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Abstract

In this paper we consider the properties of stabil-
ity and robustness of an optimal control synthe-
sis obtained for the problem of route tracking by
a kinematic vehicle moving forward only with a
lower bounded turning radius. This model, some-
times referred to as \Dubins' vehicle", is relevant
to the kinematics of road vehicles as well as air-
craft cruising at constant altitude, or sea vessels.

1 Introduction

A feedback control allowing to drive a mobile
robot, with a constraint on the turning wheels an-
gle, from a generic con�guration to connect to a
speci�ed route was described by Sou�eres, Balluchi
and Bicchi, in [8]. A feedback law was proposed,
such that straight routes can be approached op-
timally, while the system is asymptotically stabi-
lized. Experimental results were reported there
that seemed to support the capability of the ob-
tained synthesis to remain acceptable in spite of
the many discrepancies between the theoretical
model used for analytic derivations, and the prac-
tical, uncertain and noisy plant.

In this paper, we pursue a theoretical analysis of
such capability, more precisely of the stability and
robustness properties of the synthesis with respect
to model uncertainties and measurement noise.

2 The optimal synthesis

We describe in this section the optimal synthesis
stated in [8]. This work characterizes the optimal
control law allowing to drive a bounded-curvature
vehicle towards a straight route. The model we

consider ignores the vehicle dynamics. However,
it explicitly takes into account inherent limitations
of automobiles along highways and aircraft cruis-
ing at constant altitude, thus providing a complete
model of the kinematics involved, and a reference
framework for extending results to more complex
models.

Let the con�guration of the vehicle be described as
X = (M; �) 2 IR2 � S1, where M = (x; y) are the
coordinates of the reference point of the vehicle
with respect to a reference frame, � is the angle
representing the vehicle's direction with respect to
the frame x-axis. The kinematics of the vehicle is
described by 8<

:
_x = v cos �
_y = v sin �
_� = !

(1)

where v is the forward velocity of the vehicle and !
its angular velocity. Without loss of generality, up
to a time{axis rescaling, we assume that _v(t) = 0,
v(t) � V . The turning radius of the vehicle is
lower bounded by a constant value R > 0, which
results in an upper bound on the vehicle's angular
velocity ! as

j!j <
V

R
: (2)

For this model we consider the problem of deter-
mining a path of minimal length for reaching tan-
gentially a rectilinear route with a speci�ed direc-
tion of motion. We denote by T a target rectilinear
path in the plane, with a prescribed direction of
motion determined by the angle � 2 [��; �] with
respect to the x-axis (see �gure 1). We consider
the optimal control problem:

Minimize J =

Z T

0

p
_x2 + _y2dt = V T; (3)
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Figure 1: Path{based coordinates along the directed
line T .

subject to (1) and (2), with X(0) = (M0; �0)
and such that, at the unspeci�ed terminal time
T , M(T ) 2 T and �(T ) = �. To describe the
optimal controller it is expedient to use path{
based coordinates s; ~y; ~� (see �gure 1). s is the
curvilinear abscissa measuring the motion of the
perpendicular projection of the robot reference
point on T . ~y represents the distance between
T and the robot reference point, divided by R.
~� = � � � is the heading angle error. The track-
ing problem (3) is reformulated in these variables
as a minimum{time convergence to the subman-

ifold S =
n
(s; ~y; ~�) : ~y = 0; ~� = 0

o
. Equivalently,

we will refer to the convergence of (~y; ~�) to the ori-

gin (0; 0) of the reduced state space. ~y and ~� obey
the following equation:

_~y = sin(~�) V
R

_~� = !
(4)

In what follows we will only deal with reduced
state space coordinates ~y; ~�. The optimal route
tracking problem is converted in this case to the
problem of stabilizing every point to the origin of
the reduced state space in minimum time. The
optimal control synthesis is reported in �gure 2.
Introduce

�N (~y; ~�) = ~y + 1 + cos(~�); (5)

�P (~y; ~�) = ~y � 1� cos(~�): (6)

The optimal feedback control is de�ned inside the
region

D(~y;~�) =

8>>>><
>>>>:

�N (~y; ~�) < 0 ^ ~� 2 [�; 32�) _

�P (~y; ~�) � 0 ^ ~� 2 (�2 ; �) _
~� 2 [��

2 ;
�
2 ] _

�N (~y; ~�) � 0 ^ ~� 2 [��;��
2 ) _

�P (~y; ~�) > 0 ^ ~� 2 (�3
2�;��)

(7)

in the reduced state space (~y; ~�), which, modulo

2� angles on ~�, corresponds to the whole space
(see Figure (2)).
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Figure 2: Shortest paths synthesis in the (~y; ~�) - plane

As the problem we consider is a subproblem of
Dubins' problem, extremal arcs are necessarily of
two types: arcs of a circle with minimal radius R
or straight line segments [4], [9], [5]. Using the hy-
brid automaton formalism (see [10]), the feedback
controller can be described by the three following
modes:

� go straight; where ! = 0;

� turn right; where ! = �
V

R
; (8)

� turn left; where ! = +
V

R
:

The control mode is selected according to the par-
tition of the domain D(~y;~�) in (7) de�ned as follows:


0 = sr [ sl [ f(0; 0)g;


� = r [ rsr [ rsl [ rl(1) [ rl(2); (9)


+ = l [ lsr [ lsl [ lr(1) [ lr(2);

where the twelve subsets on the right{hand side
of (9) are de�ned in Table 1 and �R(~y; ~�) = ~y +

1� cos(~�), �L(~y; ~�) = ~y � 1 + cos(~�).

The hybrid control is de�ned by the following rules

� go straight; if (~y; ~�) 2 
0

� turn right; if (~y; ~�) 2 
� (10)

� turn left; if (~y; ~�) 2 
+



r = r(1) [ r(1) [ r(3) lr(1) = lr(1:1) [ lr(1:2) [ lr(1:3) lsr = lsr(1) [ lsr(2) rsr = rsr(1) [ rsr(2)

l = l(1) [ l(1) [ l(3) rl(1) = rl(1:1) [ rl(1:2) [ rl(1:3) rsl = rsl(1) [ rsl(2) lsl = lsl(1) [ lsl(2)

r(1) = f(~y; ~�)j~� 2 (0; �2 ); �R(~y;
~�) = 0g; l(1) = f(~y; ~�)j~� 2 (��

2 ; 0); �L(~y;
~�) = 0g;

r(2) = f(~y; ~�)j~� 2 [�2 ; �); �R(~y;
~�) = 0g; l(2) = f(~y; ~�)j~� 2 (��;��

2 ]; �L(~y;
~�) = 0g;

r(3) = f(~y; ~�)j~� 2 [�; 32�); �R(~y;
~�) = 0g [ f(0; �) l(3) = f(~y; ~�)j~� 2 (�3

2�;��]; �L(~y;
~�) = 0g;

lr(1:1) = f(~y; ~�)j~� 2 (0; �2 ); �N (~y;
~�) � 0; �L(~y; ~�) < 0g rl(1:1) = f(~y; ~�)j~� 2 (��

2 ; 0); �L(~y;
~�) > 0; �P (~y; ~�) � 0g

lr(1:2) = f(~y; ~�)j~� 2 (��
2 ; 0]; �N (~y;

~�) � 0; �R(~y; ~�) < 0g rl(1:2) = f(~y; ~�)j~� 2 [0; �2 ); �R(~y;
~�) > 0; �P (~y; ~�) � 0g

lr(1:3) = f(~y; ~�)j~� 2 (��;��
2 ]; �N (~y;

~�) � 0; �R(~y; ~�) < 0g rl(1:3) = f(~y; ~�)j~� 2 [�2 ; �); �R(~y;
~�) > 0; �P (~y; ~�) � 0g

lr(2) = f(~y; ~�)j~� 2 [�; 32�); �R(~y;
~�) > 0; �N (~y; ~�) < 0g rl(2) = f(~y; ~�)j~� 2 (�3

2�;��]; �P (~y;
~�) > 0; �L(~y; ~�) < 0g

sr = f(~y; ~�)j~y < �1; ~� = �
2 g sl = f(~y; ~�)j~y > +1; ~� = ��

2g

lsr(1) = f(~y; ~�)j~� 2 [0; �2 ); �N (~y;
~�) < 0g rsl(1) = f(~y; ~�)j~� 2 (��

2 ; 0]; �P (~y;
~�) > 0g

lsr(2) = f(~y; ~�)j~� 2 [��
2 ; 0); �N (~y;

~�) < 0g rsl(2) = f(~y; ~�)j~� 2 (0; �2 ]; �P (~y;
~�) > 0g

rsr(1) = f(~y; ~�)j~� 2 (�2 ; �); �R(~y;
~�) < 0g lsl(1) = f(~y; ~�)j~� 2 (��;��

2 ); �L(~y;
~�) > 0g

rsr(2) = f(~y; ~�)j~� 2 [�; 32�); �R(~y;
~�) < 0g lsl(2) = f(~y; ~�)j~� 2 (�3

2�;��]; �L(~y;
~�) > 0g

Table 1: Partition of domain D(~y;~�).

In Figure 2 the boundaries between subsets of the
partition (9) are represented by dotted lines, and
the direction of motion is represented by directed
curves.

3 Structural stability

In [3], the question has been addressed consider-
ing the equivalent problem of reaching all points
of the plane from the origin in minimum time (it
is enough to take the opposite dynamics and re-
verse the time on the system). In particular, it was
shown that generically the optimal synthesis ex-
ists and correponds to a Withney strati�cation of
the plane. The structural stability of optimal syn-
thesis under generic assumptions was also proved.
Moreover, all singularities of the synthesis were
classi�ed in [6]. Thus we consider the associated
control system:

�
_y = �V

R
sin (�)

_� = V
R
u

; (11)

where juj � 1 (we drop ~ on y; � for brevity and
replace ! with u). Clearly there is no need to
change sign in the right{hand side of the second
equation. This system can be also written in the
form

_x = F (x) + uG (x) ; x 2 R2; juj � 1; (12)

with x = (y; �), F (x) = (�V
R
sin �; 0), G(x) =

(0; V
R
).

Our aim is to prove that the optimal synthesis
of �gure 2 is stable in the following sense. Ev-
ery control system of the type (12) ; correspond-
ing to a couple of vector �elds (F 0; G0) that are
a small perturbation in the C3 norm of (F;G),
presents the same type of time optimal synthesis,
that is the topological properties do not change.
In [3] a precise de�nition of stability is given that
concerns the existence of an homeomorphism that
sends arcs of one synthesis onto arcs of the other.

Our synthesis is not stable exactly in the same
sense because of the following. The point inter-
section of the regions rl(1); rsl�

2

; lsl�
2

, is connected
with an optimal arc to the point intersection of the
regions lr(1); rsl�

2

; lsl�
2

. This feature is not stable.
However, this is the only topological feature that
can be destroyed by a generic perturbation in C3.
Hence, with the above speci�cation, we will check
the stability of our optimal synthesis checking the
stability conditions given in [3] and discussing the
cases where they are not veri�ed. Therefore we
ensure the stability with respect to model uncer-
tainties.

A key role in the analysis of these systems is played
by the functions

�A = F (x) ^G (x) = �
V 2

R2
sin �;

�B = G (x) ^ [F;G] (x) = �
V 3

R3
cos �;

where [F;G] indicates the Lie bracket of the vec-
tor �elds F and G. In particular, see [3], all



optimal trajectories are bang-bang except possi-
bly those that run on the set where �B vanishes.
These trajectories are called turnpikes. In the op-
timal synthesis described above they correspond
to the curves sl and sr. Other special curves that
show up are the overlap curves, formed by points
reached optimally by two trajectories coming from
di�erent direction. In our case these correspond to
the intersection of the boundaries of regions: rl(1)
and lr(2), lr(1) and rl(2), rsl�

2

and lsl�
2

(that is

not sl), rsr�
2

and lsr�
2

(that is not sr). Other

singularities may show up generically, see [7], but
they are not present in the above synthesis.

To construct a synthesis one considers �rst the tra-
jectories from the origin with constant control �1,
that correspond to the curves r and l. Then the
local synthesis around these trajectories � is un-
derstood studying the following functions. The
variational equation along � is given by the sys-
tem �

_v� = r (F �G) (� (t)) � v� (t)
v (t0) = v0

: (13)

In [3], it was introduced the following function:
#� (t) = arg (G (0) ; v� (G (� (t)) ; t; 0)) ; where
v� (G (� (t)) ; t; 0) indicates the solution of (13)
with t0 = t and v0 = G (� (t)). Let us now focus
our attention on + being the analysis along �

similar. We have

+ (t) =

�
�1 + cos

�
V

R
t

�
;
V

R
t

�
: (14)

The function #+ is a Morse function (with the re-
striction � 2 [��; �]).

At the conjugate point to the origin, that is when
t = �, with the notation of [3], we have � 6= 0, that
is the stability condition (SA8) is violated. This is
due to the fact that the second components of the
vector �elds F and G do not depend on �. How-
ever, since at that point the vector �elds F+G and
F �G are parallel but with opposite direction, the
local synthesis is stable, being non{generic only
the fact that the overlap curve (that in the above
synthesis was the intersection of the regions rl(1)
and lr(2)) is parallel to the y axis. Indeed this
curve is generically tangent to the trajectory +

(see [3] for details).

Hence the synthesis near the curves � is stable.
The stability of the whole synthesis is obtained

checking few other conditions. For example, the
control along the singular trajectories is u = 0; so
a small perturbation of the system does not a�ect
the presence of singular trajectories. Moreover,
r�B � (F �G) 6= 0 hence the two �elds (F �G)
always point to the opposite side of the set where
�B vanishes. There are stability conditions also
on the points that are intersetion of special curves,
see [3], that can be checked easily.

This concludes the discussion of the structural sta-
bility of the optimal synthesis.

4 Robustness

We notice that the optimal synthesis is indeed a
Boltianskii-Brunovsky type synthesis on a strati�-
cation of the plane, see [7]. We thus have forward
uniqueness of Caratheodory solutions to the dis-
continuous feedback.

Another kind of stability we want to investigate is
the one with respect to perturbation of the mea-
sured data and the feedback control. In this sense
we do not expect all Boltianskii-Brunovsky type
synthesis to be stable. However, following the con-
struction of patchy feedbacks recently introduced
by Ancona and Bressan [1], it seems natural to as-
sign an order to the cells of the strati�ed feedback
in order to obtain the desired stability. This order
is precisely the order in which a stabilizing trajec-
tory should pass through cells and in many cases
this is not an exact order.

More precisely, we want to introduce a polygonal
patchy feedback arbitrarily "close" to the optimal
feedback that is robust for internal measurement
error as well as external disturbances, see [2]. Let
us introduce precise de�nitions and state our re-
sult.

De�nition 1 A polygonal patch is a pair (
; g)
where 
 is an open domain with polygonal bound-
ary and g is a smooth vector �eld, de�ned in a
neighborhood of the closure of 
, which points in-
side 
.

We say that g : 
 ! R2 is a polygonal patchy
vector �elds on 
 if there exists a family of polyg-
onal patches f(
�; g�); � 2 Ag such that A is an
ordered set, f
�g�2A is locally �nite and g(x) =
g�(x) if x 2 
� n [�>�
�.



The Cauchy problems corresponding to polygonal
patchy vector �elds admit forward Caratheodory
solutions and a unique backward Caratheodory so-
lution (this is exactly the opposite case as for op-
timal feedback). Given a bounded variation func-
tion w, by a solution to

_x = g(x) + _w; x(0) = x0 (15)

we mean a measurable function such that

x(t) = x0 +

Z t

0
g(x(s)) ds + (w(t) � w(0)):

This kind of perturbations w includes both inter-
nal measurement errors and external disturbances,
indeed if the perturbed equation is given by

_x(t) = g(x(t) + e1(t)) + e2(t)

then the function z(t) = x(t) + e1(t) satis�es the
impulsive equation

_z(t) = g(z) + e2(t) + _e1(t):

In [2] the following robustness result was proven:

Proposition 1 Under generic assumptions a
bounded polygonal patchy vector �elds on R2,
that is uniformly nonzero, satis�es the following.
Given T > 0 and a compact set K, there exist pos-
itive constants C and � (depending on T and K)
such that for every bounded variation function w
de�ned on [0; T ] and every solution x to (15) with
x(0) 2 K there exists a solution y of _y = g(y) such
that

kx� ykL1 � C TotV ar(w)

where k � kL1 indicates the L1 norm and TotV ar
the total variation.

This results guarantees the robustness with a pre-
cise estimate on the error in the uniform norm with
respect to the total variation of the disturbance.
The optimal synthesis cannot satisfy precisely the
same estimate because of the following. The tar-
get is a point and the system is controllable at the
origin using the �rst order Lie brackets of the vec-
tor �elds F and G, not directly with the vector
�elds F + uG, juj � 1. This is the reason why the
minimum time function is only H�older continuous
of exponent 1=2 and not Lipschitz. Hence the er-
ror in the uniform norm can be estimated only by

the square root of the total variation of the dis-
turbance. However, we can associate a polygonal
patchy feedback that is arbitrarily "close" to the
optimal feedback and satisfy the robustness prop-
erty of the above proposition.

De�nition 2 Given " > 0 and a compact set K �
R� S1, we say that a polygonal patchy feedback g
is " near (on K) to the optimal feedback u(x) if the
following holds. For every Caratheodory solution
x to _x = g(x), with x(0) 2 K, there exists a time
optimal trajectory  such that

kx� kL1 � ":

Our aim is thus to construct a polygonal patchy
vector �eld " near to the optimal feedback. The
idea is the following. Let us use for the opti-
mal feedback the same terminology used above for
the synthesis with reversed time. We de�ne some
polygonal patchy vector �eld with patches that
correspond to the various strata where the feed-
back u is constant, namely the one dimensional
manifolds corresponding to � and turnpikes and
the two dimensional regions on which u(x) = �1.
Then we set an order that is compatible with the
order in which an optimal trajectory passes trough
the strata of the optimal feedback. At the end we
obtain the following.

Proposition 2 For every " > 0 and K compact
there exists a polygonal patchy vector �eld g that is
" near (on K) to the optimal feedback and satis�es
the assumptions of Proposition 1.

Proof: We start de�ning the various patches to
construct g and then giving the required order.

First we can pick a polygon P contained in a small
ball of radius � > 0 that is neighborhood of the ori-
gin. We de�ne a collection of patches that covers
the region K nB and this will su�ce to reach the
conclusion for � su�ciently small.

We pick a polygonal neighborhood P+ of the tra-
jectory + (up to time 3�=2 when + stops to be
optimal). We de�ne the patchy (
�1 ; g�1) by set-
ting 
�1 = P+ and g�1 = F +G. (It is clear that
we can choose P+ so that F + G points always
inside on P+ nB and de�ne the vector �eld g�1 in
a suitable way on B.) In an entirely similar way



we de�ne the patchy (
�2 ; g�2) corresponding to
� and F �G.

We then de�ne two patches corresponding to the
turnpikes S1 and = S2, that is the curves sr and
sl respectively. Fix S1 and let P be a polygonal
neighborhood of S1\K. We de�ne (
�3 ; g�3) set-
ting 
�3 = P and g�3 = F . (It is clear that we
can choose P in such a way that F points inside
P n (P+ [ P�) and de�ne in a suitable way on
(P+ [ P�) .) In an entirely similar way we de�ne
(
�4 ; g�4) using a neighborhood of S2 and again
the vector �eld F .

Then, we can continue de�ning patches corre-
sponding to polygonal neighborhoods of the re-
gions lr(1;2); rl(1;2); rsl; lsl; rsr; lsr. Each time,
we choose the vector �eld F + G if on the cor-
responding region the optimal feedback control
u(x) = 1, and choose F � G if u(x) = �1. It
is easy to check that we can ensure the condition
of inward pointing of the vector �elds (and the
collection of patches is clearly �nite). Hence it
remains to de�ne the order on the set of patches.

We de�ne an order (not total) following the order
in which an optimal trajectory passes through the
various regions. In particular, we set �3 < �1 and
�4 < �2. The only additional choice is the one
corresponding to overlap curves. Indeed assume
that �i and �j are the indexes corresponding to
the regions neighbooring an overlap curve, then
we can set either �i < �j or �j < �i. However,
both choices are good. Notice that the order is not
total indeed we can not compare �1 with �2 or �3

with �4.

Choosing the polygonal regions su�ciently small
we can ensure that the polygonal patchy vector
�eld g is " near to the optimal feedback. Moreover,
we can de�ne the polygonal regions in order to
satisfy the assuptions of Proposition 1. We thus
obtain the desired conclusion.

5 Conclusions

In this paper we have considered the properties of
stability and robustness of an optimal control syn-
thesis obtained for the problem of route tracking
by a Dubin's car. The synthesis was proven to be
structurally stable w.r.t. modeling errors by using
general tools for two{dimensional optimal control

problems from [3]. Robustness w.r.t. to noise in
state measurement has been assessed recurring to
a recent theory on patchy feedbacks developed in
[1]. Besides the relevance of this results in view
of the practical applicability of optimal feedback
control to several types of vehicles, this work is
probably one of the �rst detailed applications of
the above cited results to a complete optimal syn-
thesis.

References

[1] F. Ancona, A. Bressan, \Patchy vector �elds
and asymptotic stabilization,"ESAIM:COCV 4 (1999),
445-471.

[2] F. Ancona, A. Bressan, \Flow stability of
patchy vector �elds and robust feedback stabilization,"
preprint.

[3] A. Bressan, B. Piccoli, \Structural stability for
time{optimal planar syntheses", Dynamics of contiu-
ous, discrete, and impulsive systems, no.3, pp. 335{371,
1997.

[4] L.E Dubins, \On curves of minimal length with
a constraint on average curvature and with prescribed
initial and terminal positions and tangents," American
Journal of Mathematics, , Vol. 79, pp 497{516, 1957.

[5] X-N. Bui, P. Sou�eres, J-D. Boissonnat and JP.
Laumond, \The shortest paths synthesis for nonholo-
nomic robots moving forwards," Proc. of the IEEE Int.
Conference on Robotics and Automation, San Diego,
California, USA, 1993.

[6] B. Piccoli, \Classi�cation of generic singularities
for the planar time-optimal synthesis," SIAM Journal
of Control and Optimization 34 pp 1914{1946, 1996.

[7] B. Piccoli, H.J. Sussmann, \Regular synthesis
and su�ciency conditions for optimality," to appear on
SIAM Journal on Control and Optimization, 2000.

[8] P. Sou�eres, A. Balluchi, A. Bicchi, \Optimal feed-
back control for route tracking with a bouded-curvature
vehicle," Proc. of the IEEE Int. Conference on Robotics
and Automation, San-Fransisco, California, USA, May
2000.

[9] H. J. Sussmann andW. Tang, \Shortest paths for
the Reeds-Shepp car: a worked out example of the use
of geometric techniques in nonlinear optimal control,"
Report SYCON-91-10, Rutgers University, 1991.

[10] Proc. of the First International Workshop,
HSCC'98, Hybrid Systems: Computation and Control,
T. Henzinger and S. Sastry, editors, Lecture Notes in
Computer Science 1386, Springer-Verlag, 1998.


