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Abstract. In this chapter, we consider three of the main problems that arise in the navigation
of autonomous vehicles in partially or totally unknown environments, i.e. building a map of
the environment, self-localizing, and servoing the robot so as to achieve given goals based
on sensorial information. As compared to most part of the existing literature on SLAM, we
privilege here a system-theoretic view to the problem, which allows the localization and
mapping problems to be cast in a unified framework with the control problem. The chapter is
an overview of existing results in this vein, and of some interesting directions for research in
the field.

1 Introduction

Autonomous vehicles have a wide range of applications, both in indoor and outdoor
environments, and represent one of the areas with largest potential for advanced
robotics. A very important trend in research related to mobile robots is concerned
with their sensorization, and in particular with the tradeoffs between effectiveness
and cost of different possible sensorial equipments.

Three of the main technical difficulties in applying mobile robots to partially or
totally unstructured environments are indeed sensor-related: the localization of the
vehicle with respect to the environment, the construction of a map of the environment
itself, and the control of the vehicle to desired postures relative to the environment.
Naturally, the three problems are closely interconnected. While the acronym SLAM
(for Simultaneous Localization And Map building) has been gaining wide accep-
tance in the robotics literature ([5,29,41]) to indicate the composition of the first
two aspects, the connection to control is less frequently addressed. Indeed, in the
SLAM literature, vehicles are often commanded in open loop. On the other hand,
in the rather extensive literature on control of autonomous robots, localization is
often simply taken for granted. Such is the case e.g. in many papers dealing with
set-point stabilization of wheeled vehicles, which assume full state information (viz.
[6,7,13,45,34,8,12]). In practical applications of automated vehicle control, however,
one is confronted with the problem of estimating the current position and orienta-
tion of the vehicle only through indirect, noisy measurements by available sensors.
Although much work has been done on techniques for vehicle localization based on
combinations of sensory information (odometry, laser range finders, cameras, etc.),
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very little is known about the real time connection of a localization algorithm and a
feedback control law.

In this chapter, we consider the problem of simultaneous localization, mapping,
and servoing (SLAMS) from a unified system-theoretic viewpoint, and report on
work towards integrating solutions allowing an autonomous vehicle to navigate in
an unknown environment. The chapter is organized as follows: in section 2 we
formulate the problem under consideration, and in section 3 we provide a brief
survey of the state of the art. In section 4 we discuss aspects related to the existence
of solutions to the SLAM problem, and to the choice of optimal exploratory paths
to elicit SLAM information. In section 5 we report on the problem of simultaneous
localization and servoing, before concluding in section 6.

2 Modeling of the SLAMS problem

Let us consider a system comprised of a vehicle moving in an environment with the
aim of localizing itself and the environment features. For simplicity, we assume that
features are distinctive 3D points in the environment where the vehicle moves (more
general features are described e.g. in [39]). The vehicle is endowed with sensors,
such as a radial laser rangefinder or video cameras. Both the vehicle initial position
and orientation, and the feature positions, are unknown or, more generally, known
up to some a priori probability distribution. A particular pose of the vehicle, or set
of poses, is regarded as the goal. Sensor readings corresponding to the goal pose are
known (by e.g. recording them in a preliminary learning phase). Among the features
that the sensor head detects in the robot environment, we will distinguish between
those belonging to objects with unknown positions (which we shall calltargets),
and those belonging to objects whose absolute position is known (which will be
referred to asmarkers). Indeed, as it can be argued, this distinction is only useful for
simplicity of description, as in general the case is that there exist features that are
more or less uncertain.

The vehicle dynamics are supposed to be slow enough to be neglected (dynamics
do not add much to the problem structure, while increasing formal complexity).
Kinematics of wheeled vehicles can usually be written as a nonlinear system of the
type ẋ = G(x)u, wherex ∈ IRnv is the robot pose (typically,nv = 3 for a vehicle
moving in a plane with an orientation), andu ∈ IRm are the input velocities. It
is often the case where the system velocities are affected by disturbancesµ (such
as e.g. slippage of the wheels), and the model is accordingly modified to include
process noise aṡx = G(x)(u + µ).

Let the i–th target absolute coordinates be denoted byp i ∈ IRd, with d = 2
for planar features andd = 3 in case of 3D environments, and usep ∈ IR dnf to
denote the collection of all features. According to the sensor equipment specifics,
the relative position of the vehicle and of the features form sensor readings, or
observables, described by the maph : IRnv × IRdnf → IRq, (x, p) �→ y = h(x, p).
Measurement noiseν adds to this asy = h(x, p) + ν.
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In system-theoretic terms, the three problems in SLAMS can be described by
referring to the input-state-output system[

ẋ
ṗ

]
= f(x, p, u, µ) =

[
G(x)

0

]
(u + µ)

y = h(x, p) + ν.
(1)

In this framework, localization and mapping areobservability problems, dealing
with the reconstruction of the present posex and feature mapp, respectively, from
current and past observables, from model and input knowledge, and from statistics
on process noiseµ and measurement noiseν. Servoing is astabilization problem,
aiming at devising what inputsu are to be given to the system so as to reach the
desired pose, based on available data. Should the current posex be known exactly
at all times, servoing would amount to find a state feedback law in the formu(x, t),
such thatẋ = G(x)u(x, t) asymptotically converged to the desired pose. However,
such knowledge is not available in general, because typicallyq < n v +dnf and, even
when this inequality would be reversed (such as e.g. when using absolute landmarks
and a trinocular stereo camera head), because of measurement noise. Servoing in
SLAMS should therefore be regarded in general as anoutput stabilization problem,
whereby a new dynamic system must be designed in the additional statesw ∈ IR r as

ẇ = S(w, y)
u = F (w, y) (2)

such that, when connected to system (1), asymptotic stability of the compound
nv + dnf + r states can be achieved. It is often (but not always) the case that the
auxiliary system (2) includes anestimator of the system (1), i.e. its design is aimed
at achieving the convergence ofw(t) to the posex(t) (the prevailing design for
the estimator is based on Extended Kalman Filters, see below). According to this
approach, a design is often attempted for the control in the form of a state-feedback
stabilizeru(w, t), wherew is used in place ofx. Naturally, convergence of the
estimator and of the state-feedback law separately are only necessary conditions in
order for their composition to provide a stable and satisfactory behavior.

The model in (1) is sometimes referred to asworld-centric. It is rather obvious
that, unless geographic markers or other equivalent information (from compass,
GPS, etc.) are present, reconstruction of absolute robot position and orientation
is impossible. A different description of the same problem can hence be given in
coordinates relative to the vehicle (arobot-centric model), which would be written
in the form

vṗ = �(vp, u, µ)
y = ĥ(vp) + ν,

(3)

Such a model is applicable for instance to the case where a camera is mounted on
the vehicle, with the output map̂h(·) representing the projection of 3D features to
the image plane of the camera. Output feedback control of (3) amounts then to what
is commonly referred to as image-based visual servoing of the vehicle. In this case,
explicit estimation of the robot pose is clearly unnecessary.
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In the rest of this chapter, we will discuss these different aspects of the SLAMS
problem in more detail, emphasizing the insight that an integrated system theoretic
approach can bring to the field.

3 Approaches to the SLAM Problem

As shown in the former section, the Simultaneous Localization and Map Build-
ing problem — also known in the literature as CML (Concurrent Mapping and
Localization)— is characterized by two sources of uncertainty: the vehicle model
(because of both uncertain parameters appearing in the dynamics and process noise)
and sensor noise.

Uncertainty can be dealt with in basically two ways, i.e. deterministically or by
using probabilistic models. The first approach assumes that all uncertainty sources
may generate errors that are unknown but bounded, and seeks for bounds on how
these error can propagate through the reconstruction process. Naturally, the problem
tends to be overly complex from the computational and memory-occupation view-
points, hence efficient algorithms to approximate the worst-case bounds are in order.
An application of this approach to robot localization is reported in [18], where an
efficient, recursive algorithm to approximate the set of robot poses compatible with
present and past measurements is presented.

Deterministic algorithms tend to suffer from excessive conservativeness, and are
typically not very suited to take into account the existence of large, sporadic errors
in sensor readings (outliers), which are common in some types of sensors used in
SLAMS (e.g. spurious reflections of lasers or sonars, feature mismatch, etc.). When
an excess of conservatism is not justified by particularly risk-sensitive applications,
it is often preferred to adopt probabilistic models of uncertainty.

The basis for virtually all probabilistic methods is Bayesian theory of inference,
which assumes that the statistical properties of thedata space and of themodel
space are well defined. These are the vector spaces, of suitable dimension, where
observablesy and unknowns (and estimates thereof, denoted for brevity asx) take
their values, and where a probability density function (p.d.f.) is defined for the
variables of interest. Thea priori state of information consists in a p.d.f. defined
over the model spaceX , fprior(x), which models any knowledge one may have on
the system model parameters independently from the present act of measurement,
due e.g. to physical insight or to independent measurements carried out previously.

In the formation of estimates, two information sources are to be considered, i.e.
the forward solution of the physical model, and the act of measuring itself. The
state of information on the experimental uncertainties in measurement outputs can
be modelled by means of a p.d.f.fexp(y) over the data spaceY (this should be
provided by the instrument supplier), while modelling errors (due to imperfection
of (1), or to process noise) can be represented by a conditional p.d.f.f mod(y|x) in
the data spaceY (or, more generally, by a joint p.d.ffmod(y, x) overX × Y ).
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Fig. 1. The process of Bayesian inference. (a) A priori information on the model space,
fprior(x), and information on experimental datafexp(y) are independent, and combine in
the joint p.d.f.fjoint(y, x), (b). Information on modelling is represented byfmod(y, x)
(c). The conjunction offjoint(y, x) andfmod(y, x) is fpost(y, x) (d). The marginal p.d.f.’s
fpost(x) andfpost(y) (e) can be obtained directly fromfpost(y, x). Different estimators can
be applied to these results, as illustrated in (e).

Fusing the different information in an estimate ofx leads to aposterior p.d.f
overX , that is described by Bayes’ formula

fpost(x) = f(x|y) = αb fprior(x)
∫

Y

fexp(y)fmod(y|x)dy, (4)

whereαb is a normalization factor such that
∫

X fpost(x)dx = 1. The process of
information fusion is described in figure 1 (adapted from [44]), with reference to
the case where the measurement equation forming observablesy from unknownsx
is nonlinear (such as it actually is in SLAM). Although the posterior p.d.f. on the
model space represents the most complete description of the state of information
on the quantity to be measured one may wish, a final decision on what is the
“best” estimate ofx needs usually be taken. Several possibilities arise in general,
such as themaximum a posteriori estimate (MAP),maximum likelyhood estimates
(MLE, which coincides with MAP if no priors are available), theminimum variance
estimate (MVE) aliasminimum mean square (MMSE). Figure 1-e illustrates these
estimates. While very little can be said in general about the performance of such
estimators, well known particularizations apply under certain assumptions on the
prior distributions. Thus, if a normal distribution (an order-2 Gaussian) can be
assumed for all prior information, the MAP estimate enjoys many useful properties:
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first (and perhaps most importantly for the problem at hand), since the convolution
in (4) of two Gaussian distributions is Gaussian, the modelling and experimental
errors in measurements simply combine by addition of the covariance matrices of
experimental and modelling errors,CY = Cexp+Cmod. Roughly speaking, errors in
the model knowledge (kinematic model of the systems and odometry errors) can be
ignored, provided that experimental measurement errors iny are suitably increased.
This result holds for nonlinear sensor models as well. For linearized measurement
models (y = Hx), the a posteriori p.d.f. would also be Gaussian, the MVE and MAP
estimates would coincide and evaluate to

x̂ = Cpost(HT C−1
Y y + C−1

priorxprior),
Cpost = (F + C−1

prior)
−1,

(5)

whereF , theFisher information matrix for the linear case at hand, is defined as

F = HT C−1
Y H. (6)

As a final remark, the Gauss-Markov theorem [38] ensures that the estimate (5) is
the best linear unbiased estimate (BLUE) in the minimum-variance sense even for
non-Gaussian a priori distributions. This result may seem to indicate some “absolute
optimality” of the least-squares estimate. However, the MVE of a non-Gaussian
distribution may not be a significant estimate, as apparent in figure 1-e. This is the
case for instance when a few measurements are grossly in error (outliers): the MVE
in this case can provide meaningless results. This fact is sometimes used to point
out thelack of robustness of the MVE.

In the literature on mobile robot localization and mapping, methods to evaluate
an estimate of the posterior p.d.f. over the space of unknown robot poses and targets
have been studied extensively. While for an exhaustive review the reader is referred
to [41], we limit ourselves to point out that methods proposed so far can be roughly
classified in two main groups: batch and recursive.

Batch methods attempt as accurate a solution of the posterior as possible, by
taking into account that often in SLAM the posterior p.d.f. is a complex multimodal
distribution. To such complexity contribute different factors, among which the non-
linearity of dynamics and measurement equations (1), and the fact that measurement
noise in different measurements is statistically correlated, because errors in control
accumulate over time, and they affect how subsequent measurements are interpreted
([41]). A crucial aspect of SLAM is indeed that, when features are not distinctive,
multiple correspondences are possible, a problem also known asdata association.
The correspondence problem, consisting in determining if sensor measurements
taken at different times correspond to the same physical object in the world, is very
hard to be tackled, since the number of possible hypotheses can grow exponentially
over time. A family of methods recently introduced to deal with these problems,
which is based on Dempster’s Expectation Maximization Algorithms (EM) [24,41],
represent the current state-of-art in this regard. However, since EM have to process
data multiple times they are not suitable to real–time implementation, as needed e.g.
to interface with servoing algorithms.
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On the other hand, most often new updates of model estimates are needed
in real-time, without referring to the whole history of sensed data. To cope with
this requirement, further simplifications are usually done: for instance, assuming a
Gaussian posterior distribution, the given record of data can be completely described
by the mean vector and the covariance matrix. When a new datum is available, all
prior information can be extracted from those statistics. A method that does not use
prior information explicitly, but through its statistics only, is calledrecursive. The
Kalman filter is one such recursive method, implementing the optimal minimum
variance observer for a linear system subject to uncorrelated, zero-mean, Gaussian
white noise disturbances.

Unfortunately, these assumptions are unfulfilled in SLAM applications. Hence,
different simplifying assumptions and approximations are employed. Filters re-
sulting from repeated approximate linearization of (1) are commonly referred to
Extended Kalman Filters (EKF). Although extended Kalman filters for the SLAM
problem do not guarantee any optimality property, they remain the most widely used
filters in SLAM. EKF maintain all information on the estimated posteriors in the
vector of means and in a covariance matrix, whose update at each step is a costly
operation (quadratic with the number of features). In practical implementations, a
key limitation of EKF is the low number of features it can deal with.

Algorithms have been recently proposed to overcome this limitation. The Fast-
Slam [33] algorithm is based on the assumption that the knowledge of the robot
path renders measurements of individual markers independent, so that the problem
of determining the position of K features could be decomposed into K estimation
problems, one for each feature [33]. Compressed EKF (CEKF), see [20], stores and
maintains all the information gathered in a local area with a cost proportional to
the square of the number of landmarks in the area. This information can then be
transferred to the rest of the global map with a cost that is similar to full SLAM,
but in only one iteration. Sparse Extended Information Filter (SEIF), see [43], is
an algorithm whose updates require constant time, independent of the number of
features in the map. It exploits the particular form of the information matrix, i.e. the
inverse of the covariance matrix. Since the information matrix is sparse, it possesses
a large number of elements whose values, when normalized, are near zero and can be
neglected in the updating process. Some algorithms, see [17,16,26], based on incre-
mental update of uncertain maps, use a fuzzy logic approach to manage uncertainty
on obstacle poses and successively implement obstacle avoidance strategies.

An interesting possibility in SLAM is the possibility of using multiple vehicles
in a cooperative way in order to perform tasks more quickly and robustly than a
single vehicle can do. In [15,42], the problem of performing concurrent mapping
and localization with a team of cooperating autonomous vehicles is considered, and
the advantages of such a multiagent cooperation are illustrated.

One of the most challenging topics in SLAM is the optimization of autonomous
robotic exploration. Indeed, it is often the case that robots have degrees of freedom in
the choice of the path to follow, which should be used to maximize the information
that the system can gather on the environment. The problem is clearly of great
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relevance to many tasks, such as e.g. surveillance or exploration. However, it is
in general a difficult problem, as several quantities have to be traded off, such as
the expected gain in map information, the time and energy it takes to gain this
information, the possible loss of pose information along the way, and so on. This
problem is considered in detail in the next section.

4 Solvability and Optimization of SLAM

As already mentioned, simultaneous localization and mapping amounts to estimat-
ing the state of system (1) through integration of input velocities (odometry) and
knowledge of the observationsy. Input velocities and observables are affected by
process and measurement noise, respectively.

We start by observing that system (1) is nonlinear in an intrinsic way, in the sense
that approximating the system with a linear time-invariant model destroys the very
property of observability: this entails that elementary theory and results on linear
estimation do not hold in this case.

The intrinsic nonlinear nature of the problem can be illustrated directly by the
simple example in Fig.(2) of a planar vehicle (nv = 3) with M markers andN
targets (hencednf = 2N ). Outputs in this examples would be theq = M + N

Fig. 2. A vehicle in an unknown environment with markers and targets.

angles formed by the rover’s fore axis with lines through the sensor head and theM
markers andN targets. The linear approximation of system (1) at any equilibrium
x = x0, p = p0, u = 0, would indeed have a null dynamic matrix

A =
∂f(·)
∂(x, p)

∣∣∣∣
eq.

= 0 ∈ IR(2N+3)×(2N+3),

and output matrix

C =
∂h(·)

∂ (x, p)

∣∣∣∣
eq.

∈ IR(M+N)×(2N+3).
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Hence, in any nontrivial case (i.e., whenever there is at least one targets (N �= 0)
or there are less than three known markers (M < 3)) the linearized system is
unobservable.

On the other hand, it is intuitively clear (and everyday’s experience in surveyors’
work) that simple triangulation calculations using two or more measurements from
different positions would allow the reconstruction of all the problem unknowns,
except at most for singular configurations. Analytically, complete observability of
system (1) can be checked, as an exercise in nonlinear system theory, by computing
the dimension of< f(·) | span{dh(·)} >, the smallest codistribution that contains
the output one-forms and is invariant under the control vector fields (see [2] for
details on calculations). By such nonlinear analysis, it is also possible to notice that
observability can be destroyed by choosing particular input functions, the so-called
“bad inputs”. A bad input for our example is the trivial inputu = 0: the vehicle
cannot localize itself nor the targets without moving. Other bad inputs are illustrated
in Fig.(3).

Fig. 3. A vehicle triangulating with two markers cannot localize itself if the inputs are such
that it remains aligned with the markers; it cannot localize a target if it aims at the target
directly.

In order to drive a rover to explore its environment, it is clear that bad inputs
should be avoided. Indeed, the very fact that there exist bad inputs suggests that there
should also be “good”, and possibly optimal, inputs. To find such optimal exploratory
startegies, however, the differential geometric analysis tools such as those introduced
above are not well suited, as they only provide topological criteria for observability.
What is needed instead is a metric information on the “distance” of a system from
unobservability, and to how maximize it. More generally, it is to be expected that
different trajectories will elicit different amounts of information: a complete SLAM
system should not only provide estimates of the vehicle and feature positions, but
also as precise as possible a description of the statistics of those estimates as random
variables, so as to allow evaluation of confidence intervals on possible decisions.



10 A. Bicchi et al.

To providea better understandingof how two differentstates can be distinguished
via dynamic measurements, let us consider the outputy(t) = h(x, p) = y(xo, u, t)
as a function of the initial conditionsxo and of the inputsu. Let xo

o andx′
o denote

two different initial conditions, with‖xo
o − x′

o‖ < ε, and let us consider

y(x′
o, u, t) − y(xo

o, u, t) =
∂y

∂xo

∣∣∣∣
xo=xo

o

(x′
o − xo

o) + O2(ε) (7)

i.e. a linear measurement equation of the form

ỹ(t) + δy = M(t)x̃ (8)

wherex̃ = (x′
o−xo

o) is unknown,̃y comes from measurements, and the perturbation
termδy accounts for measurement noise and approximation errors. Notice explicitly

that the linear operatorM = ∂y
∂xo

∣∣∣
xo=xo

o

F depends in general on applied inputs, as

only for very special systems (in particular, linear) superposition of effects of initial
states and inputs holds. By premultiplying both sides of (8) byM T W , with W > 0
a suitable positive definite matrix weighing accuracy of different sensors, and by
integrating from time0 to T , we obtain

Y + ∆y = F x̃, (9)

whereY =
∫ T

0
MT (t)Wỹ(t)dt, andF =

∫ T

0
MT (t)WM(t)dt is theFisher Infor-

mation Matrix for our system.
Singularity ofF (for some input choice) clearly implies that distinct initial

values of the state exist which provide exactly the same measurements over the time
interval, hence is tantamount to unobservability of the system.

A different argument to support the same conclusion can be derived from Kalman
estimation theory. Indeed, in the linear case, for the covariance matrixP of a Kalman
filter, the Cram̀er-Rao inequalities [38] hold:

[F + N−1]−1 ≤ P ≤ F−1 + N (10)

whereF is the Fisher Information Matrix (defined in (9) in this framework), andN ,
the covariance matrix of process noise, is assumed to be independentof the trajectory.
According to this, minimization ofF−1 can be considered as an instrument to
minimize P . This is further justified by the fact that, in the absence of process
noise and of prior information, the Riccati equation solution for the filter is exactly
P (t) = F−1(t). Cram̀er-Rao bounds can be extrapolated to estimate covariance for
non-linear systems (see e.g. [27]) (although, in the context of non-linear systems,
minimum-variance estimates do not enjoy the properties that make them desirable
for linear systems, and MVE-based optimal sensor design is often questionable [1]).

From the above considerations on state reconstruction and on Cramèr-Rao
inequalities, it is clear that the information matrix can provide the desired no-
tion of “distance” from unobservability, that is, a merit figure for different in-
puts (hence trajectories) of the exploring rover. Indeed, the smallest eigenvalue
E = λmin(F) = 1/‖F−1‖2, the determinant indexD =(nv+dnf )

√
det F the
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trace indexT = trace(F)
nv+dnf

, and the average-variance indexA = nv+dnf

trace(F−1)
, are

among the most often used such criteria (known as E– , D– , T–, and A–criterion,
respectively).

Notice that information based criteria do not reflect any particular choice in the
estimator or filter adopted in the actual localization procedure, rather it is intrinsic
to the reconstructibility of the state from the given trajectory. This is a very useful
property, in view of the fact that several different estimators and filters can be applied
to the SLAM problem.

The problem of choosing exploratory paths of fixed lengthL to maximize SLAM
information can be formalized (in the E–criterion sense) as anoptimal control
problem, i.e.

maximizeJ(u) = λmin (F) , (11)

subject to the constraints

L =
∫ T

0

√
(ẋ2

1 + ẋ2
2) dt,

ẋ = G(x)u; x(0) = xo,

y = h(x).

Solving this problem can be expected to be quite difficult in general. Using system–
theoretic tools, an analytic solution was given in [31] for the simplified case of an
omnidirectional vehicle moving in a planar environment with only two markers.
Extremal paths for the functionalJ were shown to be contained in the pencil of
curves spanned by the parameterα as

[
cos(α) sin(α)

]( ∂y

∂xo

T ∂y

∂xo
− ∂y

∂xo

∣∣∣∣
T

x=xo

∂y

∂xo

∣∣∣∣
x=xo

)[
cos(α)
sin(α)

]
= 0, (12)

where the actual value ofα depends onL. It can be easily seen that the obtained
pencil is a set of conics (some examples of optimal exploratory paths, for different
lengths, are represented in Fig.(4)).

Extensions of the analytic solutions to nonholonomically constrained vehicles
with unknown target features are feasible (work in this direction is undergoing).
However, to obtain solutions in most general cases, efficient numerical methods are
in order. In a recent overview [41], where the importance of the SLAM optimization
problem is acknowledged, currently available solutions are reported to be mostly
limited to heuristic, greedy algorithms. Furthermore, most known methods often
disregard the nonlinear character of the SLAM problem, which on the contrary is of
large momentum, as we discussed.

The main limitation of gradient-descent methods in this framework is of course
the presence of local minima in the information return function: application of meth-
ods from receding–horizon optimal control theory in this context can be expected to
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Fig. 4. Optimal trajectories for three different path lengthsT1 = 1sec, T2 = 2sec, and
T3 = 3sec

offer a substantial edge. In the follwoing, we illustrate application of such techniques
to a few examples of on-line, numeric SLAM trajectory optimization.

To apply numerical methods, continuous–time system equations (1) or (3) are
first discretized, so that the information matrix is rewritten as the sum of products

F =
k∑

i=0

∂y

∂xo

∣∣∣∣
T

xi

∂y

∂xo

∣∣∣∣
xi

(13)

evaluated at each point of a candidate trajectory. Using techniques developed in [36],
we furthermore introduce a quantization of the input space (i.e., the set of possible
incremental moves of the vehicle), thus inducing a discretization of the configuration
space. It can be shown that, for vehicles with chained-form kinematics, the reachable
set is indeed a lattice in this case, which is a very convenient structure to apply
numerical search methods to.

If d is the cardinality of the input set, there aredk paths of lengthk stemming
from a generic configuration, for which the contribution to information is given by
(13). An exhaustive search of the most informative path is possible for moderate
values ofd andk. The receding-horizon optimal control policy consists then in
applying only the first control of the locally optimizing sequence, to recompute the
next optimizing sequence, thus proceeding iteratively. The method can be easily used
in conjunction with other techniques for e.g. obstacle avoidance. How practical the
method is depend very much on the affordable horizon length for which real-time
computations are feasible, hence choices concerning time and input quantization,
information representation, etc., are an important area of research.

Simulation results reported in Fig.(5) compare performance of a greedy algorithm
with the receding–horizon method. Walls are considered here as pure obstacles,
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i.e. they are deetcted iff the vehicle “bumps” into them, while information for
self localization and mapping is only extracted from measurements relative to two
markers (black circles) and to four target features. Results show how the receding–
horizon methods collects richer information in this case.

a) b)
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Fig. 5. Trajectory of a vehicle during the exploration of a rectangular environment with2
markers and4 target features, using gradient-descent (a) and a 3-steps receding horizon (b),
respectively. Time evolutions of the corresponding information return functionE = λmin(F)
are reported in c) and d).

More simulation results relative to different environments are reported in Fig.(6).
While these results show how the method is quite versatile in navigating in a cluttered
environment fetching for information where that is available, it is of course an open
research issue to provide a provable, quantitative assessment of the advantages of
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this method with respect to others, and to design the numerous parameters that play
an importnat role in its implementation.

Fig. 6. Receding-horizon optimal trajectories in different environments, whereby the task of
maximizing the information return function leads the vehicle to cover target areas. Observe
how slightly different initial conditions may lead to completely different exploration strategies
(upper right and left), however with similar characteristics. More complex environments are
also dealt with satisfactorily (bottom left and right).

5 Simultaneous Localization and Servoing

As mentioned in the introduction, one of the consequences of the intrinsic nonlin-
earity of the SLAMS problem is that there exists no guarantee that, even assuming
that a converging estimatorand a stabilizing state-feedback law are available, their
connection will provide an overall controller which behaves as expected.

Many different approaches can be taken at addressing this problem, depending
on the specifics of the task and of the models at hand. In this section, we will survey
two methods which differ in the generality they afford.
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5.1 Observer-based SLAMS

A first approach to design simultaneous localization and servoing for system (1)
relies on techniques for output-feedback stabilization of nonlinear systems, based
on nonlinear observers and extensions of the separation principle. An observer
providing an estimatêxof the current statex is said to enjoy the separation property if,
whenever there exists a nominally stabilizing static state feedbacku(x), application
of the control lawu(x̂) permits to achieve (local) stability of the closed-loop system.

The widely used extended Kalman filter (see e.g. [5,19,32]) lacks in general
provable properties of convergence and separation. Several authors underscored that
application of the EKF to localization data is often troublesome. Indeed, the filter
convergenceproperties are very much prone to initialization of filter parameters (e.g.,
measurement and process covariances). Several alternative schemes of nonlinear
observers have been proposed in the literature.

One way of designing an observer is to transform the original nonlinear system
into another one for which the design is known. Transformations, which have been
proposed in the literature, include system immersion [14], which permits to obtain
a bilinear system if the observation space is finite dimensional, and linearization
by means of output injection [21,28,30], which assumes that particular differential–
geometric conditions on the system vector fields are verified. A nonlinear observer
and its practical implementation have been presented in Gauthier et al. [9,4], in
which the first step is writing the input affine nonlinear system in a so-called normal
observation form. However, this form requires that the trivial input is an universal
input [3] for the system. In our problem, this condition is violated by the mobile
robot kinematics.

An interesting possibility for an estimator for the localization problem is the
extension of the Luenberger filter in a nonlinear setting, by using the time derivatives
of the input ([46,40]). In [10], a local nonlinear observer for mobile robot localization
was designed, based on the concept of Extended Output Jacobian (EOJ) matrix,
which is the collection of the covectors associated to the considered elements of
the observability space, i.e. the output and its derivative. Output derivatives are
estimated by using high-pass filters. Local practical stability of the observation error
dynamics is guaranteed since persistent perturbations introduced by filters can be
made arbitrarily small. A singularity-avoidance exploration task is also addressed
to deal with the singularity occurrences in the EOJ matrix. For such an observer
scheme, [10] showed a local separation property to hold.

Observer-based approaches are applicable to rather general models of vehicles
and sensorial equipment, but has correspondingly some weaknesses. In the first
place, convergence and separation can only be proven locally. While this is to be
expected with complex nonlinear systems such as those at hand, the drawback shown
by laboratory practice is that the large initial estimation errors or displacements from
the desired pose often prevent correct functioning of the system.
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5.2 Visual servoing

When the SLAMS problem is specialized for a particular class of sensors and vehi-
cles, more powerful techniques can usually be devised. In this paragraph, we report
on a particular but important case, where we assume that the sensorial information
consists of a video camera mounted on-board the vehicle.

Visual servoing techniques, which have been profitably used in recent years
mostly for the control of robot arms ([23]), use visual information either directly,
by the computation of an image error signal, or indirectly, by the evaluation of
the state of the system. These two approaches were classified by Weiss in 1984 as
Image Based Visual Servoing (IBVS) andPosition Based Visual Servoing (PBVS),
respectively. Indeed, these two schemes should be regarded as the end-points of a
range of different possibilities, whereby the raw sensorial information is gradually
abstracted away to a more structured representation using some knowledge of the
robot-environment model (a scheme which is roughly half-way between IBVS and
PBVS was used e.g. in [11]).

IBVS and other sensor-level control schemes have several advantages, such
as robustness (or even insensitivity) to modelling errors and hence suitability to
unstructured scenes and environments. On the other hand, PBVS and in general
higher-level control schemes also have important attractive features. Using the PBVS
approach, for instance, the control law can be synthesized in the usual working
coordinates for the robot, and thus usually a simpler synthesis is made possible.
Furthermore, abstracting sensor information to a higher level of representation allows
using different sensorial sources. In the example of a camera mounted on a mobile
robot, for instance, the synergistic use of odometry and visual feedback is only
possible if these information can be taken to some common denominator where they
can be fused coherently.

Early work on visual servoing of wheeled vehicles include those of [22] and [11].
In the latter papers a feedback control law stabilizing the vehicle posture by using
visual information only was solved. More recently, [35] considered the problem
under the practically most relevant constraint of keeping tracked features within
sight of a limited–aperture camera while the vehicle maneuvers to park. The method
proposed in [35] adopts a hybrid control law, that solves the problem by switching
among different stabilizing output-feedback laws, depending on conditions triggered
by events such as the approach of image boundaries by some tracked features. It is to
be noted that, although different sensors (such as some models of laser range finders,
or omidirectional cameras, or pan-tilt heads) may not be affected by view-angle
limitations, these are typically some orders of magnitude more expensive than the
conventional cameras considered in [35], which are readily available even in the
consumer market. Implementation of the visual–servo methopd of [35] is based on
selecting a few target features from an image recorded at the desired configuration,
and by comparing their position in the image plane with that obtained in real–time
from the robot camera. Some experimental results obtained by application of this
method are reported below for illustration.
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Fig. 7. Image grabbed from the robot camera at the target position, with four selected control
features.

6 Conclusion

In this chapter, we have considered the connection of three different problems, lo-
calization, map building, and servoing, of mobile vehicles moving in unstructured
or partially structured environments. An effort has been paid at casting the three
problems within a unique framework, which is that provided by the theory of dy-
namical control systems with outputs. Although this approach is still to be validated
in large-scale applications, where the dimensionality of the space of unknowns and
the possible topological complexity of the environment can place formidable obsta-
cles, there seems to be some interesting avenue of development at the confluence of
classical computer-science and probabilistic approaches and system theory.
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