
Decentralized Intrusion Detection
For Secure Cooperative Multi–Agent Systems

Adriano Fagiolini, Gianni Valenti, Lucia Pallottino, Gianluca Dini and Antonio Bicchi

Abstract— In this paper we address the problem of detect-
ing faulty behaviors of cooperative mobile agents. A novel
decentralized and scalable architecture that can be adopted
to realize a monitor of the agents’ behavior is proposed.

We consider agents which may perform different indepen-
dent tasks, but cooperate to guarantee the entire system’s
safety. Agents plan their next actions by following a set of rules
which is shared among them. Such rules are decentralized,
i.e. they depend only on configurations of neighboring agents.
Some agents may not be acting according to this cooperation
protocol, due to spontaneous failure or tampering. To detect
such misbehaviors we propose a solution where each agent
runs a local observer using only locally available information.

The objective of the work is the definition of a basic
framework to automatically realize decentralized intrusion
detectors for (hybrid) multi–agent systems where interaction
is modeled through logical cooperative protocols.

I. INTRODUCTION

Multi–agent systems are more and more often employed
to obtain inherently robust solutions to many robotic appli-
cations, such as exploration, surveillance, patrolling, target
tracking, and intelligent transportation. In such situations,
agents may perform different and possibly independent
tasks, but they cooperate in order to guarantee the entire sys-
tem’s safety. Cooperation among agents is obtained through
a shared set R of rules according to which all agents are
supposed to plan their actions. We will refer to such rules as
the cooperation protocol. Cooperative decentralized systems
can often be modeled as hybrid systems whose dicrete states
represent actions while guards among states depend on the
configuration of neighboring agents.

We are particularly interested in decentralized control
strategies for autonomous vehicles that decide on their
motion based only on the configurations and velocities of
neighboring vehicles, and where the main safety concern is
collision avoidance. Several collision avoidance strategies
for multi–agent systems have been proposed in the literature

A. Fagiolini, G. Valenti, L. Pallottino and A. Bicchi are with
the Interdepartmental Research Center “E. Piaggio”, Faculty
of Engineering, University of Pisa, Italy, {a.fagiolini,
l.pallottino, bicchi}@ing.unipi.it,
posta@gianni.valenti.name.

G. Dini is with the Dipartimento dell’Informazione, Faculty of Engineer-
ing, University of Pisa, Italy, gianluca.dini@ing.unipi.it.

with different application domains and different sets of
decentralized rules (see e.g. [1]–[4])

While in the literature the benefits of decentralized traffic
management protocols are often underscored, few authors
have recently highlighted the threats posed by so–called
“intelligent collisions” [5]. As a matter of fact, whenever
one or more agents fail to follow the common set of
rules, due e.g. to spontaneous failure, tampering, or even
to malicious behaviors [6].

The goal of an Intrusion Detection System (IDS) for
decentralized cooperative multi–agent policies is to au-
tomatically detect possible misbehaviors, using only the
information locally available to each agent, along with the
knowledge of the cooperation protocol. The construction
of such an IDS can build upon a rich literature on the
detection of failures in Discrete Event Systems (DES) in the
presence of partial observations [7]–[9]. Most methods in
the literature are based on the supervisory control concepts
introduced in the seminal works of Ramadge and Wonham
[10], [11]. Notions of diagnosability, observability, invert-
ibility and observability with delays for centralized and
decentralized for DES have been introduced [12]–[16]. For
hybrid systems, the notions of diagnosability, observability,
and fault detection have been introduced more recently
[17]–[21]. However, the literature in hybrid systems fault
detection is much poorer, due to the intrinsic complexity of
hybrid systems.

In this paper we consider mobile agents with given
dynamics q̇ = f(q, u), where u is a continuous function that
drives the agent in executing its maneuvers. We assume that
the protocol R is assigned, and that only a finite number of
possible maneuvers are allowed by R for the agents. Based
on the protocol definition, u may depend also on the current
configuration q of agents in the environment. We also
assume that, while the cooperative protocol is completely
known to each agent, only a partial knowledge of the guards
between nodes of the hybrid system is available, due to
decentralization. Hence, q is not completely known to each
agent, and will be decomposed in a known (observable)
and an unknown (unobservable) part q i

o e qi
u for the i–th

agent.
In the literature related to fault detection for DES, failure

is typically modeled as a state. Hence, reachability tech-
niques can be used to detect the failure or the diagnosability
of the system. In our setting, failures correspond to agents
arbitrarily misbehaving. The goal of an agent acting as a
decentralized IDS is to distinguish a faulty or malicious
agent in its neighborhood from a correctly cooperating agent
whose actions may be influenced by other agents out of
the monitor’s range. Furthermore, the fact that the topology
of interaction and exchange of information among mobile
agents is changing and unknown, should be taken into
account. These reasons make the problem we deal with quite
distinct from those tackled in the current DES and hybrid
systems literature, and indeed a very challenging one.

Our approach, which explicitly deals with the system’s
hybridness, consists in modeling the unknown states of
agents outside the decentralized IDS’s range as a distur-
bance to the model of each neighbor under monitoring, and
in constructing an Unknown Input Observer (UIO) for such
systems to reconstruct if possible the guards which have
triggered certain behaviours.

II. AGENT’S HYBRID ARCHITECURE

In this section we describe the architecture of an agent
which plans its actions, e.g. decides on its next motion,
in accordance with a completely decentralized cooperative
decision scheme. The architecture itself is independent of
the particular agent’s dynamics, and of the particular set R
of rules describing the interaction among the agents.

Let qi ∈ Q be a vector describing the “physical” state of
the i–th agent and taking value in the configuration space
Q. Let also

q̇i = fi(qi, ui) ,

be its dynamics where ui ∈ Ui is the control input. For
the sake of simplicity, we assume all the agents to have the
same generic dynamics, i.e. fi = f for all i. Then, let

ui = gi(qi, σi) ,

be a controller generating the input u i such that the i–th
agent’s dynamics executes the trajectory qi(t) correspond-
ing to the action, e.g. the motion maneuver, specified by
the command σi. Due to the above hypothesis, all the
controllers are the same: gi = g for all i.

Furthermore, let σi ∈ Σ be a symbol representing the
action planned by the i–th agent’s supervisor, and let S i be
the corresponding decision making process. We will refer to
Si also as the agent’s decision model. In the general case,
the action σi at the generic decision time tk is obtained as:

σi(tk) = Si (σi(tk−1),q(tk)) ,

where σi(tk−1) is the action planned at the previous de-
cision time tk−1, q = (q1, q2, . . . , qn) is the state of the
entire system, and n is the overall number of agents.

In a decentralized setting, the supervisor Si is unaware
of the overall number n of agents as well as of any
other global information about the system, and indeed the
decision making process requires only local information.
Bearing this in mind, denote by Qi

a the space of all active
configurations for agent i, representing those configurations
that actually affect the agent’s behavior. This space is
uniquely determined by the cooperation rules in R, and
can be formally defined as:

Qi
a = {q ∈ Q |R(qi, q)} ,

where R is a Boolean function that ensues from R. Indeed,
the structure of this set is inherently defined after assigning
the decentralized cooperation rules.

Let Ni(t) be the time–varying set representing the i–th
agent’s actual neighborhood, being the set formed by the
indices of the agents actually affecting the decision making
process at the current time t. Formally we have:

Ni = {j ∈ J |qj ∈ Qi
a} ,

where J = {1, 2, · · · , n} is the set of indices of all existing
agents in the system. Examples of neighborhood N i are
given by the set of agents lying within a fixed distance,
or in line of sight from the agent i. Furthermore, let n i =
card(Ni) be the number of agents cooperating with the i–th
agent, and let Ni be the state of the neighborhood N i:

Ni = {qj ∈ Q | j ∈ Ni} .

Then the decision making process Si only depends on the
neighborhood’s state Ni:

Si (σi(tk−1),q(tk)) = Si (σi(tk−1),Ni(q(tk))) .

Although we consider generic decentralized cooperation
rules, we assume that the decision model Si can be split into
two parts: an event detector Ei, that checks the occurrence
of enabled events ei based on the agent’s neighborhood
Ni, and a finite state machine (automaton) Ai, whose state
represents the agent’s current action σi and evolves in
accordance with the events observed by E i:

Si =
{

ei(tk) = Ei (Ni (q (tk))) ,
σi(tk) = Ai (σi (tk−1) , ei (tk)) .

In particular, automaton Ai is defined as the 4–tuple
(Σi, Ei, Γi, δ), where Γi(σi) is the set of events represented
by edges originating from node σ i, and δ is the discrete state
transition function.

As it is highlighted in Fig. 1, the agent’s architecture
is hybrid. Indeed all of its components can be arranged

Fig. 1. Depiction of the agent’s hybrid architecture that is formally
represented by the hybrid system Hi = {fi(·), gi(·),Ai(·), Ei(·)}.

in two layers: a time–driven physical layer, composed of
the agent’s dynamics fi and the low–level controller gi,
and an event–driven logical layer, composed of the event–
detector Ei and the automatonAi. Note finally that the block
gi acts as a converter from event–driven to time–driven
dynamics, whereas the block Ei does the reverse process.
Moreover, the block gi allows us to abstract the complex
agent’s evolution to that of a discrete event system.

To conclude, we formally define an agent as the hybrid
system:

Hi = {fi(·), gi(·),Ai(·), Ei(·)}
where fi : Qi×Ui → Qi, gi : Qi×Σ → Ui, Ai : Σ×Ei →
Σ, Ei = QNi → Ei, Ei = {true, false}νi , and νi is the
number of enabled events.

III. FROM COOPERATION RULES TO AN

EVENT–DRIVEN SUPERVISORY SYSTEM

In this section we show how the i–th agent’s supervisory
system Si is built based on the set R of cooperation rules.
For the sake of generality, each agent may be assigned with
a different kind of task — even though it cooperates with its
neighbors —, and therefore it may have to use a different
set Ri of rules. However, we focus on collaborative systems
where every agent cooperates sharing the relevant subset of
rules, and let R = ∩iRi for all i.

The cooperation rules define all possible actions that
can be executed by every agent, and at the same time
they describe logical conditions on the state of the agent’s
neighborhood precisely stating when the agents themselves
have to change their current action. Therefore, let Σ =
{σ1, σ2, . . . , σκ} be the set of κ symbols representing all
possible actions, and let Ei = {e1

i , e
2
i , . . . , e

νi

i } be the set
of νi guards representing such logical conditions. Then,
the i–agent’s supervisory system Si can be obtained as a
discrete event system whose state σi, taking value on the set
Σ, represents the agent’s current action. The state itself is
updated in accordance with input events e i ∈ Ei generated
by the agent’s neighborhood. In formula we have:

σi(tk) = Si(σi(tk−1), ei(tk)) .

Although general cooperation rules may specify also tem-
poral constraints on the execution of each action, we restrict

(a) (b)

Λe

(
eh→k
i,1

)
,

Λe

(
eh→k
i,2

)
,

· · ·

Λe

(
eh→k
i,1

)
,

Λe

(
eh→k
i,2

)
,

· · ·
eh→k
i

σh

σk

σh

σk

Fig. 2. Depiction of a generic automaton (a): nodes represent different
supervisory actions, and edges represent transitions triggered by logical
input events. Depiction of the predictor automaton (b).

for simplicity with logical rule sets where no temporization
is present. In such a case, a supervisor Si can be formally
represented as a finite state machine (automaton). See for
reference Fig. 2–a where nodes represent different actions,
and edges represent transitions between nodes labelled with
the input events that trigger such transitions. More precisely,
input event eh→k

i encodes the logical condition on the
state of the agent’s neighborhood requiring supervisor S i

to update its state σi from action σh to action σk .
The obtained supervisor is capable of coping with any

neighborhood Ni. Nevertheless, at a particular instant, each
agent considers a decision model where the set Ei of
possible events is computed w.r.t. the current neighborhood.
By doing so, the agent virtually decomposes all events eh→k

i

as the disjunction of sub–events,

eh→k
i =

∨
l

eh→k
i,l (ql) , (1)

where is ql ∈ 2Ni , and eh→k
i,l is the l–th sub–event

depending only on variable q l and requiring Si to update
its state σi from action σh to action σk. Note finally that all
these logical expressions are mutually exclusive, and thus
represent actual events.

IV. DETECTING NON–COOPERATIVE BEHAVIORS

UNDER PARTIAL KNOWLEDGE

In this section we introduce the problem of detecting
non–cooperative agents, referred to as intruders. To this
aim, we first define the physical behavior of agent i as
the trajectory qi(t) of its time–driven dynamics during any

observation period [tk−1, tk]. Then, we consider the generic
agent h — the observer — trying to establish whether
the neighboring agent i is acting according to the rules in
R or not. For the sake of space, we will omit the case
of an omniscent observer, i.e. an agent having complete
knowledge of the i–th agent’s neighborhood state N i. In-
stead, we directly consider an observer with exact but partial
knowledge of Ni, since this case already encompasses the
previous one.

Under this circumstance, the observer may be unable to
measure the time–driven state qj of some of the agents
laying within neighborhood N i. This can happen either
when they are too distant and out of sensors’ range, or
when they are masked by other agents or obstacles. In this
perspective, observer h can split the configuration space
Q of any agent as the union of an observable space Qh

o,
and an unobservable space Qh

u (Q = Qh
o ∪ Qh

u), and
consequently the state of Ni in a known part qi

o and an
unknown part qi

u:

qi = (qi
o,qi

u) . (2)

Denote with Oh the set of observable agents being those
agents in the observable space Qh

o of observer h:

Oh = {j ∈ J | qj ∈ Qh
o} .

To verify the correctness of any observed behavior q i(t),
the observer itself has to compute the set q̂i(t) of all
behaviors expected from agent i according to the only
available information. To achieve this, first the number n i of
agents actually interacting with agent i must be inferred, and
then, for each of these agent, their induced input sequence
must be reconstructed. In this vein, our problem requires
first a model identification, and then an unknown–input
observation for a hybrid system.

Furthermore, let n̂i be the observer h’s estimate of the
number of agents interacting with agent i. It should be
clear that such a number has always to satisfy the following
relation:

0 ≤ n̂i − card(Oh ∩ Ni) ≤ Ψ(Qi
a ∩ Qh

u) , (3)

where Ψ : Q → Z is an application returning the maximum
number of agents that can physically lay in the given con-
figuration space according to geometric constraints induced
from R. The proposed approach for estimating n i consists
of trying to use, at any time, the minimum value satisfying
the inequalities in 3, and allowing to explain the observed
sequence of behaviors qi. Whenever the process fails, the
number of presumed interacting agents is increased by a
unit — and also n̂i — thus considering a richer cooperation
model. Along the same line of [14], each cooperation
models is able to conclude that the agent is correct or “faulty

if no–one says non–faulty”. When all possible models fail,
then a failure is detected, and the agent is deemed to be an
intruder performing non cooperative actions.

V. THE OBSERVER’S ARCHITECTURE

In this section we specifically deal with the construction
of the observer provided that n̂ i is properly initialized and
changed, as described above, whenever a fault is detected.

Owing to the decomposition in Eq. 2, every sub–event
ei,l of Eq. 1 can be seen as the conjunction of a decidable
part ei,l

o, depending only on qi
o, with an undecidable part

ei
u, depending also on qi

u. Therefore we have:

ei,l(qi) = ei,l
o(qi

o) ∧ ei,l
u(qi

o,qi
u) .

Furthermore, let Ei
o = {ε, ei,1

o, ei,2
o, · · · } be the set of

observable parts, and let Ei
u = {�, ei,1

u, ei,2
u, · · · } be the

set of all unobservable parts. Symbols � and ε are necessary
to represent completely observable and unobservable events,
respectively. Then, the set Ei of all input events ei acting
on automaton Ai can be represented as a subset of the
Cartesian product between Ei

o and Ei
u. In formula we

have:
Ei ⊆ Ei

o × Ei
u .

Along the same line of [22], it is straightforward to
formally define an event observation map Λe : Ei → Ei

o as
the natural projection of any event of the original alphabet
Ei into the observable alphabet Ei

o:

Λe(ei,l) = Λe(ei,l
o ∧ ei,l

u) = ei,l
o .

Accordingly, application Λe
−1 : Ei

o → 2Ei is the map re-
turning the set of events ê obtained as the inverse projection
of any observable part ei,l

o. Hence we have:

ê = {ei ∈ Ei s.t. Λe(e) = ei,l
o} = Λe

−1(ei,l) .

Another useful definition is the following. Given a de-
terministic automaton A : E → Σ, we define the inverse
automaton A−1 : Σ → 2E as the (non–deterministic) sys-
tem receiving a sequence of discrete state σ, and generating,
at any instant, the set ê of all events that can explain such
sequence according to the following relation:

ê(tk) = {e ∈ Γ(σ(tk−1)) | δ(σ(tk−1), e) = σ(tk)} .

To predict the set σ̂i of all possible future discrete states
of the observed agent, we introduce a further component
Pi, referred to as the predictor automaton, encoding all the
observer’s undecidability due to its partial knowledge of
Ni. This automaton is in general non–deterministic, and can
be systematically obtained from the original automaton A i

as follows (see Fig. 2-b). First, the automaton Pi contains
the same set of nodes of Ai. Then, for every edge eh→k

i,l

∆

Λ−1
e

Λe

∩

Ai

A
−1
iσi(tk−1)

Pi

n̂i

Mi

σi(tk)

ei(tk+1) σi(tk+1)

e
p

i
(tk) êi(tk)

σ̂i(tk)
e
σ

i
(tk)

∆
e
o

i
(tk+1) e

o

i
(tk)

Fig. 3. Block Mi generates the set of all possible discrete state through
the predictor automaton Pi, and estimates the unknown input êi.

connecting node σh with node σk in Ai, insert in Pi an edge
assigned with label Λe(eh→k

i,l), and connecting the same two
nodes. Moreover, to take into account for the undecidability
of the value of eh→k

i,l , insert also a self–loop with the same
label around node σh. Hence, the predictor automaton is
defined as the following application:

Pi : Ei
o → Σi .

It is worth noting that Pi reduces to the deterministic
automaton Ai if the observer Oh has complete knowledge
of Ni.

Misbehaviors of agent i can then be detected by using the
two components in Fig. 3 and 4, respectively. In particular,
system Mi is a filter receiving as inputs the observable
part ei,l

o of any event and the actual discrete state σi of the
observed agent, and generating a prediction σ̂ i of possible
future discrete states and an estimate of the complete ê i.
Afterward, system Ci first runs a multiple execution of the
physical layer, in order to compute the set of all possible
behaviors q̂i(t), and then checks whether the actual behavior
qi(t) of the agent was predicted or not. If so, it returns
the actual previous discrete state σi(tk), and sets bi to
correct, otherwise to faulty and raises an alarm. The two
components are combined as in Fig. 5 where ′′logic′′ is
a block representing the strategy according to which n̂ i is
updated.

VI. CASE STUDY – AN AUTOMATED HIGHWAY

In this section we illustrate the use of the proposed
decentralized intrusion detection scheme by the application
to an example of multi–agent system consisting of n vehi-
cles that are travelling along a 2–lane automated highway.
Each vehicle may enter the highway in different positions,
have different maximum velocity, and be assigned with
a different destination. Referring to Fig. 6, the physical

ûi q̂i(tk+1)σ̂i(tk)

qi(tk + 1)
?∈ q̂i(tk+1)

bi(tk)

σi(tk)

˙̂qi = f(q̂i, ûi)

qi(tk+1)

ûi = g(q̂i, σ̂i)

Ci

Fig. 4. The classifier Ci is a block detecting the actual agent’s discrete
state, through the calculation of the physical behavior, and checking the
agent’s cooperativeness.

Ai

CiMi

Λe

n̂i

σi(tk)

ei(tk+1)

e
o

i
(tk+1)

q(tk+1)

σ̂i(tk) bi(tk)

bi(tk)

σi(tk)

êi(tk)

ei(tk)

logic (n̂i++)

σi(tk)
q̇i = f (qi, ui)
ui = g (qi, σi)

Fig. 5. The decentralized detection scheme exploiting blocks Mi and
Ci in conjunction with the block logic.

ili = 1

li = 2

xi

qi = {xi, li}

Fig. 6. A 2–lane automated highway with vehicles that are supposed to
move according to the common driving rules.

state of vehicle i is represented by qi = (xi, li) where xi

represents its position along the current lane l i. In order to
avoid collisions, each vehicle is supposed to plan its motion
in accordance with the common driving rules (the set R of
Sec. III). Within such a scenario, we want each vehicle to be
able to establish a subjective reputation bi of its neighbors
based only on its partial knowledge of the system.

FL R

S

eS→F
i eF→S

i

eS→L
i

eF→L
i

eL→F
i

eF→R
i

eR→F
i

Fig. 7. The deterministic automaton Ai of the supervisor for any
neighborhood Ni.

TABLE I

INPUT EVENTS TO THE AUTOMATON Ai FOR ANY NEIGHBORHOOD Ni .

eF→L
i = (∃ j ∈ Ni s.t. xj − xi ≤ d, xj ≥ xi, lj = li)∧

∧ (�k ∈ Ni, k �= j s.t. |xk − xi| ≤ d, lk > li)∧
∧ (li �= 2) ,

eF→S
i = (∃ j ∈ Ni s.t. xj − xi ≤ d, xj ≥ xi, lj = li)∧

∧ (∃ k ∈ Ni, k �= j s.t. |xk − xi| ≤ d, lk > li)∨
∨ (∃ j ∈ Ni s.t. xj − xi ≤ d, xj ≥ xi, lj = li) ∧ (li = 2) ,

eF→R
i = (�j ∈ Ni s.t. |xj − xi| ≤ d, li > lj)∧

∧ (li �= 1) ,

eL→F
i = (li = 2) ,

eR→F
i = (li = 1) ,

eS→L
i = eF→L

i ,

eS→F
i = (�j ∈ Ni s.t. xj − xi ≤ d, xj ≥ xi, lj = li) .

A. Modeling of supervisor Si

The model of the i–th agent’s supervisory system S i can
be obtained as in Sec. III, and is given by the deterministic
automaton of Fig. 7. More precisely, having defined with σ i

its discrete state, the supervisor Si is supposed to choose at
any instant among one of the following maneuvers: fast (F),
left (L), right (R), and slow (S). The choice of the current
maneuver σi depends on the logical conditions (guards) of
Table I, where we have used xj and lj as short–hands for
xij and lij , being the state coordinates of the neighboring
vehicle of index ij .

Furthermore, the active configuration space Q i
a of

agent i (see Sec. II) can be geometrically characterized as
a function of qi and the parameter d, and it is highligthed
in Fig. 8. Then, the number ni of vehicles that can at any
time affect the behavior of agent i satisties the following
relation:

0 ≤ ni ≤ Ψ(Qi
a) ,

1

xi xi + dxi − d

Qa
i

Fig. 8. The active configuration space Qi
a of agent i depends on its

state qi, and on the parameters of the cooperation rules.

TABLE II

SIGNALS IN BLOCK Mi WHEN THE OBSERVABLE REGION IS THAT OF

FIG. 10 (FROM A TO D).

n̂i = 0 n̂i = 1

A−1
i (F, L) ∅ {a1}

σ̂i(eo
1, F) {F} {F, L}

Λ−1
e (eo

1) ∅ {a1, c1, f1}

where Ψ has been defined in Sec. V.

B. Modeling of observer Oh

Let Oh be the observer assigned with agent h aiming at
deciding whether agent i is cooperative or not. Its model
can be obtained as in Sec. V. Furthermore, from agent h’s
point of view, the configuration space is partitioned in an
observable region Qh

o and an unobservable region Qh
u.

Hence, as described in Sec. IV, observer h will predict
all the maneuvers of agent i that are consistent with the
partially observed environment. As a matter of fact, the
known part of agent i’s neighborhood N i is Oh ∩ Ni.

VII. SIMULATION

We now show how the proposed scheme works through
the following example where k ∈ N is an index representing
at any time the number of observed events.

Simulation starts with observer h approaching to vehicle
1 which is currently performing a fast maneuver (σ i = F).
From agent h’s point of view, the configuration space is
partitioned as depicted in Fig. 10-a, and for the number
ni of interacting agents, satisfying inequality 3, must hold:
ni ∈ [0, 1]. Therefore the estimate number n̂i is initialized
with 0 since observer h sees no other vehicle than 1. Under
such a hypothesis, the predictor automaton P i of Sec. V
only admits the maneuver set σ̂i = {F} (see first automaton
in Fig. 9, and first column in Table II) reported in Fig. 10-
b. Hence the behavior of agent i can be explained, and we
have: bi = correct.

Assume now that agent i changes to a left maneuver
(σi = L) as in Fig. 10-c. Since n̂i = 0 does not provide

FL R

S

d1

f1

c1

e1

FL R

S

e1d1

ao
1

ao
1

go
1

go
1, f1 bo

1

ao
1, bo

1, ho
1

ho
1, c1

Fig. 9. Explicit construction of the predictor automaton Pi for the cases
ni = 0 (left) and ni = 1 (right).

TABLE III

SIGNALS IN BLOCK Mi WHEN THE OBSERVABLE REGION IS THAT OF

FIG. 10 (E AND F).

n̂i = 0 n̂i = 1

A−1
i (F, F) ∅ ∅

σ̂i(eo
1, F) {R} {R}

Λ−1
e (eo

1) ∅ {c1}

for this behavior, the block logic in Fig. 5 updates the
estimated number of interacting agents to n̂ i = 1. By doing
so, the predictor automaton Pi becomes the second of Fig.
9 which admits the maneuver set σ̂i = {F, L} (see also
second column in Table II) reported in Fig. 10-d. Again,
the behavior of agent i can be explained, and as a result we
have bi = correct.

When agent i reaches the second lane (l1 = 2), it switches
to maneuver fast (σi = F). The configuration space is
partitioned w.r.t observer h as in Fig. 10-e. The number n i

has then to stay within range [0, 1] according to inequality 3,
and for the estimated number of interacting agents we have
n̂i = 0. The predictor automaton is the first in Fig. 9. At
the same time, event c1 is detected, meaning that the right
lane of vehicle 1 is free. Under this circumstance and with
n̂i = 0, the predicted maneuver set is σ̂i = {R}, whereas
the observed behavior is σi = F (see first column in Table
III). Hence bi becomes uncertain, and for the estimated
number of interacting agents we infer n̂ i = 1. Yet, the
predicted maneuver set is σ̂i = {R}, as depicted in Fig.
10-f (see second column in Table III), and the behavior of
agent i can not be explained.

At this stage, block logic detects that there exists no other
valid value for n̂i, and hence the agent i’s behavior is finally
classified as not–cooperative by setting bi = faulty. All

h 1 ?

Qo
h

Qu
h

(a)

1h 1 Qu
h

(b)

h
1 ? Qu

h

(c)

1
1h 1 ? Qu

h

(d)

h

1 ? Qu
h

(e)

1

h

1 ? Qu
h

(f)

Fig. 10. Simulated system evolution along with estimated maneuvers
represented by the faded agents.

signal summarizing the simulation are reported in Fig. 11.

VIII. CONCLUSION

In this paper we addressed the problem of detecting
faulty behaviors in cooperative multi–agent systems. A
novel decentralized and scalable architecture that can be

k

k

k

k

F

S

L

R

F

S

L

R

3
2
1
0

c

f

bi

n̂i

σ̂i

σi

Fig. 11. Plot of measured σi and predicted σ̂i maneuvers, estimated
number n̂i of agents interacting with i, and the cooperativeness bi during
the simulation.

adopted to realize an observer for monitoring the agents’
behavior was proposed. The work aimed at defining a basic
framework by which automatically realize decentralized
intrusion detectors for (hybrid) multi–agent systems.

In this work we considered in particular a method by
which an agent is able to establish whether its neighbors
are cooperative or not, only using the onboard sensing, and
hence having partial knwoledge of the system.

Future work will concern the cooperation of many local
observers that can exchange information in order to improve
their detection capability.

REFERENCES

[1] C. Tomlin, G. J. Pappas, and S. Sastry, “Conflict resolution for air
traffic management: A case study in multi-agent hybrid systems,”
vol. 43, pp. 509–521, 1998.

[2] R. Ghosh and C. J. Tomlin, “Maneuver design for multiple aircraft
conflict resolution,” Chicago, IL, 2000.

[3] L. Pallottino, V. Scordio, and A. Bicchi, “Decentralized cooperative
conflict resolution among multiple autonomous mobile agents,” in
Proceedings of the Conference on Decision and Control, vol. 5, Dec.
2004, pp. 4758–4763.

[4] L. Pallottino, V. Scordio, E. Frazzoli, and A. Bicchi, “Probabilistic
verification of a decentralized policy for conflict resolution in multi-
agent systems,” IEEE International Conference on Robotics and
Automation, pp. 2448–2453, 2006.

[5] J. Blum and A. Eskandarian, “The threat of intelligent collisions,”
IT Professional, vol. 6, no. 1, pp. 24–29, Jan.-Feb. 2004.

[6] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Gener-
als Problem,” ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 4, no. 3, pp. 382–401, 1982.

[7] T. Yoo and S. Lafortune, “Polynomial-time verification of diag-
nosability of partially observed discrete-event systems,” Automatic
Control, IEEE Transactions on, vol. 47, no. 9, pp. 1491–1495, 2002.

[8] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis, “Failure diagnosis using discrete-event models,” Con-
trol Systems Technology, IEEE Transactions on, vol. 4, no. 2, pp.
105–124, 1996.

[9] R. Boel and J. van Schuppen, “Decentralized failure diagnosis
for discrete-event systems with costly communication between
diagnosers,” Discrete Event Systems, 2002. Proceedings. Sixth
International Workshop on, pp. 175–181, 2002.

[10] P. Ramadge and W. Wonham, “Supervisory Control of a Class of Dis-
crete Event Processes,” SIAM Journal on Control and Optimization,
vol. 25, no. 1, pp. 206–230, 1987.

[11] ——, “The control of discrete event systems,” Proceedings of the
IEEE, vol. 77, no. 1, pp. 81–98, 1989.

[12] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis, “Diagnosability of discrete-event systems,” Automatic
Control, IEEE Transactions on, vol. 40, no. 9, pp. 1555–1575, 1995.

[13] C. Özveren and A. Willsky, “Invertibility of Discrete-Event Dynamic
Systems,” Mathematics of Control, Signals, and Systems (MCSS),
vol. 5, no. 4, pp. 365–390, 1992.

[14] Y. Wang, T.-S. Yoo, and S. Lafortune, “Decentralized diagnosis of
discrete event systems using unconditional and conditional deci-
sions,” in Decision and Control, 2005 and 2005 European Control
Conference. CDC-ECC ’05. 44th IEEE Conference on, 12-15 Dec.
2005, pp. 6298–6304.

[15] R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya, “Supervisory con-
trol of discrete-event processes with partialobservations,” Automatic
Control, IEEE Transactions on, vol. 33, no. 3, pp. 249–260, 1988.

[16] R. Debouk, S. Lafortune, and D. Teneketzis, “Coordinated Decen-
tralized Protocols for Failure Diagnosis of Discrete Event Systems,”
Discrete Event Dynamic Systems, vol. 10, no. 1, pp. 33–86, 2000.

[17] G. Fourlas, K. Kyriakopoulos, and N. Krikelis, “Diagnosability of
Hybrid Systems,” Proceedings of the 10th IEEE Mediterranean
Conference on Control and Automation, 2002.

[18] A. Balluchi, L. Benvenuti, M. Di Benedetto, and A. Sangiovanni-
Vincentelli, “Design of observers for hybrid systems,” Hybrid
Systems: Computation and Control, vol. 2289, pp. 76–89, 2002.

[19] S. Narasimhan, F. Zhao, G. Biswas, and E. Hung, “Fault isolation
in hybrid systems combining model based diagnosis and signal
processing,” Proc. of IFAC 4th Symposium on Fault Detection,
Supervision, and Safety for Technical Processes, 2000.

[20] G. Fourlas, K. Kyriakopoulos, and N. Krikelis, “A Framework for
Fault Detection of Hybrid Systems,” Proceedings of the 9th IEEE
Mediterranean Conference on Control and Automation, 2001.

[21] A. Balluchi, L. Benvenuti, M. Di Benedetto, and A. Sangiovanni-
Vincentelli, “Observability for hybrid systems,” Decision and
Control, 2003. Proceedings. 42nd IEEE Conference on, vol. 2, 2003.

[22] E. K. Yongseok Park, “On d-Inversion in Timed Discrete Event Sys-
tems with Interruption,” Decision and Control, 1995. Proceedings.
34nd IEEE Conference on, vol. 2, 1995.

