1, 2, 3};
Right, non transitive:S1 = {1}, S2 = {1, 2}, S3 = {2, 3}; Right,
transitive:S1 = {1}, S2 = {1, 2}, S3 = {1, 2, 3}. Notice that different
alert distances cause non reflexivity.

of the agents are tantamount to centralized control, as
every agents gets full information on the system while
still far away from conflicts. On the other hand, for small
alert distances, a miopic resolution policy of one conflict
might give raise to a cascade effect on other conflicts, with
possibly destabilizing consequences.

A key characteristic of decentralized schemes is the
nature of their information structure. LetSi(τ) denote the
set of indices of agents within distanceAalert from the i–
th agent at timeτ . An information structure isreflexiveif
i ∈ Sj ⇒ j ∈ Si; it is transitive if i ∈ Sj and j ∈ Sk

⇒ i ∈ Sk. In other words, a MAS is said to have a
reflexive information structure if, whenever agenti can get
information from agentj, agentj can also get the same
type of information from agenti. A MAS with reflexive
and transitive information structure is such that, whenever
agentsi andj can exchange information, they do share all
the information in their possess. Some illustrative examples
are reported in fig. 2.

A cooperative approach to decentralized conflict resolu-
tion amounts to assuming that each agent decides its own
behaviour based on a policy that tends to optimize a cost
function consisting of the sum of individual cost functions
extended only to neighbouring agents, i.e.

Ji =
∑

j∈Si

Lj (4)

Notice that the cost 4, along with the agent’s dynamics, in-
put and state constraints, define an optimal control problem,
which, if well-posed, determines univocally a control policy
for agent i. If multiple optimal solutions are possible, a
suitable system of rules should be enforced to this purpose.

As a consequence, to each different information structure
there corresponds a working mode for the system, i.e.
dynamics driven by controls optimizingJi,Si

subject to the
non-conflict constraints for all pairs(i, j) with j ∈ Si.

However when during execution of maneuvers that were
planned based on a certain information structureI =
(S1, . . . , Sn), an agentj with j 6∈ Si gets at distance
Aalert from agenti, the information structure is updated,
and optimal paths are replanned according to the new cost
function and constraints for agenti. The resulting system is
therefore hybrid, as it is comprised of a finite–state machine

Fig. 3. A decentralized nontransitive scheme with three agents. Each
node in the graph corresponds to different costs and constraints in the
agents’ optimal steering problem. Optimizing controllersfor such problems
cause different continuous time dynamics at each node. Switching between
modes is triggered when an agent enters or exits the alert neighborhood
of another.

and of associated continuous-variable dynamic systems,
transitions among states being triggered by conditions on
the continuous variables.

The big issue with decentralized schemes is obviously
that switching among different modes can lead to situations
where no feasible solution exist. On the other hand, the de-
crease in computational complexity of problems solved by
each DM allows real-time implementation with embedded
controllers, thus introducing a large degree of redundancy
which can greatly reduce malfunctioning risks.

To illustrate application of a cooperative decentralized
policy on a nontransitive, reflexive information structure,
consider aN = 3 scenario. There are eight possible states
(modes of operation), corresponding to different informa-
tion structures (see fig. 3). At every state transition, each
agent evaluates in real–time the optimal control (heading
angle change), from current information structure, for itself
as well as for all other agent within its alert radius. Only
the control policy evaluated by an agent for itself is then
executed, as the one calculated for others may ignore part of
the information available to them due to the nontransitivity
of the information structure.

Nontransitive schemes tend to amplify both advantages
and disadvantages of decentralization. A simulative study
reported in [6] has shown the increased robustness of
decentralization with respect to failures in the decision
making processes. An analytic study of safety of the equiv-
alent hybrid system (for the linear model of (3)) has been
presented in [17]. Generalizations to more agents appear to
be either overconservative, or complex.



Fig. 4. Left: decentralized transitive scheme with three agents. Notice
that nodesI5, I6, I7, I8 of the nontransitive scheme in fig. 3 coincide
here in a single node. Right: the associated relaxed graph, in which only
the number of teams and singelton are considered.

III. T RANSITIVE INFORMATION STRUCTURES FOR

DECENTRALIZATION

By reflexivity and transitivity of the information structure,
whenever agenti appears inSj , then j also appears in
Si and Si = Sj . Hence, all agents whose indexes are in
the same setSi effectively share the same information and
hence execute the same policy. We will therefore refer to
Si = Sj as a “team” in this case. The possible working
modes and transitions for theN = 3 scenario, under a
reflexive and transitive information structure, is illustrated in
fig. 4 on the left. Notice the drastically reduced cardinality
of the graph nodes.

We describe now the structure of a generalN -agents de-
centralized transitive scheme. Recall that transitions among
different operating modes are triggered by zero-crossing
conditions for variables of the typeAij(t) − Aalert. We
assume that a minimum dwell time is enforced in each
mode, and that no simultaneous transitions are allowed. This
assumptione implies for instance that, in fig. 4 on the left,
no direct arc exists between stateI11 and stateI31.

To the purposes of safety analysis, a further reduction of
the cardinality of modes is instrumental. All nodes in an
information graph such as that in fig. 4 on the left, which
share the same number of teams and the same number of
elements per team, can be identified in a single node as
represented in fig. 4 on the right.

A new graph is thus generated, namedrelaxed graph, in
which a node is characterized by a list([n1], . . . , [nm], {z}),
where m is the number of non-trivial teams,ni > 1 is
the number of elements in thei–th team, andz is the
number of trivial (singleton) teams for whichSj = {j}.
For example, nodesI21, I22, I23 in fig. 4 are identified in
the relaxed graph with a([2], {1}). Occasionally, nodes of
the relaxed graph will be labeled byIjk, where the first

Fig. 5. The decentralized transitive scheme forN = 4 agents.

index represents the depth of the node in the hybrid system
with respect to transitions, while the second index is needed
to distinguish nodes of same depth. The first nodeI11 of the
hybrid system, for theN agents case, is the one represented
by {N}. This node is thus characterized bySi = {i} for
i = 1, . . .N , i.e. all agents are at relative distance larger
than the alert distance. From nodeI11 transitions can occur
only to nodeI21 that represents a team of two agents and
N − 2 teams of single agents:[2] {N − 2}.

To the purposes of safety analysis, only transitions from
nodeIik to Ijl with i ≤ j are considered. Indeed, inverse
transition corresponds to a configuration in which an agent
moves at distance larger than the alert distance from each
member of the team. In this case, transitions in the relaxed
graph involves and modifies only two teams of the starting
node. In particular, after a transition two teams are merged
in the same team. In the following, we refer to transition
form state Ijk to state I(j+1)m as j-th level transition.
Notice that in aN agents scenario there areN − 1 levels
of transitions in the relaxed graph.

In general, atj-th transition level withj ≤ N , the nodes
are characterized by the following teams and elements:[ai]
for i = 1, . . . , k + 1, and {N − (j + k)} whereai 6= 1,
k = 0, . . . , min{j − 2, N − j} and

∑k+1
i=1 ai = j + k.

It is important to notice that even during transitions in
the hybrid system, the evolution of agent configurations
(ωij(t), θi(t), θj(t), αij) is continuous.

In fig. 5 and fig. 6, hybrid systems forN = 4 andN = 5
are exploited.

IV. CONFLICT AVOIDANCE CONSTRAINTS

Our aim is to provide some conditions on the degree
of decentralization, i.e. the value of the alert distance, in
order to ensure the safety of the decentralized transitive
information structure. Safety is referred to the existence
of maneuvers that allow agents to avoid possible conflicts
for each possible transition in the relaxed graph. In the



Fig. 6. The decentralized transitive scheme forN = 5 agents.

following, we consider as feasible maneuvers bounded
amplitude deviations from the nominal direction of motion.

No-conflict constraints are given by non linear inequal-
ities such as (1). With a geometrical construction and by
the introduction of some boolean variables, such nonlinear
constraints can be written as linear constraints in the control
variables. This construction is reported in details in [17].
In this section only main results are reported for reader
convenience.

Consider a general case ofn agents in the same team with
the dynamics (3). Thei-th agent changes its heading angle
of a quantitypi that can be positive (left turn), negative
(right turn) or null (no deviation) but anyway bounded by
a given valuepb, i.e. pi ∈ [−pb, pb].

For the purpose of safety, the problem is to find an
admissible value ofpi for agenti such that all conflicts are
avoided with new heading anglesθi + pi, for each member
of the team. In this section, we formulate no-conflict con-
straints as inequalities in the unknownspi, ∀i = 1, ..., N ,
depending upon agent initial configurations(xi, yi, θi), i =
1, ..., n. The construction of no-conflict constraints can be
done considering agent pairwise and then combining all
such conditions for all pairs of agents in the same team.

Given the pair of agentsi and j, we define following
quantities:ωij = arctan((yj − yi)/(xj − xi)), Aij =
√

((xj − xi)2 + (yj − yi)2), andαij = arcsin
(

d
Aij

)

. Let

qij
def
= (ωij , θi, θj , αij) and pi, pj the control variables.

The safe set of a system of two agents in configuration
(xi, yi, θi) and (xj , yj , θj) is the set of values ofpi and
pj such that|pi| ≤ pb, |pj | ≤ pb and such that from
configurations(xi, yi, θi +pi), (xj , yj, θj +pj) no conflict
occurs.

Referring to [17] for more details, the safe set for agentsi
andj can be described by a logical statementC(qij , pi, pj)
that is a set ofand and or inequalities, function ofqij ,
and linear inpi and pj . Choosing a linear cost function
such as the1-norm or the∞-norm of control variables, a

Fig. 7. Unsafe zones: sectors of the(ω, θ) plane for which a conflict is
detected.

Mixed Integer Linear Programming problem must be solved
to obtain optimal controlspi that solve all possible conflicts
[15].

The safe set, for the pair(i, j), is thus described by
Σcij

= {qij |∃pi, pj ∈ [−pb, pb], C(qij , pi, pj)}. Consider a
reference system with origin in the position of agent
i and direction of x-axis that coincides with the di-
rection of motion θi. By studying the equivalent set
{qij |∃pij ∈ [−2pb, 2pb], C(qij , 0, pij)}, wherepij = pi − pj ,
ωij = ωij −θj andθij = θi−θj , the unsafe set represented
in the plane(ω = ωij , θ = θij) is reported hased in fig. 7.

Consider now the width∆ij of the unsafe set band,
we have that∆ij = 4αij and decreases withαij . As a
consequence, it decrease as the distanceAij betweeni and
j increase. The value of the bandwidth will be used in the
theorem proof.

V. SAFETY OF A DECENTRALIZEDN -AGENT SYSTEM

In this section we focus on the safety aspect of the
decentralized transitive scheme described in section III.
Consider configurations for which a solution of the relative
MILP problem exists within each team of agents, we will
refer to those assafe configurations. In other words, safe
configurations are such that no conflict is detected or if
a conflict is detected it is solvable with maneuvers of
amplitude bounded bypb. A transition from a state of the
hybrid system to another state is asafe transitionif it starts
in a safe configuration and it ends in safe configurations
of the new state of the system. Our aim is to compute
minimum values of the alert distance to ensure safety for
all possible transitions in the hybrid system.

Remark 1: Assume that a minimum alert distance has
been computed for the caseN = k, so that all transition
of the associated hybrid system are safe. Consider the case



Fig. 8. CaseN = 4, transition from[3], {1} to [4] .

N = k + 1, all i-th level transitions withi < k are safe
(safety conditions on the alert distance have already been
obtained in the caseN = k). For example, based on results
obtained forN = 3, for caseN = 4 only transition of type
[3], {1}

T31−→ [4] and [2], [2]
T22−→ [4] must be exploited (see

fig. 5).
In the following, we propose conflict resolution maneu-

vers in the worst cases of all transitions in the hybrid
systems. Our purpose is to providean admissible maneuver
for the worst-case transitions of the hybrid system, thus
proving its safety. Optimal maneuvers (with respect to the
relative cost function) are computed by agents in the same
team by solving the MILP problem described in section IV.
We now focus on the proof of the main result of the paper
summarized in next theorem.

Theorem 1:ConsiderN agents withN ≤ 5 with safety
distanced in a common workspace such that initial relative
distances are larger than the alert distanceAalert or such
that they are in a safe configuration of a node of the relaxed
graph. Consider the upper bound on possible instantaneous
heading angle changes aspb. If Aalert ≥ d/ sin(pb/10)
then each transition that can occur in the hybrid system is
safe (i.e. for each transition there exist admissible maneu-
vers solving conflicts).

Proof: Based on remark 1, we first give conditions on
safety for3 and4 agents and finally for5 agents taking into
account only2nd 3rd and4th level transitions respectively.

Case N = 3: in [17] safety has been demonstrated
for the decentralized cooperative nontransitive scheme in
the N = 3 case. The obtained alert distance that ensure
safety transitions isAalert = d/ sin(pb/4) and depends on
the safety distance and the bound of admissible controls.
A similar demonstration can be applied to the transitive
scheme obtaining, for theN = 3 case, the same value
of the alert distance. Demonstration is omitted for space

limitations.
Case N = 4: consider the worst case for the first

transition, all three agents of[3] (named agentsA, B, C)
are at the minimum distanceAalert with respect to{1}
(named agent1), in this case we haveα1A = α1B =
α1C = α. This is a worst case since we have supposed
that only two agents (e.g. agent1 andA) can be at distance
Aalert at each timet, hence immediately after the transition
we haveA1B > Aalert and A1C > Aalert. Therefore,
α1A = α > α1B and α > α1C . Hence, the unsafe sets
of pairs(1, B) and(1, C) would be smaller than the unsafe
set of (1, A).

Since transitionT31 starts from a safe configuration,
conflicts within team[3] have already been solved. In order
to do not generates other conflicts, we don’t want agents of
team [3] to maneuver. We will assume that the maneuver
will be done by agent1. Let then consider the non collision
constraints in coordinates relative to agent1, (see fig. 8).
Assume that, after the transition, agent1 detect a conflict
with agentA, the worst case (reported in fig. 8) is when
the minimum maneuver for1 to avoid the conflict withA
generates a conflict withB or C. If a positive deviation is
done by agent1 of amplitude2α then agentsA, B, C will
move in configurationA′, B′, C′, while the conflict with
A is solved there is a new conflict withC. Otherwise, if a
right deviation is done by1 then agentsA, B, C will move
in configurationA′′, B′′, C′′, while the conflict withA is
solved a conflict withB is detected. For example, let agent
1 to maneuver withp1 = 2α, in order to solve the generated
conflict with C another maneuver of amplitude4α would
be needed for agent1. Hence, in the worst case a singular
maneuver of amplitude6α solves all conflicts. The chosen
maneuver is admissible if6α ≤ pb, and the transition is
safe if Aalert ≥ d/ sin(pb/6).

Regarding transitionT22 : [2], [2] → [4], agents of the
two teams are named1, 2 andA, B respectively. The worst
case occurs when agent1 is at distanceAalert from A and
a conflict occurs, between1 andA, such that a maneuver of
amplitude±2α1A is needed by agent1 to solve the conflict
with A (or by agentA to solve the conflict with1). In worst
case both maneuvers generate conflicts between agents1
and2. This happens when agent2 hasω = π andθ ≤ 2α1A,
both ω andθ in coordinates relative to agent1.

If this is the case, we let maneuver agentA, instead of
agent1 of amplitude2α1A or −2α1A. In worst case also
this two maneuvers are such that a conflict betweenA and
B is generated. This worst case configuration is reported in
fig. 9 in the coordinates relative to agent1. Larger unsafe
sets are for agent2 (α12 = π/2) while smaller ones are for
A andB agents.

Referring again to fig. 9, a conflict avoidance maneuver
will consist in let both1 and 2 maneuver with amplitude
at worst +6α1A. With respect to agent1 this maneuver
produce a diagonal displacement for agentA andB and an
horizontal displacement of6α in the (ω, θ) plane without
generating other conflicts, see fig. 10. Concluding, in worst



Fig. 9. CaseN = 4, transition from[2], [2] to [4], in coordinates relative
to agent1.

Fig. 10. CaseN = 4, transition from[2], [2] to [4], in coordinates relative
to agentA.

case the transitionT22 is safe ifAalert ≥ d/ sin(pb/6).
Once transitions ofN = 4 case are safe, regardingN = 5

case, transition that need an exploitation areT41 : I41 → I51

andT32 : I42 → I51, (see fig. 6).
CaseN = 5: consider the worst case for transitionT41,

from [4]{1} to [5]. This is similar to transitionT31 of the
N = 4 case, with respect to theN = 4 case, in addition
there is another agentD at distanceA1D = Aalert. As
we have shown previously, with a maneuver of amplitude
4α (for agent 1) conflicts between angent1 and agents
A, B andC are solved. The worst case is when with such
maneuver a new conflict between1 and D is detected.
Hence, a total maneuver of amplitude8α solves all conflict

of 1 with A, B, C andD. Concluding, transition is safe if
α < pb/8 or equivalently ifAalert ≥ d/ sin(pb/8).

TransitionT32 from [3][2] to [5] is similar to transition
T22 of the N = 4 case. The worst case is the same we
reported forT22 (see fig. 9), in addition there is another
agentC such that once conflicts between1 and A and B
are solved, a new conflict between1 andC is detected. In
order to solve also this confict a total maneuver of amplitude
10α is needed by both1 and 2. Concluding, transition is
safe ifα < pb/10 or equivalently ifAalert ≥ d/ sin(pb/10).

Concluding, the most restricting condition on the alert
distance obtained in the proof isAalert ≥ d/ sin(pb/10)
that proves the theorem.

To give an idea on the lower bound obtained to the alert
distance, if admissible maneuvers are of amplitude smaller
than pb = 0.35rad, for N ≤ 5 agents it is sufficient
to impose an initial relative distance larger than the alert
distanceAalert ≥ 28.6d to ensure safety for every transition
that can occur. For example ifd = 10cm it is sufficient to
impose an initial relative distance larger than3m.

VI. CONCLUSIONS

Centralized and decentralized control schemes for coop-
erative multiple autonomous agents have been proposed for
the conflict resolution problem. In particular, a nontransitive
and a transitive decentralized scheme have been considered.
For the transitive decentralized scheme, the problem has
been described by means of a hybrid system formalism,
and its safety has been formally verified for up to5 agents
under the condition that a minimum alert distance between
agents is enforced.

Further developments of this work will concern the
verification of safety of the decentralized transitive scheme
to larger numbers of agents, as well the application to
different information structures.
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