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Abstract  

W'e consider the kinematic model of a vehicle moving for- 
{c~cbc~, c~&c~} (1) 
ward with a lower bounded turning radius. This model, is 
relevant to describe the kinematics of road vehicles as well 
as aircraft cruising at constant altitude, or sea vessels. We 
consider the problem of minimizing the length travelled by 
the vehicle starting from a generic configuration to connect 
to a specified route. A feedback law is proposed, such that 
straight routes can be approached optimally, while system 
is asymptotically stabilized. Experimental results are re- 
ported showing real-time feasibility of the approach. 

1 I n t r o d u c t i o n  

We consider the problem of driving a wheeled robot 
with a constraint on the turning angle along a given 
route. The model ignores the vehicle dynamics,  how- 
ever, it explicitly takes into account inherent kine- 
mat ic  limitations of automobiles along highways and 
aircrafh cruising at constant altitude. It was shown 
that  the kinematic model of a vehicle that  can drive 
both forward and backward with bounded curvature 
is locally controllable. A vehicle that  can only move 
forward and is subject to curvature bounds is still con- 
trollable, although not small t ime locally controllable. 
For this latter type of vehicle, Dubins [6] studied the 
shortest paths joining two arbi t rary configurations. 
He proved that  opt imal  paths are made with at most 
three pieces of either type "C" (arcs of circle with min- 
imal radius R), or type "S" (straight line segments). 
Furthermore,  Dubins showed that  opt imal  paths nec- 
essarily belong to the following sufficient family: 
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where the subscripts, indicating the length of each 
piece, are respectively restricted to: 

b e (~R, 2~R); a, ~ e [0, b], ~,, v e [0, 2~R), d > 0 (2) 

Later, [12], and [2], gave a new proof of Dubins '  re- 
sult using Opt imal  Control Theory. Finally, on the 
basis of these works, the complete synthesis of opti- 
mal paths was constructed by Bui et al [3]. Here, we 
consider the problem of tracking a reference route for 
the kinematic model of Dubins. Trajectory or route 
tracking control has been widely studied for nonholo- 
nomic systems 1 [10], [4], [7], [5]. However, as opposite 
to work in route planning, most  of the vehicle tracking 
control l i terature did not consider curvature bounds in 
the vehicle model. In our work, we consider the design 
of a route tracking control law for Dubins '  vehicle, for 
which the forward velocity profile is given. The work 
is based on the characterization of opt imal  paths to 
reach tangentially a rectilinear route. We propose a 
feedback control that  locally stabilizes the vehicle on 
the route, and guarantees global convergence in finite- 
time. The opt imal  control result is based on Pontrya- 
gin's Max imum Principle (PMP) and we recur to tools 
of hybrid control theory to prove Lyapunov stability 
of the feedback control law. 

In §2 we state the problem and determine a sufficient 
f ami lyo fop t ima l  paths. In §3 we synthesize a feedback 
controller that  implements  opt imal  curves, formalize 
it as an hybrid control system, and prove its Lyapunov 
stability. Experimental  results are presented in §4. 

]By "route" or "path" we refer to a curve in the plane where 
the vehicle moves. By "trajectory" we mean a route with an 
associated time law. 
 



2 S h o r t e s t  p a t h s  t o  j o i n  s t r a i g h t  

r o u t e s  

Let the configuration of the vehicle be described as 
X = (M, 0) E IR 2 x S 1, where M = (x,y) are the 
coordinates of the reference point of the vehicle with 
respect to a reference frame, 0 is the heading angle 
with respect to the frame x-axis. The kinematics of 
the vehicle is described by 

~ = vcos0 
/~ = vsin0 
O = w  

(3) 

where v and w are the linear and angular velocities of 
the vehicle. Without loss of generality, up to a time-- 
axis rescaling (cf. e.g. [9]), we assume that  ~(t) = 0, 
v(t) _= g. The turning radius of the vehicle is lower 
bounded by a constant value R > 0, which results in 
an upper bound on the vehicle's angular velocity w as 

V 
la~l < -~. (4) 

Let T be a target rectilinear path in the plane, with a 
prescribed direction of motion determined by the angle 
a E [-Tr, rr] with respect to the x-axis. We consider 
the optimal control problem: 

f0 T Minimize J = V/~ff+ y2dt = VT, (5) 

subject to (3) and (4), with X(0) = (M0, 00) and such 
that, at the unspecified terminal time T, M(T) E 7- 
and O(T) = ol. 

2.1  C h a r a c t e r i z a t i o n  o f  o p t i m a l  a r c s  

As v is constant, the problem is equivalent to a mini- 
mum time problem. We first characterize extremal so- 
lutions by applying (PMP) [8] along the lines of [12], 
[2], and [11], then refine the results with a global geo- 
metric analysis. The Hamiltonian function associated 
to our problem is 

?-l(¢,X,w) = ~piVeosO+ ¢~VsinO-t-vSa,~ (6) 

where ¢ = (¢1, ¢2, ¢3) T is the system costate. Ac- 
cording to PMP, a necessary condition for the control 
w* (t) to be optimal is that  there exists a negative con- 
stant 40, such that  at all times t E % T] 

-~o = n(¢(t) ,  x ( t ) ,~* (t)) = maxT/(0(t) ,  X(t),w(t)) 
o~El2 

(7) 
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where f / i s  the class of piecewise continuous controls on 
[0, T] taking values in v v l - N ,  + g ] .  Writing the adjoint 
equations: ¢(t) = -0°--x ~ (¢(t), X(t), w* (1)) we deduce: 

01 and ¢2 are constant 

03(t) = ¢3(0) + 01 (y(t) - y(0)) - ¢2(x(t) - x(0)), 
¢3 is the switching function of w' .  As described in 
[1t], two cases may occur along an optimal path: 

1. ¢3 only vanishes at isolated points of [0, T]. In 
v that  case, I~ol = ~ and the sign of w is opposite 

to the sign of 03. The path is made of arcs C. 

2. ¢3 vanishes over a nonzero interval I C [0, T]: 

--¢0 = ¢1V cos 0 -t- 02 V sin 0, Vt E 1. (8) 

Hence, O(t) is constant along I, the motion is a 
line segment S. 

Control switches between two C (points of inflection) 
or between a C and a ~,', occur when 03 vanishes. 
~'3(t) = 0 determines a plane in IRu x [-2rr, 2r]: 

e ly ( t )  -- ~)2x(t) + ¢3(0) -- 01y(0) + ¢2X(0) = 0 (9) 

Equation (9) defines a line D on the plane of the ve- 
hicle's motion, a tangent vector of which is given by 
(¢1, ¢2) w. D is supporting the line segments and the 
points of inflection. In our optimal control problem, 
the transversality condition states that,  at unspecified 
final time T, ¢(T) .L T, then we deduce the relation: 

cos(a)¢l(T)  + sin(o~)¢2(T) = 0. (10) 

Hence, we have the following: 

L e m i n a  1 Optimal paths solving problem (5) belong 
to the Dubins' family (1), and are such that rectilinear 
segments and points of inflection belong to a same line 
D perpendicular to the target line T. 

On the basis of lemma 1, the family (1) and can be 
further refined using geometric arguments. 

2 .2  R e f i n e m e n t  o f  t h e  s u f f i c i e n t  f a m i l y  

To specify the vehicle's direction of motion, we replace 
the (C) by (l) for left turn or by (r) for right turn. 
Each path will be represented by a word belonging 
to the family { lrl, rlr, lsl, rsr, rsl, Isr }. Subscripts are 
used to specify the length of each piece. 

P r o p e r t y  1 In the plane of the vehicle's motion, let 
A be the line of equation ycos~ + xsin~ = O, and M, 
7 4  



M' any two points symmetric with respect to A.  If y is 
a path starting from (0,  O) and ending at (M, 0), there 
exists a path "7 ~ isometric to % starting from (0, O) 
and ending at (M ~, 0). The word of'7 t is obtained by 
writing the word of "7 in reverse direction. 

R e m a r k  1 Saying that the paths "7 and"7 ~ aTv isomet- 
ric means that they can be deduced from each other by 
an isometric transformation. Such paths have obvi- 
ously the same length. 

Property 1 is illustrated by figure 1. The proof 2 can 
be directly deduced from [11], lemma 1, p 676. 

J 

Y y~,O) 

~ q 0 )  

Figure 1: Symmetry  in plane of the vehicle's motion 

When the final orientation of paths is r~, the line A is 
identical to the y - a x i s  and the directed points (M, n-) 
and (M I, ~-) belong necessarily to the same directed 
line 7-, parallel to the x-axis (see figure 2). From 
property 1 and remark 1 both paths are equivalent 
for linking (O, 0) to T.  This result can be stated in a 
more general way as follows: 

P r o p e r t y  2 If ~ is a path starting from (M, O) and 
reaching 7- with orientation c~ = 0 :k n-, there exists 
an isometric path 7 ~ from (M, O) to 7-. The word of 
"7 ~ is obtained by writing the word of 7 in the reverse 
direction. 

Figure 2: Isometric paths r(~R+a)la and l~r(~:R+a) 

~The problem was stated in terms of ending at (O,0), but 
the reasoning for our problem is similar. 
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On the base of lemma 1, properties 1 and 2, further 
properties can be deduced. In each case the proof fol- 
lows the same reasonning. To prove that  a path is not 
optimal we show that  it is equivalent to a nonoptimal 
path obtained by replacing a part of the initial path 
with an isometrical one. 

P r o p e r t y  3 A path C C C  is never optimal for reach- 
ing tangentially a directing line. 

P r o o f :  Consider a path lath4. Replacing the final 
part along which the variation of 0 equals zr by an iso- 
metric one according to property 2, we get an equiv- 
alent path lar~ler(~:n+~) not optimal as the point of 
inflection does not belong to D 2_ T. [] 

According to (1) and property 3 it suffices to consider 
paths C S C  (and subpaths CC, C and SC).  A path 
Sd with d > 0 is trivially not optimal. 

P r o p e r t y  4 A necessary condition for a path Ca to 
be optimal is that a < ~ R 

P r o o f :  If a = -~-R + e there exist an equivalent path 
C~C~RC~R which is not optimal because the line T~ 
containing the two points of inflection is parallel to 
the target line. Q 

P r o p e r t y  5 A necessary condition for a path CaCb to 
be optimal is that one of the following two conditions 
be verified: 

• b E [0, a n d  a [0, b + 

• b e Inn, and a [0, b - n-n], 

P r o o f :  Consider a path 4rb. If ~R < b < rR ,  the 
line T~ 2- "7" cuts the last arc r at a point where the 
control w does not switch and contradicts the neces- 
sary condition. Then b e [0, ~R] or b e [n'.R,-~R]. 
I f b  E [0,~R] and a = b + T r R + ¢ ,  ~ > 0, one can 
replace the final part l(b+~rR)rb between ( M , a  - ~r) 
and 7- by a equivalent path  rbl(b+TrR ). The path larb 
is then equivalent to a path 4rbl(b+~n) which is not 
optimal according to property 3. Then, necessarily 
a E [0, b + 7rR]. If b E [n-R, -~-R] and a = b - 7rR + e, 2 
one can replace the last part between (M, a - r r )  and T 
by an equivalent path rbla-~. The path lard is equiva- 
lent to a path 4rbla-~ which is not optimal according 
to property 3. Then, necessarily a E [0, b -  n'R]. [] 

P r o p e r t y  6 A necessary condition for a path CaSdC5 
to be optimal is that the segment S be perpendicular 
to 7-, a C [0, n-.R] and b = ~ R. 
5  



ra 
Ca la 

la rb 
C~(;~ ralb 

raSdr~R 
lasdr~R 

CaSaC~R rasal~n 
laSdl~R 

a e (0, 3~ v n l  

b E (0, ~R] and a E (O,b+ ,~R] 
o r  

b E [rrR, 3~R] and a E ( 0 , b -  7rR] 
2 

d > 0  and a E  [0,~rR] 

Table 1: Sufficient family of extremal trajectories. 

P roof :  From lemma i the segment S belongs to "D .L 
7-. Necessarily, b--  - ~  or b =  3~n If b =  -~R, the . 2 ' 

path is equivalent to a nonoptimal path CSC~nC~R. 
Now, if a = rrR + e, e > 0, we construct an equivalent 
path C~C, nSC~R which is not optimal as it contains 
a point of inflection that  does not belong to D. [] 

At this stage, gathering the preceding properties we 
can reduce our search for optimal paths to the suffi- 
cient family described in table 1. 

3 Optimal  feedback control 

To construct the optimal synthesis it is expedient to 
use path-based coordinates s, ~, t~: s is the eurvilinear 
abscissa measuring the motion of the perpendicular 
projection of the robot reference point on 7-. y repre- 
sents the distance between 7- and the robot reference 
point, divided by R. 0 = 0 -  a is the heading angle er- 
ror. The tracking problem (5) is reformulated in these 
variables as the minimum-time convergence of (~, 0~ 
to the origin (0, 0) of the reduced state space. ~ and 0 
obey the following dynamic: 

= v 
y ---- s in(O) -~ (11)  

0 = w 

3 .1  O p t i m a l  s y n t h e s i s  

For each path type contained in the sufficient family 
we compute, in the reduced space, the domains of pos- 
sible initial points for paths ending at the origin(0, 0). 
This construction reveals that the mapped domains 
are adjacents to each other i.e. they just share part 
of their boundaries. Furthermore, when two different 
paths start from the boundary of two adjacent do- 
mains, they both have the same length. Hence, an 
optimM synthesis in the (~0, t~) space is derived from 
2 4 7
table 1 choosing arbitrarily, when more than one so- 
lution exists, a particular one to obtain at the end a 
region ~(9,~) which, modulo 2~r on 0, covers the whole 
reduced state space. The different cells making the 
partition of G(9,# ) are defined by: 

," = {(9, ~)le~ e (o, }=) ,  ~R(9, O) = o}, 
l = {(9,e) le e ( -  -~Tr, 0), aL (9, O) = 0}, 
riO) ={(9, O)lee[0,~),oMg,e)>0,aP(~,O)_<0}u{(0,~r)} 

u{(9,0)IO E ( - -~ ,O) ,aL(9,  O) > O,ap(9, e) _<_0} 
~ P )  = ( ( 9 , ( ) @ e  ( - ~ , - ~ ] , o e ( 9 , ~ )  > o ,%(O,e )  < o} 
l r  O) = { (y ,e) ie E (0, ~ ) , aN(9 ,0 )  _> 0, an(9,0~) < O} 

u{(9, O)l# E (-% 0], C'N(9, 8) > O, aL(9,0) < 0} 
lr(~) = {(9, 0)[0 E [~r, ~lr), aR(9, 0! > 0, aN(9, #) < 0} 

lar = {(9, ~)1~ E [- 9, ~), ON(9, O) < 0} 
,.~l = ((9, e)le e ( - .~ ,  ~ ] ,~P(9 ,~ )  > o} 
M = {(9, e)le E ( - ~ , -  ~),C'L(9, O) > O} 
~ = { ( 9 ,  0)19 < - 1, o = ~} 
sl = {(9,e)[9 > +1,0 = -~},  

(12) 
where 

~R(9,0) = ~+ 1-co~(g), (13) 

aL(0, 0) = 9 -  l+cos(0), (14) 

O'N(9, 0) ---- ,0 + 1 + cos(0), (15) 

oP(9,0) = 0 -  1-cos(J), (16) 

P r o p o s i t i o n  1 The twelve subsets 1, r, r l  (1), lr  (1), 
rl (~), r l  (2), rsr ,  lsr, rsl, lsl, sr, sl, plus 6 = {(0, 0)} 
determine a partition of the reduced state space, (mod. 
27r on O) definin9 a synthesis of optimal paths. 

rsr~2 \ 

........................... )^. ~ lr (2) 

~ - ~  rl (1) 

~ ' ,  rsl~ 
. . . . . . . . . . . .  x ~  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

, ,  

io ;2 . - ~- 

. . . . . . . . . . . . . . . . . . . . .  2---- /  lr (1) - h i  --~I 

er boundar l s l  m 

Figure 3: Optimal synthesis in the (Y, 0)-plane- 
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(~,~) e ~z ° 

go_st¢'ai~, 

turn_wight 

° ' ~ f  

t u ~ _ l ~  

Figure 4: Hybrid model of the closed-loop system. 

3 . 2  O p t i m a l  f e e d b a c k  c o n t r o l  

In this section, we consider the stability and conver- 
gence properties of a piecewise constant feedback con- 
trol law w(~, 0) deduced from the optimal synthesis. 
Due to the coupling of continuous and discrete phe- 
nomena, the hybrid systems framework is well appro- 
priate to study the closed-loop system [1]. The hybrid 
control is characterized by three modes (see figure 4). 

• go_straight, where w = O; 

• turn_right, where w = -V/R; (17) 

• turn_le#, where w = +V/R. 

selected, according to Proposition 1, as follows: 

go_straight if (~, 8) E ~o = sr U sl U 6; 
turn_right if (~,8) E f~- = r U rsr U rsl U rl O) U rl(2); 
turn_left if (~, ~) E ~+ = 1U lsr U lsl U lr (O U lr(2); 

(is) 
The hybrid system remains in a given mode q E 

{go_straight, turn_left, turn_right} as long as all the 
guard conditions (~,5) E f~ located on the outgoing 
arcs are false; when one of them becomes true, the hy- 
brid system switches to the corresponding new mode. 
As the sets ~0,fl+ and f l -  make a parti t ion of the 
domain G(#,~), the hybrid automaton is deterministic. 

P r o p o s i t i o n  2 The origin of the reduced state space 
(9,5) is an asymptotically stable equilibrium point of 
system (11) under feedback (17-18). Convergence is 
achieved for any initial state (y0,50) E ~(,~,~), that is 
for any initial vehicle configuration (xo,Yo,8o). 

P r o o f .  The convergence is implied by the previous 
discussion. The proof of stability is based on a di- 
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rect application of Lyapunov's definition in the re- 

duced space. Let 4 %/(Y,  5) T, we want to prove that  
Ve, 95/ ]14011 < 5 ~ H¢~o(t)ll < e,Vt > 0, where ¢¢Q(t) 
is the t ra jectory of the closed loop system from 4(0) = 
40. Let W(~) = ~2 + 52, its t ime derivative along the 
trajectories of the system is W = ~ sin 5 + 8w. In 
particular, in the unit disk W(~) < 1, we have: 

(~l sin(0)l - lel)~- < 0, 

(--~lsin(8[) + 181)-~- > O, 
(~,8) E r l  O) A0_<0 

---- 2 V  / ,0, ,  < 0  ' 

(~lsin(~)l + IOD-~ > o, 
(#,~) e l~ (~) ^ # ~  o 

(19) 
For any/3 < ½, integrating (19) we obtain 

suPll~011_<Z suPtel:[+ W(¢~o (t)) = supte]R+ W(¢(±Z,0)(t)) 
= fl~- + arccos2(1 - E2) = IITd(/3) < 1 

- 1 1 1 if ~ > [w(~) ]~ ,  Hence, 'v'e > 0, choosing either 5 = ~ _ 
or 5 = I?d-l(e 2) otherwise, for any 40 with 114011 < 5 
we obtain II¢~0(t))[] < e < 1. 

4 E x p e r i m e n t a l  r e s u l t s  

Experimental tests have been conducted with a 
wheeled vehicle (TRC's "Labmate") .  We have fixed 
R = 25cm and V = 5cm/sec. Information on the vehi- 
cle position and orientation is obtained by processing 
odometric information along with angular measure- 
meats given by a ladar sensor (Siman's "Robosense") 
mounted on the vehicle. Implementations of switch- 
ing control signals such as (18), on physical plants 
with such nonidealities, are doomed to produce vibra- 
tory phenomena known as "chattering". An example 
of this behaviour is reported in figure 5, referring to 
an experiment where raw data  from the ladar sensor 
where fed directly to the control law (18). The op- 
timal connecting path is in this case of type rl, but 
its execution is rather  imprecise. We have smoothed 
the control by introducing a thin "boundary layer" 
around the curves in state space where discontinuity 
of the control arises. As a net effect on the global 
preformance, we have that  asymptotic stability claims 
reduce to uniform ult imate boundedness of trajecto- 
ries. The claim of optimality of trajectories also fails 
in this case, but  a reasonably good approximation of 
the optimum can be obtained, as shown in the exper- 
imental results below (figure 6). 
7 
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Figure 5: Experiment 1: (Chattering control) From 
top down: reference route and vehicle position during 
execution of the control law; the same positional data 
in the reduced state space; control input vs. time. 
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