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Abstract—In this paper we study the minimum length paths
covered by the center of a unicycle equipped with a limited Field–
Of–View (FOV) camera, which must keep a given landmark in
sight. Previous works on this subject have provided the optimal
synthesis for the cases in which the FOV is only limited in the
horizontal directions (i.e. left and right bounds) or in the vertical
directions (i.e. upper and lower bounds). In this paper we show
how to merge previous results and hence obtaining, for a realistic
image plane modeled as a rectangle, a finite alphabet of extremal
arcs and the overall synthesis. As shown, this objective can not
be straightforwardly achieved from previous results but needs
further analysis and developments. Moreover, there are initial
configurations such that there exists no optimal path. Nonetheless,
we are always able to provide an e–optimal path whose length
approximates arbitrarily well any other shorter path. As final
results, we provide a partition of the motion plane in regions
such that the optimal or e–optimal path from each point in that
region is univocally determined.

I. INTRODUCTION

One of the most important issues in mobile robotics, which
deeply influence the accomplishing of assigned tasks and
hence the control laws, concern the directionality of mo-
tion (i.e. nonholonomic constraints) and sensory constraints
(i.e. limited Field–Of–View (FOV) of cameras or scanners).
For localization tasks or maintaining visibility of some objects
in the environment, some landmarks must be kept in sight [1].
In visual servoing tasks, this problem becomes particularly
noticeable and in the literature several solutions have been
proposed to overcome it. However, when the FOV problem is
successfully solved for a unicycle–like vehicle, as in [2], [3],
the resultant path is not optimal.

Also in this paper, the problem of maintaining visibility
(during all maneuvers and along all trajectories/paths) of a
fixed landmark for a unicycle vehicle equipped with a camera
with limited FOV is considered. The limited FOV problem
is tackled here from an optimal point of view, i.e. finding
shortest paths from any point on the motion plane to a desired
configuration.

The problem addressed in this paper has also been studied
in [4] and in [5]. Therefore, while in [4] only right and
left camera limits, i.e. the Horizontal–FOV (H–FOV) con-
straints, were taken into account (see Fig. 1(a)), in [5] the
complementary case with only upper and lower camera limits,
i.e. the Vertical–FOV (V–FOV) constraints, is considered (see

This work was supported by E.C. n. 257462 HYCON2 (Network of
Excellence) and n.2577649 PLANET.

Salaris is with INRIA, Sophia Antipolis, France. Cristofaro is with the
Department of Engineering Cybernetics, Norwegian University of Science
and Technology. Pallottino is with the Research Center “Enrico Piaggio” and
Dipartimento di Ingegneria dell’Informazione, University of Pisa, Italy.

(a) Cartesian and polar coordinates of
the robot w.r.t. world frame hW i and
Horizontal–Field–of–View (H–FOV)
constraints.

(b) Camera reference frame hCi and
Vertical–Field–of–View (V–FOV)
constraints.

Fig. 1: Mobile robot and systems coordinates. The robot’s task
is to reach P while keeping the landmark within a limited
Field–of–View (dashed lines).

Fig. 1(b)). In the last case, the impracticality of paths that reach
a compact set around the feature and the loss of geometrical
properties of optimal arcs, lead to a substantially more complex
analysis for the definition of the sufficient family of optimal
paths with respect to the problem solved in [4]. Moreover,
we proved that in some cases the optimal path does not
exist. However, an e–optimal path whose length approximates
arbitrarily well any other shorter path has been obtained.
Finally, in [6] a synthesis of shortest paths in case of lateral
and side sensors (i.e. when the robot forward direction is not
necessarily included inside the planar cone, cf. Fig. 1(a)), has
been presented and includes, as a particular case, the synthesis
provided in the earlier results [4].

In this paper we describe how to merge results in [4] and
in [5], obtaining, for the realistic case of FOVs modeled as a
four–sided right rectangular pyramid (see Fig. 2) and an image
plane modeled as a rectangle, a finite alphabet of extremal arcs
from which an optimal path can be determined if any exists.
Indeed, as in [5], we also show that in some cases there exists
no optimal path. Moreover, we provide an e–optimal path.
Finally, we determine a partition of the motion plane in regions
such that the optimal or e–optimal path from each point in that
region is univocally determined.

It is important to notice that, the objective of this paper
can not be straightforwardly achieved from previous results
but needs further analysis and developments. For example, we
will show that, as in the V–FOV case, the shortest path may
not exist and we provide conditions of existence. Furthermore,
we will prove that paths of infimum length for the overall
synthesis (HV–FOV synthesis) consist in subpaths that are of



Fig. 2: Sensor model: four-sided right rectangular pyramid.

infimum length for the H–FOV and the V–FOV, respectively,
and their conjunction is always smooth. Finally, we will show
how considering all the involved constraints leads to paths of
infimum length that were not present in the H–FOV and the
V–FOV synthesis.

Regarding optimal (shortest) paths in absence of sensor con-
straints, the seminal work on unicycle vehicles, [7], provides
a characterization of shortest curves for a car with a bounded
turning radius. In [8], [9], authors determine a complete finite
partition of the motion plane in regions characterizing the
shortest path from all points in the same region, i.e. a synthesis.
A similar problem with the car moving both forward and
backward has been solved in [10] and refined in [11]. The
global synthesis for the Reeds and Shepp vehicle has been ob-
tained combining necessary conditions given by Pontryagin’s
Maximum Principle (PMP) with Lie algebraic tools in [12].
More recently, [13], [14] determined time optimal trajectories
for differential–drive robots and nonholonomic bidirectional
robots, respectively, while [15] solved the minimum wheel
rotation problem for differential–drive robots.

The rest of the paper is organized as follows: first the
optimal control problem is introduced (Section II) with the
analysis of constraints and the characterization of the extremal
arcs. In Section III the main results obtained in [4] and
in [5], necessary to obtain the complete HV–FOV synthesis, are
reported. The characterization of the extremal concatenations
in optimal paths is also addressed obtaining a finite family of
optimal concatenations summarized in the e-optimal graph. In
Section IV and V the complete HV–FOV synthesis is obtained
for particular ranges of values of significant parameters. HV–
FOV synthesis for different values of those parameters are
reported in the with some other minor and technical results
in the Technical Report [16].

II. PROBLEM DEFINITION

Consider a vehicle moving on a plane where a right-handed
reference frame hW i is defined with origin in Ow and axes
Xw,Zw. The configuration of the vehicle is described by x (t) =
(x(t),z(t),q(t)), where (x(t),z(t)) is the position in hW i of a
reference point in the vehicle, and q(t) is the vehicle heading
with respect to the Xw axis (see Fig. 1). We assume that the

dynamics of the vehicle are negligible, and that linear and
angular velocities, n(t) and w(t) respectively, are the control
inputs of the kinematic model of the vehicle. Choosing polar
coordinates (see Fig. 1), the kinematic model of the unicycle-
like robot is
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ẏ

ḃ
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We consider vehicles with bounded velocities which can turn
on the spot. In other words, we assume

(n ,w) 2 U, (2)

with U a compact and convex subset of IR2, containing the
origin in its interior.

The vehicle is equipped with a rigidly fixed pinhole camera
with a reference frame hCi = {Oc,Xc,Yc,Zc} such that the
optical center Oc corresponds to the robot’s center [x(t),z(t)]T
and the optical axis Zc is aligned with the robot’s forward
direction. Pinhole cameras can be modeled as a four-sided right
rectangular pyramid, as shown in Fig. 2. Its characteristic solid
angle is given by W = 4arcsin

⇣
sin e

2 sin d

2

⌘
, where e = 2f̂ and

d = 2f are the apex angles, i.e. dihedral angles measured to
the opposite side faces of the pyramid. We will refer to those
angles as the vertical and horizontal angular aperture of the
sensor, respectively. Moreover, f̂ is half of the V–FOV angular
aperture, whereas f is half of the H–FOV angular aperture. In
the following, we consider the most interesting case in which
e and d are less than p .

We assume that the feature to be kept within the on-board
limited FOV sensor is placed on the axis through the origin Ow,
perpendicular to the plane of motion, so that its projection on
the motion plane coincides with the center Ow (see Fig. 1). The
feature has height h+hc from Ow and height h from the plane
Xc ⇥Zc (see Fig. 2). Moreover, let us consider the position of
the robot target point P to lay on the Xw axis, with coordinates
(r, y) = (rP, 0). In order to maintain the feature within the
limited FOV sensor, the following inequality constraints must
be satisfied during robot’s maneuvers:

b +f � 0 , (3)
b �f  0 , (4)

r cosb � h
tan f̂

= Rb . (5)

Inequalities (3) and (4) concern H–FOV limits (see [4] for
details) whereas inequality (5) concerns V–FOV limits (see [5]
for details).

A. Analysis of FOV Constraints
In this subsection we analyze the FOV constraints (3), (4)

and (5). In particular, we will show that the H–FOV constraints
and the V–FOV constraint can not be simultaneously activated
apart from on a circle centered in OW and with radius
Rb/cosf . Let us preliminary state the following



(a) Subdivision of the motion plane in
case of only the H–FOV constraints are
considered, as in [4].

(b) Subdivision of the motion plane in
case of only the V–FOV constraint is
considered, as in [5].

(c) Subdivision of the motion plane ac-
cording to Remark 1, when both the
H–FOV and the V–FOV constraints are
considered.

Fig. 3: Subdivision of the motion plane according to Remark 1 and the particular cases in which no restriction on vertical or
horizontal FOV is assumed.

Definition 1: Let Z0 = {(r, y)|r < Rb} be the disk centered
in the origin with radius Rb, Z1 = {(r, y)|Rb  r  Rb

cosf

},
Z2 = {(r, y)|r > Rb

cosf

} and CS the circumference with radius
rS = Rb/cosf .

Remark 1: Referring to Fig. 3(c), Z0 is the set of points
in IR2 that violate the V–FOV constraint (5) for any value of
b . Notice that points with r = Rb verify the constraint only
if b = 0. It is straightforward to notice that points in Z1 that
verify, as an equality, one of the H–FOV constraints, violate the
V–FOV constraint. Only for points on CS both constraints are
verified as an equality, i.e. for r = rS and b = ±f . On the other
hand, points in Z1 that verify the V–FOV constraint do always
verify both H–FOV ones. Hence, for points in Z1 the H–FOV
constraints are verified for points that verify the V–FOV one
while the vice–versa is not true. Moreover, it is straightforward
to notice that points in Z2 that verify the V–FOV constraint,
as an equality, violate both H–FOV ones. On the other hand,
points in Z2 that verify both the H–FOV constraints do always
verify the V–FOV one. Hence, for points in Z2 the V–FOV
constraint is verified for points that verify both H–FOV ones
while the reverse is not true.

An important consequence of Remark 1 is that the H–
FOV constraint (4) (or (3)) and the V–FOV one (5) are
concurrently activated, i.e. they hold as equality with b = f

(or b = �f ), r = rS. Moreover, in Z1 the V–FOV constraint
is more restrictive than the H–FOV ones while the opposite
holds in Z2.

B. Optimal Control Problem and Extremal Arcs

The goal of this paper is to determine, for any point Q 2 IR2

in the motion plane, the minimum length path covered by the
center of the vehicle from Q to P, such that the landmark is
always maintained in the FOV of the sensor during maneuvers.

In other words, the objective is to minimize the cost functional

L =
Z

t

0
|n |dt , (6)

under the feasibility constraints (1), (2) (3), (4) and (5),
respectively. Here t is the time needed to reach P, that is
without loss of generality, r(t) = rP and y(t) = 0.

Previous analysis and consequent results suggest that a
solution to this problem can be accomplished by preliminary
solving two sub–problems in which only the H–FOV or the
V–FOV constraints are taken into account. These two sub–
problems have been already solved in [4] and [5]. In the
first case the vertical aperture is p , i.e. f̂ = p/2 and hence
Rb = rS = 0. As a consequence, Z0 and Z1 degenerate in OW ,
and Z2 ⌘ IR2, i.e. the subdivision of Fig. 3(c) becomes as in
Fig. 3(a). In [4], it has been proved that the optimal paths
consists of at most 5 arcs of three types: rotations on the
spot (denoted by the symbol ⇤), straight lines (denoted by the
symbol S) and left and right logarithmic spirals (denoted by
symbols T L and T R) of characteristic angle f . In the second
sub–problem, the horizontal camera aperture is p , i.e. f = p/2,
and hence rS ! •. As a consequence, the subdivision of
Fig. 3(c) becomes as in Fig. 3(b). In [5] it has been shown
that the optimal paths consist of at most 5 arcs of three types:
rotation on the spot (⇤), straight lines (S) and left and right
involute of circles (denoted by symbols IL and IR).

For the overall problem considered in this paper, we have
hence six extremal arcs, represented by {⇤,S,T R,T L, IR, IL}.
Rotations on the spot have zero length but are used to
properly connect the other arcs. Of course, extremals can be
executed in either forward or backward directions. Hence, by
using superscripts + and � to make this explicit, extremal
paths will consist of a sequence, or word, in the alpha-
bet {⇤,S�,S+,T R+,T R�,T L+,T L�, IR+, IR�, IL+, IL�}. All the
possible words generated by the above alphabet forms a
language L . The first goal of this paper is to determine



under which conditions there exists a sufficient finite optimal
language such that, for any initial configuration, it contains a
word describing a path to the goal which is no longer than any
other feasible path.

Remark 2: From the optimality principle, even if previous
works provide the H–FOV synthesis and the V–FOV synthesis,
a solution for the HV–FOV synthesis can not be obtained
simply from those solutions, i.e. concatenation of two optimal
path is not necessarily optimal. Of course, there are some
regions of the HV–FOV synthesis entirely inherited from the
V–FOV synthesis and the H–FOV synthesis, i.e. regions of
points such that the path from Q to P does not intersect CS,
refer to Section IV. On the other hand, for all paths that
cross the boundary between Z1 and Z2 an analysis on how
the extremals are concatenated across CS must be achieved
(cf. Section III-C).

III. ANALYSIS OF EXTREMALS CONCATENATIONS

The goal of this section is to characterize the family of
optimal extremals concatenations. As in the case of H–FOV
and V–FOV analysis, the first step is to reduce the complexity
of the problem by excluding possible combinations of extremal
arcs in the optimal path, hence obtaining, at the end of this
section, a finite family of extremals concatenations.

After summarizing the main results of previous papers [4]
and [5] that will be useful also in this analysis, we will provide
the optimality conditions for paths crossing the border CS
between Regions Z1 and Z2. We will show that in any optimal
path the extremals are tangent one to another in points of
CS (Subsection III-C). We will then provide the optimality
condition of paths that cross the circumference CS at least twice
before reaching P (Subsection III-D).

A. From H–FOV and V–FOV synthesis: basic definitions and
results

For the reader convenience, we first recall the basic concepts
already introduced in [4] and in [5], for the H–FOV and the V–
FOV respectively, and that will be useful also in this analysis.
Let PQ 2 L be the set of all feasible extremal paths from Q
to P. In the rest of the paper we will study which combination
of extremals belongs to the optimal path in PQ.

Due to the symmetry of the problem, the analysis of optimal
paths in PQ can be done considering only points Q in the
upper half plane w.r.t. the Xw axis.

Definition 2: An extremal path in PQ, described by a
word w 2 L is a palindrome symmetric path if the word is
palindrome and the path is symmetric w.r.t. the bisectrix of
angle \QOwP.
We recall that a word is palindrome if it reads equally forward
or backward. As an example, the path S+T L+ ⇤ T R�S� is a
palindrome symmetric path, associated to the palindrome word
ST T S, if the straight arcs and the spiral arcs are of equal length
pairwise.

Let CP be the circumference centered in OW with radius
rP, DS be the closure of the semi-disk in the upper-half plane
and CS its semicircle.

Proposition 1: For any path in PQ from Q 2 CP there
always exists a palindrome symmetric path in PQ whose
length is shorter or equal.
The proof of proposition 1 can be found in [4] for the H–FOV
synthesis and in [5] for the V–FOV synthesis.

Fig. 4: Borders and regions from which the optimal path is
a straight line for the H–FOV (i.e. CR

G, CL
G, rR

G and rL
G) and

the V–FOV (i.e. LimR
G, LimL

G, sR
G and sL

G) cases, separately.
Moreover, for points G 2 Z2, i.e. rG > rS, any point inside
WG = LimG \CG (LG with apex angle 2f ) can be reached by
S+ (S�) (see Proposition 2), i.e. WG and LG are the regions
from which the optimal path is a straight line for the HV–
FOV case. In case of G 2 Z1, i.e. Rb  rG  rS Region WG
coincides with LimG while the region of points reachable by
S� is a cone LG with apex angle b̃ . b̃ is zero when rG = Rb
and it is equal to f when rG = Rb

cosf

= rS.

The following definitions and remarks recall the terminology
used for the H–FOV and the V–FOV, to indicate borders of
regions whose optimal paths consist only of a straight line.

Definition 3: For a point G 2 IR2, let CR
G (CL

G) denote the
circular arc from G to Ow such that, 8V 2 CR

G (CL
G), \GVOw =

p �f in the half-plane on the right (left) of GOw (cf. Fig. 4).
In addition, let CG denote the region delimited by CR

G and CL
G

from G to Ow.
Definition 4: For a point G 2 IR2, let LimR

G (LimL
G) denote

the arc of the Limaçon from G to O such that, 8V 2 LimR
G

(LimL
G), \GVOw = p � b̄ , with b̄ = arctan

�
rG
Rb sinb

�
, in the half-

plane on the right (left) of GOw (cf. Fig. 4). Also, let LimG
denote the region delimited by LimR

G and LimL
G from G to O.

In [4] ( [5]) it has been proved that CG (LimG) is the
region of points from which G can be reached with an arc S�

without violating the H–FOV (V–FOV) constraints. Moreover,
we denote their intersection as WG = LimG \CG.

Definition 5: For a point G 2 IR2, let sR
G (sL

G) denote the
half–line from G forming an angle yG + b̃ (yG � b̃ ) with the
Xw axis (cf. Fig. 4) where b̃ = arccos Rb

rG
. In addition, let LG

denote the cone delimited by sR
G and sL

G.
If G 2 Z2, b̃ ⌘ f and half–lines sR

G, sL
G are denoted with

rR
G, rL

G. In [4] and [5] it has been proved that LG is the region



(a) Path of type T L ⇤ IR. (b) Path of type S ⇤ I. (c) Path of type T ⇤S. (d) Path of type S ⇤S.

Fig. 5: Any optimal path that crosses circumference CS in G is smooth in G.

of points from which G can be reached with an arc S+ without
violating any of the H–FOV and the V–FOV constraints.

Remark 3: For G 2 Z1 the apex angle of cone LG increases
with Rb  rG  rS up to 2f when G 2 CS.

Remark 4: It is worth noting that from the definitions above,
the straight arc S between two points A, B 2 Z1 [Z2 with yA =
yB, i.e. aligned with OW , never violates neither the H–FOV
constraints nor the V–FOV one.

Finally, from results reported in [5] on the analysis of the
V–FOV case, let us introduce circumferences C2 and C5 with
radii r2 = Rb

p
2 and r5 = Rb

p
5, respectively. In particular,

the resulting V–FOV optimal synthesis deeply depends on the
position of the final and initial points P and Q, respectively,
w.r.t. C2 and C5. Similarly, as shown in next sections, these two
circumferences play an important role also for the HV–FOV
synthesis.

B. Straight line regions for the HV–FOV synthesis
As a first step toward the HV–FOV synthesis, we first study

the regions of points that can be reached, starting from a
point G, through a straight line, i.e. paths of type S+ or S�.
Referring to Fig. 4, in case of both the H–FOV and the V–FOV
constraints we have:

Proposition 2: For any starting point G 2 Z1 [Z2, all points
of WG = LimG \CG (LG) are reachable by a forward (back-
ward) straight path without violating neither the V–FOV nor
the H–FOV constraints.
The proof follows straightforwardly from the results in [4]
and [5] summarized in previous subsection and simple geo-
metric considerations.

C. Smoothness of optimal concatenations across CS

To compute the optimal synthesis, we first need to analyze
how to optimally connect the synthesis provided in [4] and [5],
i.e. how optimal paths toward P may cross circumference CS.

As shown in [5], optimal paths may not exist. In such
cases, the path of infimum (finite) length has been proved to
consist of infinite switches on C2. In this section we will show
that also for the HV–FOV synthesis there are initial and final
configurations such that the optimal path does not exist and

the infimum path length consists of infinite switches on C2 or
CS depending on the value of f and f̂ .

Let us start considering how to optimally connect, on CS,
extremals E1 = {S, T R, T L} related to the H–FOV constraints
with extremals E2 = {S, IR, IL} related to the V–FOV con-
straint.

Proposition 3: In any optimal path, extremal arcs in E1 are
tangent on CS to extremal arcs in E2.

Proof: Without loss of generality we consider a path g

that starts outside CS and intersects it in G. The possible
combinations of non tangent extremals (in G) for g with
switching point G are: S ⇤ S, S ⇤ I, T ⇤ S and T ⇤ I. We will
refer to such concatenations between arcs in E1 and E2 as non
smooth concatenations on CS.
The concatenation of two left (or right) arcs, i.e. T L and IL (or
T R and IR), with intersection point G 2CS is smooth in G since
bG = �f (or bG = f ) for both arcs T and I and hence arcs T
and I are tangent on CS. Referring to Fig. 5(a), concatenations
of type T L ⇤ IR and T R ⇤ IL can always be shortened with
straight segments across CS since there exist points A on T
and B on I such that yA = yB and since from Remark 4 the
segment AB does not violate the constraints.

Referring to Figures 5(b), 5(c) and 5(d), consider now a
concatenation E2 ⇤E1 of type S⇤ I, T ⇤S and S⇤S respectively.
There always exist points A 2 Z2 on E2 and B 2 Z1 on E1 such
that A 2 LB and hence the paths can be shortened considering
the straight line between A and B.

D. Optimality conditions for paths between points on CS

In this subsection, we provide the optimality conditions for
paths that cross circumference CS at least twice before reaching
P. Let first consider paths between A and B on CS, with rA =
rB = rS and |yA �yB| = Dy consisting in pairs of spirals or
straight lines that completely evolve in Z2. We denote such
paths with E(Dy) = ER�

A ⇤EL+
B where E 2 {T, S}. Notice that

paths of type IR�
A ⇤ IL+

B are not considered since they violate
the H–FOV constraints in Z2.

Lemma 1: Consider A = (rS,Dy) and B = (rS,0) on CS.
The path E (•)(Dy), consisting of an infinite number of sub-
paths of type E with E 2 {T, S} from A to B, has finite length
LE(•) (Dy) = L(•) = rS

sinf

Dy .
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I. INTRODUCTION
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T (1)

One of the most important issues in mobile robotics, which
deeply influence the accomplishing of assigned tasks and
hence the control laws, concern the directionality of mo-
tion (i.e. nonholonomic constraints) and sensory constraints
(i.e. limited Field–Of–View (FOV) of cameras or scanners).
For localization tasks or maintaining visibility of some objects
in the environment, some landmarks must be kept in sight ([1]).
In visual servoing tasks this problem becomes particularly
noticeable and in the literature several solutions have been
proposed to overcome it. However, when the FOV problem is
successfully solved for a unicycle–like vehicle, as in [2], [3],
[4], the resultant path is inefficient and absolutely not optimal.

In this paper we study a similar problem of maintaining
visibility (during all maneuvers and along all trajectories/paths)
of a fixed landmark for a unicycle vehicle equipped with a
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(a) Cartesian and polar coordinates of the robot
w.r.t. world frame hW i and Horizontal–Field–of–View (H–
FOV) constraints.

(b) Camera reference frame hCi and Vertical–Field–of–
View (V–FOV) constraints.

Fig. 1: Mobile robot and systems coordinates. The robot’s task
is to reach P while keeping the landmark within a limited
Field–of–View (dashed lines).

camera with limited FOV. Therefore, the limited FOV problem
is here tackled from an optimal point of view, i.e. finding
shortest paths from any point on the motion plane to a desired
configuration.

Regarding optimal (shortest) paths in absence of sensor
constraints, the seminal work on unicycle vehicles, [5], pro-
vides a characterization of shortest curves for a car with a
bounded turning radius. In [6], authors determine a complete
finite partition of the motion plane in regions characterizing
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further analysis and developments. Moreover, as for the V–FOV
case, there are initial configurations such that there exists no
optimal path. Nonetheless, we are always able to provide an
e–optimal path whose length approximates arbitrarily well any
other shorter path. As final results, we provide a partition of the
motion plane in regions such that the optimal or e–optimal path
from each point in that region is univocally determined.
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hence the control laws, concern the directionality of mo-
tion (i.e. nonholonomic constraints) and sensory constraints
(i.e. limited Field–Of–View (FOV) of cameras or scanners).
For localization tasks or maintaining visibility of some objects
in the environment, some landmarks must be kept in sight ([1]).
In visual servoing tasks this problem becomes particularly
noticeable and in the literature several solutions have been
proposed to overcome it. However, when the FOV problem is
successfully solved for a unicycle–like vehicle, as in [2], [3],
[4], the resultant path is inefficient and absolutely not optimal.
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(a) Cartesian and polar coordinates of the robot
w.r.t. world frame hW i and Horizontal–Field–of–View (H–
FOV) constraints.

(b) Camera reference frame hCi and Vertical–Field–of–
View (V–FOV) constraints.

Fig. 1: Mobile robot and systems coordinates. The robot’s task
is to reach P while keeping the landmark within a limited
Field–of–View (dashed lines).

camera with limited FOV. Therefore, the limited FOV problem
is here tackled from an optimal point of view, i.e. finding
shortest paths from any point on the motion plane to a desired
configuration.

Regarding optimal (shortest) paths in absence of sensor
constraints, the seminal work on unicycle vehicles, [5], pro-
vides a characterization of shortest curves for a car with a
bounded turning radius. In [6], authors determine a complete
finite partition of the motion plane in regions characterizing
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camera with limited FOV. Therefore, the limited FOV problem
is here tackled from an optimal point of view, i.e. finding
shortest paths from any point on the motion plane to a desired
configuration.

Regarding optimal (shortest) paths in absence of sensor
constraints, the seminal work on unicycle vehicles, [5], pro-
vides a characterization of shortest curves for a car with a
bounded turning radius. In [6], authors determine a complete
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Fig. 6: Paths of type E(Dy) = ER�
A ⇤EL+

B with E 2 {T, S} (i.e.
S (1) and T (1)) and 2 subpaths E(Dy/2) forming paths S (2) and
T (2) respectively. The procedure can be iterated and the path of
infinite subpath of type E has finite length LE(Dy) = rS

sinf

Dy

(cf. Lemma 1).

Proof: Given two points A = (rS,Dy) and B = (rS,0) on
CS let E (n)(Dy) be a path from A to B consisting of 2n subpaths
of type E(Dy/2n) of equal length with switching points on
CS. Referring to Fig. 6, notice that for any n, T (n)(Dy) and
S (n)(Dy) are tangent in both A and B. Moreover,

LT (n) (Dy)  LS (n) (Dy) (7)

for any n � 1, rS > Rb and Dy < 2f . Notice that, inequality
(7) holds also for a single pair of extremals and a generic
amplitude.

The length of S (n)(Dy) decreases for increasing n and
converges to L(•) = rS

sinf

Dy . Indeed, after simple geometrical
computations we obtain

LS (n) (Dy) = 2n
rS

sin
⇣

Dy

2n

⌘

sin
⇣

f � Dy

2n

⌘ .

To extend this result to arbitrary amplitude of switches, let
us consider inequalities in (7) for n = 1 and Dy = di. We

have that LS (di) = 2rS
sin di

2

sin
⇣

f� di
2

⌘ for any rS > Rb and di  2f .

Based on Taylor expansion it is possible to show that the path
consisting in a single pair of straight lines is longer than the
path of infinite pairs of same amplitude di, i.e.

LS (di) = 2rS
sin di

2

sin
⇣

f � di
2

⌘ � rS

sinf

di.

Hence, by choosing di such that Âi di = Dy , we obtain that the
infimum length of paths consisting in concatenations of pairs
of straight lines is LS (•) (Dy) = L(•). Similarly, notice that it
also holds

LT (di) = 2rS
e

di
2 cotf �1
cosf

� rS

sinf

di.

As a direct consequence of (7), also the length of T (n)(Dy)
converges to L(•) and hence the infimum length path T (•) con-
sisting in pairs of spiral arcs has finite length L(•) = rS

sinf

Dy .

Notice that the finite length obtained in Lemma 1 does not
depend on the typology of path E .

To complete the analysis, it is now necessary to compare
the length of the path T (Dy) = T R�

A ⇤ T L+
B , that completely

evolves outside CS, with the length of the path I (Dy) = IL+
A ⇤

IR�
B , that completely evolves inside CS. From [5], if the path

I (Dy) crosses the circumference C2 it can be shortened by
IZ(Dy) = IL+

A ⇤Z ⇤ IR�
B where Z is an infinite sequence of pairs

of involutes of type IR� ⇤ IL+ on circumference C2 of length
2RbDy .

Recalling that Y(b ) = tanb � b , I (Dy) is defined for
Dy 2 [0,2Y(f)], otherwise the switching point between the
involutes does not exist. Let Dy(a) = 2(Y(f) � Y(f � a))
with a 2 [0,f ] and `0(b ) = Rb

2cos2
b

. With an abuse of notation,
the lengths of the curves can be expressed as a function of a ,
as follows:

LI (a) = 2(`0(f)� `0(f �a)) if a  f � p

4
(8)

LIZ (a) = 2
⇣
`0(f)� `0

⇣
p

4

⌘⌘
+

+2Rb

⇣
Dy(a)�Dy

⇣
p

4

⌘⌘
if a > f � p

4
(9)

LT (a) =
2Rb

cos2
f

⇣
eDy(a)cotf/2 �1

⌘
. (10)

Remark 5: Based on results reported in [16] Section 2, we
have that for any a 2 [0,f ]
8
>><

>>:

LT (a) < LI (a) if f  j i.e. rS  r

j

LT (a) < LI (a) if a > ā, f 2 (j,p/4] i.e. r

j

< rS  r2
LI (a) < LT (a) if a  ā, f 2 (j,p/4] i.e. r

j

< rS  r2
LR (a) < LT (a) if p/4 < f < p/2 i.e. r2 < rS

where j = arccos
q

2
3 , r

j

=
q

3
2 Rb  r2, and R = I for a 

f � p

4 while R = IZ for a > f � p

4 . The value of ā depends
on f , refer to [16] Section 2.

Proposition 4: If rS  r2 the shortest path between two
points A = (rS,Dy) and B = (rS,0) on CS does not exist. The
path of infimum length consists of infinite switches on CS and
has finite length L(•).

Proof: The condition rS  r2 is equivalent to f  p

4 . From
Remark 5, for such values of f we have that the path I (Dy)
is larger than T (Dy) for any Dy if f 2 [0,j]. From Lemma 1
the path of infimum length consisting in pairs of spiral arcs
does not exist and hence the thesis.

Otherwise, from Remark 5, if f 2 [j,p/4], the path I (Dy)
is shorter or equal to T (Dy) for Dy(a)  Dy(ā) while is
longer for Dy(a) > Dy(ā). For Dy(a)  Dy(ā), path I (Dy)
can be shortened by a sequence of infinite pairs of involutes
of type IL+ ⇤ IR� with switches on CS, see results in [5], and
hence the thesis.

In case of Dy(a) > Dy(ā), path T (Dy) is longer than
T (n)(Dy) for n > 1 as shown in Lemma 1. However, there



exists n big enough such that the switches on CS span an angle
smaller than Dy(ā) and hence T (n)(Dy) is shortened by a
sequence of infinite pairs of involutes of type IL+ ⇤ IR� with
switches on CS.

From the proof of the previous Proposition ā does not play
an important role since for f 2 [j,p/4] the path of infimum
length between A = (rS, Dy) and B = (rS,0) corresponds to a
sequence of infinite pairs of involutes on CS of type IL+ ⇤ IR�

for any value of Dy .
The paths ZI := I (•)(Dy) and ZT := T (•)(Dy) consisting

of an infinite number of pairs of involutes and spirals, respec-
tively, with switches on CS play a similar role of Z in [5] that
consists of infinite number of pairs of involutes with switches
on C2.

Proposition 5: If rS > r2 the shortest path between two
points A = (rS,Dy) and B = (rS,0) on CS is the path I (Dy)
or does not exist. In the latter, the path of infimum length has
finite length given by (9) and it has a subpath which consists
of infinite switches on the circumference C2 of radius r2.

Proof: The condition rS > r2 is equivalent to f > p

4 . From
Remark 5, for such values of f we have that the path I (Dy)
is smaller than T (Dy) for any Dy if f 2 [p/4,p/2). Hence,
from the results in [5] for Dy  Y(f)� Y(p/4) the optimal
path is I (Dy). Otherwise, the optimal path does not exist and
the path of infimum length is of type IL+ ⇤ Z ⇤ IR� where Z
consists of infinite subpath of type IR� ⇤ IL+ with switches on
C2. Hence, the thesis.

E. e–optimal paths
Even if the lengths of Z, ZI and ZT are finite, from a

practical point of view, these are impracticable paths. However,
depending on the accuracy of motors that move the wheels
of the robot, this type of path can be approximated by a
finite sequence of involutes or spirals with an error as smaller
as more accurate are the motors. A possible approach is to
determine an e–optimal path with a finite number of switches
whose length is no longer than any other shorter path more
than an arbitrarily small e > 0. In [5], Remark 6 provides the
sufficient number of concatenations of arcs of type IR� ⇤ IL+

on C2 obtaining an e–optimal path Z
e

of Z. In case of rS  r2,
a similar approach can be used for ZT (if f > j) and ZI (if
f  j) to obtain e–optimal paths ZT

e

and ZI
e

, respectively.
Remark 6: Consider the case f  j , from Lemma 1 and

Remark 5, given Dy , the paths consisting of n subpaths of

type T (Dy/n) have length L = 2n rS
cosf

✓
e

Dy

2n tanf �1
◆

, see (10).

By truncating the Taylor’s series of the exponential function
to the second order, we obtain L�L(•) < rS

sinf

Dy

2

4 tanf

1
n . Hence,

for n > rS
sinf

Dy

2

4 tanf

1
e

we have L � L(•) < e . For f  j , from
Remark 5, LT (Dy/n) > LI (Dy/n) hence the same lower
bound on n obtained above ensures that the length of the path
consisting in n subpaths I (Dy/n) is within an e bound of L(•).

F. e–optimal graphs
The graphs representing possible connections of extremals

for the HV–FOV problem are reported in Fig. 7, depending on

the value of f which determines the value of rS w.r.t. r

j

and
r2 which in turn depends only on Rb.

Remark 7: Regarding only the H–FOV case, an additional
result w.r.t. [4] is reported in [16] Section 1, further reducing
the combination of extremals. This result, shows that any path
containing combinations of type S+ ⇤ T R� and T L+ ⇤ S� is
not optimal. As a consequence, the subgraph of the e-optimal
graphs in Fig. 7 related to the H–FOV constraint has a reduced
number of links w.r.t. the one reported in [4].

Conversely to the H–FOV optimal synthesis developed
in [4], the result summarized in previous Remark 7 will be
necessary and important in the following analysis of this paper.
Indeed, differently from [4], without excluding S+ ⇤ T R� and
T L+ ⇤S�, here it is not possible to exclude loops in the graphs
reported in Fig. 7 and hence the consequent no existence of
optimal paths.

Notice that, for rS  r

j

(cf. Fig. 7(a)) the switches between
T R� and T L+ can be infinite and occur on CS. Moreover, when
r

j

< rS  r2 (cf. Fig. 7(b)) switches are between IR� and IL+,
can be infinite and still occur on CS. Finally, for any rS > r2
(cf. Fig. 7(c)) the infinite switches between IR� and IL+ occur
on C2.

Moreover, from Proposition 4 and Proposition 7 in [5], the
extremals ZT

e

, ZI
e

or Z
e

may occur only once in an infimum
length path. Indeed, when rS  r2 from Proposition 4 the path
of infimum length between two points on CS is the extremal ZT

e

or ZI
e

. Finally, for r2 < rS from the V–FOV–synthesis the path
of infimum length between two points on C2 is the extremal
Z

e

.
To conclude, a path of infimimum length corresponds to

a finite number of possible concatenations of extremals as
reported in Fig. 7. Hence, the paths of infimum length are of
type S+T L+IL+ ⇤ E ⇤ IR�T R�S� with E 2 {ZT

e

, ZI
e

, Z
e

} where
the switches between arcs T and I are on CS.

IV. REGIONS INHERITED FROM THE H–FOV AND THE
V–FOV SYNTHESIS

Given initial and final points Q, P 2 Z1 (Z2) respectively,
if the infimum path length from Q to P for the V–FOV (H–
FOV) synthesis does not intersect CS then it is also an infimum
length path for the HV–FOV synthesis. If point Q 2 Z1 and
point P 2 Z2 (or vice–versa), the path is of infimum length also
for the HV–FOV synthesis if it intersects CS inside WP or LP.
Indeed, inside WP or LP, CS can be crossed with a straight line
and from Proposition 3 the optimal concatenation of two arcs
S is smooth on CS. As a consequence, there are regions of the
HV–FOV synthesis that are completely or partially inherited
from the two previously obtained synthesis. The shape of such
regions depends on the value of f and hence on where CS
intersects the H–FOV and the V–FOV synthesis.

In Fig. 8, an example of the inherited regions from the H–
FOV and the V–FOV is reported. In this example, we have
r2 < rS < r5 < rP with f = p/4 and point P is far enough from
OW . This value of f is the FOV aperture of the most standard
cameras and has been chosen as a high probable practical
scenario that will be deeply analyzed throughout the paper.
However, other two cases with different horizontal apertures



(a) Case of rS  r

j

. (b) Case of r

j

< rS  r2. (c) Case of r2 < rS.

Fig. 7: Feasible extremals and sequences of extremals from points in Z1 [Z2.

Fig. 8: Example of inherited regions from the H–FOV and
the V–FOV synthesis with f such that r2 < rS < r5 < rP
and rP > Rb

cosf sin2
f

. For any region, the type of the inherited
infimum length path from that region to P is reported.

f , bigger (⇡ p/3) and smaller (⇡ p/5) w.r.t. the case in Fig. 8
are reported in [16] Section 3 with the same values for P and
f̂ .

Referring to Fig. 8, from the H–FOV synthesis, m =
(rm, ym) = (rP sin2

f , �2tanf logsinf) and rm > rS if and
only if rP > Rb

cosf sin2
f

. Hence, in this case, the region of the
H–FOV synthesis characterized by the optimal path of type
T L+ ⇤ T R� (called Region II in [4]) is completely inherited
and characterizes the optimal path from that region to P also
for the HV–FOV synthesis. This is true also for the regions
characterized by path S+T L+ ⇤T R�, S+T L+ and S+.

From point m, the circular arc CR
m crosses circumference

CS in n = (rS,ym + f � arcsin
⇣

2Rb
rP sin(2f)

⌘
(see Fig. 8). Let

QH 2 CP be such that the optimal path from QH toward P
touches, without crossing, the circumference CS in n . Hence,
it completely evolves in Z2 and it is the last path inherited
from the H–FOV synthesis. Indeed, from point Q 2 CP with
yQ > yQH , paths of the H–FOV synthesis necessarily cross
circumference CS, leading to a not optimal path for the
HV–FOV case. The path from QH is a palindrome path of
type S+T L+ ⇤ T R�S� where the rotation on the spot ⇤ is
performed exactly in n . As a consequence, QH = (rP, 2y

n

).
The Region IV in [4], characterized by the palindrome path
S+T L+ ⇤ T R�S�, is hence partially inherited in the HV–FOV
synthesis and its shape depends on the position of point m
w.r.t. CS. The same also holds for the regions characterized by
paths of type S+T L+ ⇤T R� and T R�S�.

Still referring to the example reported in Fig. 8 where rS <
r5, it is worth noting that the only region (partially) inherited
from the V–FOV synthesis is in Z1 and is characterized by
the optimal path of type IR�S�. To conclude, the backward
straight line regions inherited from the H–FOV and V–FOV
synthesis is given by Proposition 2.

The generalization of this analysis to other cases is straight-
forward. Indeed, if rP = Rb

cosf sin2
f

, point m 2 CS, QH ⌘
M = (rP, 2ym) and the optimal path from QH to P is
now of type T L+ ⇤ T R�. This path is optimal also if rP <

Rb
cosf sin2

f

. However, in this case, point m is inside CS, QH =

(rP, 2tanf log
⇣

rP cosf

Rb

⌘
) and the Region II is only partially

inherited as well as the region characterized by the path
S+T L+⇤T R�. On the other hand, if f � arccos

p
5, i.e. rS � r5,

and rP > r5, the region in Z1 characterized by the optimal path
IR�S� is now completely inherited from the V–FOV synthesis.
Similar reasoning can be done in case of rP < rS.



V. SYNTHESIS FOR rS 2 [r2, r5] AND rP > rS

Given the results above, for initial and final points Q and P
respectively, the HV–FOV synthesis depends on their position
with respect to CS and the value of rS. For the sake of brevity,
we provide a detailed description of the synthesis for rS 2
[r2, r5] and rP > rS, i.e. the horizontal FOV is such that f �
p/4. The synthesis for the other cases can be obtained with a
similar approach as described in [16] Section 3.

We first introduce and recall the notation that will be
used in the synthesis construction. Let C5 and CN be the
circumferences centered in the origin with radii r5 =

p
5Rb

and rN = 2Rb/sinf . It is worth noticing that rS < r5 < rN for
tanf < 2 and rN < r5 < rS for tanf > 2 while rS = r5 = rN
for tanf = 2. Similarly to the procedure followed in [4]
and [5], in order to obtain the overall synthesis, we start
analyzing the infimum length paths from points Q on the
circumference CP of radius rP to P = (rP,0). The goal is to
first obtain the synthesis of the circumference CP and then to
extend it to the whole plane of motion. The graph representing
the sequences of extremals for the case under consideration
is the one reported in Fig. 7(c) and hence from points on
CP the infimum length paths to P are palindrome paths of
type S+T L+IL+ ⇤ Z ⇤ IR�T R�S� where Z lays on C2 while
switching points between spiral and involute arcs lay on CS
where rS � r2. For the sake of simplicity we start analyzing
the paths from the point Q0 = (rP,p) 2 CP (see Fig. 9). The
case Q = (rP,yQ) 2CP with 0  yQ  p will also follow from
this analysis.

Proposition 6: Consider P = (rP,0) and Q0 = (rP,p) 2 CP
with rP > rN and rS 2 [r2, r5], the path of infimum length
from Q0 to P is a palindrome path of type S+T L+IL+ ⇤ Z ⇤
IR�T R�S� with intersection points PN 2 CN \ ∂WP between
T R� and S�, PS 2 CS between IR� and T R�, P2 on C2 between
Z and IR�,

Proof: Based on simple computations, the arc Z has no
zero length if rP < r̂ = Rb

cosf

e
1

tanf

( 3
4 p�1+tanf�f). Hence, for

such rP, from the palindromy property (see Definition 2), it
is sufficient to study the sub–path from Q1 = (r2,p/2) 2 C2
to P of type Z ⇤ IR�T R�S� (see Fig. 9). Let b be the heading
angle in P used to parametrize the path length (see Fig. 9) and
the switching point V = (rV ,yV ), between T R� and S�, be
on ∂CP with rS  rV  rP. By the sine rule we have rV =
rP

sinb

sinf

and yV = f � b . The logarithmic spiral through V is
r = rV e(yV �y)t , t = 1

tanf

, and it intersects CS in W = (rS,yS)
where

rS =
Rb

cosf

= rP
sinb

sinf

e(yV �yS)t

and hence yS = yV + tanf ln
⇣

rP sinb

Rb tanf

⌘
. The straight line arc S

between P and V has length

LS = rP
sin(f �b )

sinf

while the length of the logarithmic spiral arc between V and
W is

LT =
rV �rS

cosf

=
2(rP sinb �Rb tanf)

sin2f

Fig. 9: Analysis of palindrome paths of type S+T L+IL+ ⇤
Z ⇤ IR�T R�S� from point Q0 = (rP,p) to P = (rP,0) and
generalization to any point on CP between Q0 and QH .

Starting from W the path evolves in Z1 by an involute arc that
ends in Y on C2 (see Fig. 9) and its length is

LI =
Rb

2

✓
1

cos2
f

�2
◆

.

The angle yY is

yY = f �b + tanf ln
✓

rP sinb

Rb tanf

◆
+ tanf �f �1+

p

4
,

and hence the length of the arc Z from Q1 to Y is

LZ = 2Rb

⇣
p

2
�yY

⌘
.

The total path length becomes L(b ) = LS + LT + LI +
LZ and its minimum for rS  rV  rP or equivalently
arcsin

⇣
Rb
rP

tanf

⌘
 b  f is such that

∂L
∂b

= �
✓

rP �2
Rb

sinb

◆
sin(b �f)

cosf

= 0 .

Let CN be the circumference centered in Ow of radius rN =
2Rb
sinf

. For rP > rN the function L has a maximum in f and a

minimum in b

⇤ = arcsin
⇣

2Rb
rP

⌘
if b

⇤ � arcsin
⇣

Rb
rP

tanf

⌘
, i.e. if

rS  r5 (or equivalently f  arctan2). Substituting the optimal
value b

⇤ in rV we obtain that the switching between T R� and
S� occurs in V = PN = (rN , f �b

⇤) 2 CN , whose radius does
not depend on rP, if rS  r5.

Referring to Fig. 9, the switch between IR� and T R� occurs
in W = PS = (rS, yS) 2 CS (where yS = yN � tanf log

⇣
tanf

2

⌘
)

while the one between Z and IR� in Y = P2 = (r2,yS + tanf �
f � 3

4 p) 2 C2.
Based on Proposition 6 we can now compute the synthesis

of the semicircle CS.
Proposition 7: Given Q = (rP,yQ) 2 CP, the path of infi-

mum length from Q to P is



1) S+T L+ ⇤ T R�S� or T L+ ⇤ T R� for 0  yQ  yQH as
described in the H–FOV synthesis in [4], i.e. for any
point on CP between QH and P,

2) S+T L+IL+ ⇤ IR�T R�S�, for yQH < yQ  yQ̃, i.e. for
any point on CP between Q̃ and QH ,

3) S+T L+IL+ ⇤Z ⇤ IR�T R�S� with switching point P2 2C2
between Z and IR� and PS 2 CS between IR� and T R�

and PN 2 CN between T R� and S�, for yQ̃ < yQ  p ,
i.e. for any point on CP between Q0 = (rP,p) and Q̃.

Proof:
1) See results reported in Section IV.
2) Let us now consider Q = (rP,yQ) with yQ > yQH . The

optimal path for Q to P, obtained in the H–FOV synthesis,
intersects CS in at least two points (since rS < rP) and hence
the path violates the V–FOV constraint between those points.
Based on the graph in Fig. 7(c), the path of infimum length
from Q to P is of type S+T L+IL+ ⇤ Z ⇤ IR�T R�S� where
arcs may have zero length. For yQH  yQ < yQ̃ there exist
values of bQ such that the path of type S+T L+IL+ ⇤ Z ⇤
IR�T R�S� degenerates in S+T L+IL+ ⇤ IR�T R�S�. For such
values a comparison between such paths lengths must be
carried out. For space limitations an exhaustive analysis of
the comparison can not be reproduced. In Fig. 10(a) the
length of paths of types S+T L+IL+ ⇤ Z ⇤ IR�T R�S� (in blue)
and S+T L+IL+ ⇤ IR�T R�S� (in red) is plotted for different
values of the parameter b that represents the heading angle
in P and in Q. Three curves representing different values
of yQ are reported. The lowest curve represents the length
of the paths for yQH  yQ < yQ̃ for which the minimum
is reached by a path of type S+T L+IL+ ⇤ IR�T R�S�. The
curve in between corresponds to the case yQ = yQ̃ in which
the infimum path S+T L+IL+ ⇤ Z ⇤ IR�T R�S� degenerates to
S+T L+IL+ ⇤ IR�T R�S�, hence bQ̃ = b

⇤ and the path gQ̃ is
optimal. In Fig. 10(b) the case yQH < yQ  yQ̃ is considered
to highlight how, in this case, the value of the parameter
associated to the optimal path changes with yQ. In particular
it increases while the value of yQ decreases to yQH . Hence the
infimum length paths from Q = (rP,yQ) with yQH < yQ  yQ̃
to P are of type S+T L+IL+ ⇤ IR�T R�S�.

3) Finally, consider a point Q = (rP,yQ) 2 CP with yQ̃ <
yQ  p and the paths of type S+T L+IL+ ⇤ Z ⇤ IR�T R�S�.
Notice that, since gQ̃ is optimal from Q̃ to P, for yQ > yQ̃
there exists no degenerate optimal path of type S+T L+IL+ ⇤
IR�T R�S� from Q to P, i.e. a non zero length arc Z is part
of the infimum length path. For yQ 2 [yQ̃, p] an analysis
equivalent to the one reported in the proof of Proposition 6
can be done obtaining that the infimum length path has P2
as the switching point between Z and IR�, i.e. the subpath
IR�T R�S� does not depend on yQ while the only dependency
is in the length of arc Z. Indeed, in Fig. 10(a), the highest curve
represents the length of the paths S+T L+IL+ ⇤ Z ⇤ IR�T R�S�

and S+T L+IL+ ⇤ IR�T R�S� for p  yQ < yQ̃ for which the
minimum is reached for a constant value of b

⇤ = arcsin
⇣

2Rb
rP

⌘

and corresponds to a path of type S+T L+IL+ ⇤Z ⇤ IR�T R�S�.
It is hence possible to show that the statement of the Propo-

sition 6 holds for any Q = (rP,yQ) 2 CP with yQ 2 [yQ̃, p].
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Fig. 10: Lengths of paths of type S+T L+IL+ ⇤ Z ⇤ IR�T R�S�

and of type S+T L+IL+ ⇤ IR�T R�S�.

Having the synthesis of CS, the extension of this result
in the semi-disk DS can be done by using the following
simple idea: for any Q 2 DS, find a point in S 2 CS such
that an infimum length path from S to P goes through Q.
By Bellmann’s Optimality Principle, the subpath from S to
P is also an infimum length path. Consider the partition
of DS in sixteen regions illustrated in Fig. 11. Regions are
generalized polygonals characterized by vertices and whose
boundaries belong either to the extremal curves or to the
switching loci. Such regions characterize the optimal synthesis
as stated in the following theorem that summarizes one of the
main contributions of this paper.

Theorem 1: For rP > rN and rS 2 [r2,r5], the synthesis
of the upper half–plane taking into account the infimum path
length Z as an extremal, is described in Fig. 11 and Table II.
For each region, the associated path type entirely defines a
path of infimum length to the goal.

The notation used in the table is based on the synthesis
provided in [4] and [5]. For example, Region VIH

C is region
VIC of the H–FOV synthesis that is inherited in the HV–FOV
synthesis (see Section IV). Notice that Region I consists in



Fig. 11: HV–FOV synthesis in case of rP > rN and f such that r2  rS  r5.

Point Polar coordinates (r,y)

P (rP, 0)

PS (rS, f � arcsin
⇣

Rb
rP

tanf

⌘
)

Mm ( rP
sinf

, �2tanf logsinf)

m (rP sin2
f , �2tanf logsinf)

v (rS, f � arcsin
⇣

2Rb
rP sin(2f)

⌘
+ym)

O1 (Rb,yPS +f � tanf)

P2 (r2, ŷ � arcsin
⇣

2Rb
rP

⌘
+ p�4

4 )

M (rP, �4tanf logsinf)
O2 (Rb,yP2 + arccos 1p

2
� tanarccos 1p

2
)

W (rS, yP2 + tanf �f + p�4
4 )

V Solution of...
P0

N (
2Rb
sinf

, yW + tanf log
⇣

2
tanf

⌘
)

TABLE I: Points of the
synthesis in Fig. 11, where
ŷ = tanf

⇣
1+ log

⇣
2

tanf

⌘⌘
. Points are

sorted by increasing values of y if
f > arccos

⇣
1/(2

p
2�1)

⌘
.

the union of IH and IV . The curves gPS and gV do not have
particular geometric characteristics. Their explicit expressions,
which are not reported here for the sake of space, can be
found based on the computations and considerations done in
Propositions 6 and 7.

We are now able to prove Theorem 1.
Proof: (Theorem 1) Referring to Fig. 11, the proof is done

considering each region separately. Notice that the proof for
inherited regions can be found in [4] and [5], see Section IV.
Region I: From any point in this region it is possible to reach
P with a straight path in backward motion without violating
the HV–FOV constraints since it is the intersection of straight
line regions for the two separated synthesis.
Region IX: From any point Q in this region there exists a point
Q0 2 CP such that for Proposition 7 the infimum path from Q0

to P (of type S+T L+IL+ ⇤ Z ⇤ IR�T R�S�) passes through Q.
Hence, the path of infimum length from Q to P is the subpath
of type T L+IL+ ⇤Z ⇤ IR�T R�S�.
Region VIII: From any point Q in this region there exists a
point Q0 2CS such that, from previous point, the infimum path
from Q0 to P passes through Q. Hence, the path of infimum
length from Q to P is the subpath of type IL+ ⇤Z ⇤ IR�T R�S�.
Region XIII: From any point Q 2 CP in this region the
infimum path from Q to P is of type S+T L+IL+⇤Z⇤IR�T R�S�.
By varying the length of path S+ from zero to infinite the
path of minimum length from any point of the region to P is
constructively obtained.
Region X: From any point Q in this region there exists a point
Q0 2 CP such that for Proposition 7 the infimum path from Q0

to P (of type S+T L+IL+⇤IR�T R�S�) passes through Q. Hence,
the path of infimum length from Q to P is the subpath of type
IL+ ⇤ IR�T R�S�.
Region XI: From any point Q in this region there exists a point
Q0 2 CP such that for Proposition 7 the infimum path from Q0

to P (of type S+T L+IL+⇤IR�T R�S�) passes through Q. Hence,
the path of infimum length from Q to P is the subpath of type

T L+IL+ ⇤ IR�T R�S�.
Region XII: Similarily to Region XIII, from any point Q 2
CP in this region, the infimum path from Q to P is of type
S+T L+IL+ ⇤ IR�T R�S�. By varying the length of path S+ from
zero to infinite the path of minimum length from any point of
the region to P is constructively obtained.
Region VII: From the V–FOV synthesis from points inside C2
arcs of type IL+ or IR+ do not belong to infimum length paths
that reach points outside C2. Hence, from such points the only
possible way to reach C2 is with an arc of type IR�, see the
graph in Fig. 7(c). Thus, the infimum path length from points
of this region are of type IR�Z ⇤ IR�T R�S�.
Region III: From points in this region, that belong to optimal
paths from points in Region XII, the optimal path is of type
IR�T R�S�. From all other points the same analysis provided
in Proposition 6 can be done (starting from points on C2)
obtaining that in the optimal path the length of arc Z is zero
and hence the optimal path is of type IR�T R�S�.

The complete HV–FOV synthesis with f = p/4 and rP > rN
is reported in Fig. 11.

To conclude the analysis for rP > rS and rS 2 [r2, r5] the
case rP  rN must be considered.

Lemma 2: Consider P = (rP,0) and Q = (rP,p) 2 CP with
rS  rP  rN , the path of infimum length from Q to P is
of type T L+IL+ ⇤ Z ⇤ IR�T R� with intersection points PS 2 CS
between IR� and T R� and P2 2 C2 between Z and IR�.

Proof: For P = (rP,0) and Q = (rP,p) 2 CP, with rP 
rN and rS 2 [r2, r5] the same proof of Proposition 6 can be
applied. In this case, the function L has a minimum in b

⇤ = f .
Hence arc S� has zero length and the infimum length path is
of type T L+IL+ ⇤Z ⇤IR�T R�. The switching point between IR�

and T R� is PS = (rS, yS) 2CS (where yS = tanf log
⇣

rP cosf

Rb

⌘
)

and the one between Z and IR� is P2 = (r2, yS + tanf �f �
3
4 p) 2 C2.

To extend this result to the case Q = (rQ,p) with rQ > rP



we can compute the path of infimum length from Q to
P by applying Theorem 1 and switching initial and final
points P and Q, i.e. considering P and Q as initial and final
points respectively. Hence, by reproducing the same reasoning
proposed for rP > rN , a similar synthesis is obtained where the
roles of points PS and P2 of that case are covered by the new
points PS 2 CS \T R

P and P2 2 C2 \ IR
PS

whose coordinates have
been computed in the proof of Lemma 2. Moreover, it is also
possible to show that for points Q from which the infimum
length paths are of type S+T L+IL+ ⇤Z ⇤ IR�T R�, the locus of
switching points between S+ and T L+ is on CN .

The extension to the general case Q = (rQ,yQ) can be
obtained with a similar approach used for previous synthesis,
see e.g. Proposition 6.

VI. ON THE PRACTICAL USE OF THE HV–FOV
SYNTHESIS

In the previous sections, the HV–FOV synthesis in case of
rP > rN and f such that r2  rS  r5 has been provided.
The goal is now to describe a method to establish where the
initial point Q lays w.r.t. the partition given in Fig. 11, and to
compute the infimum length path from Q to P.

First let r(y) be the distance to the origin with respect
to the angle y along the curves that represent the borders of
Regions. The list of borders can be found in the third column of
Table II where only included boundaries are reported for each
region. All borders in the third column can be characterized
by two (limit) values of the angle y and by one (limit) value
of r(y). The Region Q = (rQ,yQ) belongs to can be hence
determined by verifying two inequalities for yQ and one for
rQ. The functions r(y) are in closed form or are determined
as a solution of non linear algebraic equations as described
in [4] and in [5] and omitted here for the sake of space. An
efficient way to determine the regions of the synthesis in which
Q = (rQ,yQ) lays is the following. Consider the 12 points pi,

Region Included Included Optimal
Vertices Boundaries Path Type

I O, PS , P ∂WP S�

IH
c P sR

P S+

IIV PS , O, O1 LimR
P, ∂Z0, IR

PS
IR�S�

IIH P, M, m, Mm T R
P , T L

M , T L
P , T R

M T L+ ⇤T R�

III PS , n , P2, O2, O1 IR
PS

, CS , g

n

, IR
P2

, ∂Z0 IR�T R�S�

IVH
c V , M sR

M , sR
V , CR

M S+T L+ ⇤T R�S�

VH
n , m, M, V CR

m, T L
M , CR

M , T L
V T L+ ⇤T R�S�

VH
c M, Mm sR

Mm , sR
M , T R

Mm S+T L+ ⇤T R�

VIH P, m, n , PS T R
P , CR

m, CS , CR
P T R�S�

VIH
c P, Mm sR

Mm , sR
P, T L

Mm S+T L+

VII P2, O2 IR
P2

, ∂Z0, XW , C2 IR�Z ⇤ IR�T R�S�

VIII P2, W IL
W , CS , XW , C2 IL+ ⇤Z ⇤ IR�T R�S�

IX W , P0
N IL

P0
N

, CN , XW , CS T L+IL+ ⇤Z ⇤ IR�T R�S�

X n , W , P2 CS , IL
W , g

n

IL+ ⇤ IR�T R�S�

XI n , V , P0
N , W T L

V , gV , T L
P0
N

, CS T L+IL+ ⇤ IR�T R�S�

XII V , P0
N gV , sR

V , sR
P0
N

S+T L+IL+ ⇤ IR�T R�S�

XIII P0
N sR

P0
N

, CN , XW S+T L+IL+ ⇤Z ⇤ IR�T R�S�

TABLE II: Detailed description of the HV–FOV synthesis
represented in Fig. 11.

i = 1, . . . ,11, reported in Table I ordered with increasing value
of ypi , i.e. p1 = P and p12 = P0

N . Notice that it always holds
ym = yMm while the order of points between P and P0

N can
change based on the value of f . Determine the points j and
j+1 such that yp j  yQ  yp j+1 with j = 1, . . . ,10. Referring
to Fig. 11 the point Q in region XIII verifies yQ > y12 while
the point Q in region VH

c verifies yv = y5  yQ  y6 = yO1 .

Table III reports for each range of yQ the borders for which
r(yQ) must be compared with rQ. Notice that in the worst
case, at most 8 inequalities of the form r(yQ)�rQ  0 must
be evaluated. This procedure is hence very efficient in terms
of computational costs once r(yQ) is computed for all the
borders. For example, referring to Fig. 11, the point Q in
region XIII has yQ 2 [yP0

N
, p] and rQ is larger than the r(yQ)

associated to CN and smaller than the r(yQ) associated to sR
P0

N
.

The point Q in region VH
c verifies yQ 2 [yv, yO1 ] while rQ is

larger than the r(yQ) associated to T R
Mm

and smaller than the
r(yQ) associated to sR

Mm
.

Once the vehicle is localized with respect to the synthesis,
the infimum path length can be easily computed as follows.
Each region of the synthesis is characterized by one type of
extremal arc, i.e. the first arc of the infimum length paths
from that region to P (see Table II). Moreover, such arcs may
coincide with a border or connect two different borders of the
regions. For example, while the vehicle crosses Region IIH ,
it follows an arc of spiral of type T L that may coincide with
borders T L

P or T L
M or connect border T R

M with border T R
P (see

Table II). Arcs associated to regions are reported in Table IV
for reader convenience.

In case of regions characterized by arcs of type T R, T L, IR

or IL, the infimum length path is univocally determined since
for each point Q in those regions there exists one and only
one spiral arc or involute arc (left or right) passing through
Q. Given a point Q = (rQ,yQ), explicit equations of spirals T

Value of yQ Borders
[0, yPS ] ∂WP, T R

P , T L
P , sR

P
[yPS , ym] ∂WP, IR

PS
, CS , T R

P , T L
P , sR

P

[ym, yv] IR
PS

, CS , CR
m, T L

M , T R
M , sR

Mm , sR
P

[yv, yO1 ] IR
PS

, g

n

, CS , T L
V , T L

M , T R
M , sR

Mm , sR
P

[yO1 , yP2 ] g

n

, CS , T L
V , T L

M , T R
M , sR

Mm , sR
P

[yP2 , yM ] IR
P2

, C2, IL
W , CS , T L

V , T L
M , T R

M , sR
Mm

[yM , yO2 ] IR
P2

, C2, IL
W , CS , T L

V , CR
M , sR

M , sR
Mm

[yO2 , yW ] C2, IL
W , CS , T L

V , CR
M , sR

M , sR
Mm

[yW , yV ] C2, CS , T L
P0
N

, T L
V , CR

M , sR
M , sR

Mm

[yV , yP0
N
] C2, CS , T L

P0
N

, gV , sR
V , sR

M , sR
Mm

[yP0
N
, p] C2, CS , CN , sR

P0
N

, sR
V , sR

M

TABLE III: Ranges of yQ and borders for which r(y) must
be compared to rQ. Borders are ordered for increasing values
of r(y).



Extremal arcs Regions
S I, IH

c , IV H
c ,V H

c ,V IH
c ,XII,XIII

T L IIH ,V H , IX ,XI
T R V IH

IR IIV , III,V II
IL V III,X

TABLE IV: Extremal arcs characterizing the regions.

and involutes of circle I (see also [4] and [5]), are

T L
Q : r = rQ e

(yQ�y)

tanf

T R
Q : r = rQ e�

(yQ�y)

tanf

IL
Q : r =

Rb

cosb

, b solution of y �yQ = tanb �b

IR
Q : r =

Rb

cosb

, b solution of y �yQ = � tanb +b .

(11)
The same does not occur in case of paths

starting from regions characterized by S (i.e. Regions
I, IH

c , IV H
c ,V H

c ,V IH
c ,XII,XIII). From Regions I and IH

c the
straight line connects Q directly to P and in [17] a method
to determine the direction towards P from these regions is
provided. On the other hand, from points Q in the other
regions we need to consider the border between the region
in which Q lays and the following region crossed by the
path. The intersection point between ∂WQ and the considered
border must be computed. For example, referring to Fig. 11
and Table IV, for a vehicle on Q in Region XIII, let us
consider the intersection point between WG (in particular the
border CL

Q) and CN . The vehicle first reaches this point along
a straight arc S from Q and then it crosses Region IX by
following a spiral arc T L until CS is reached. Region V III is
thus crossed along the involute arc IL. Once C2 is reached
the vehicle first rotates on the spot and then it follows arc Z
until it reaches P2 where, after another rotation on the spot,
it proceeds backward along the arc IR

P2
characterizing Region

III until CS. Finally the vehicle crosses Region V IH along
T R (still moving backward) and once the border of Region I
is reached it moves backward along the straight line toward
P. On the other hand, from point Q in Region V H

c , let us
consider the intersection point between WQ and T R

Mm
. After

having reached this point by following a straight line S, the
vehicle crosses Region IIH along a spiral arc T L until T R

P is
reached. After a rotation on the spot it proceeds backward
along the arc T R

P (border between Regions IIH and V IH )
toward P.

To conclude this section, we will describe the path of the
landmark in the image plane while the vehicle follows an
infimum length path. Let us start from the extremal arcs. If the
vehicle moves along a straight line S, also the landmark moves
along a straight line passing through its initial position and the
principal point of the image plane (cf. OI in Fig. 12(a)). On
the other hand, if the vehicle executes a rotation on the spot,
the landmark moves along a conic curve (cf. Fig. 12(b)), see

e.g. [18]. Finally, while the vehicle moves along a spiral or
an involute arc, the landmark moves along the borders of the
image plane. In particular, along the right or left borders in
case of a left or right spirals (cf. Fig. 12(c)), along the left
half or the right half upper (lower) borders in case of right or
left involutes (cf. Fig. 12(d)).

(a) Straight line path S.

(b) Rotation on the spot ⇤.

(c) Spiral arc T .

(d) Involute arc I.

Fig. 12: Paths of the landmark in the image plane.

Let us now assume that the vehicle is in Region XIII aiming
at the landmark. The path of the landmark in the image plane
is represented in Fig. 13. The landmark has to first reach
the right border of the image plane by following a conic
curve, so that the vehicle is aligned to the straight line passing
from the intersection point between CL

Q and CN , and then a
straight line passing through the principal point (see [18] to
determine the straight line to be followed) corresponding to
arc S. Once the right border is reached, the vehicle is on
CN and the landmark follows the right border toward the
upper (or lower) one (corresponding to arc T ). Once the upper



Fig. 13: The path of the landmark in the image plane along the
infimum length path S+T L+ ⇤ IL+ ⇤ Z

e

⇤ IR�T R�S� of Region
XIII. The subpath Z

e

is represented in blue.

(or lower) border is reached, the landmark is at the corner
of the image plane and the vehicle is on CS. The landmark
proceeds by moving along the upper (lower) border until the
vehicle reaches the circumference C2 along arc I. The bearing
angle is hence bC2 = arccos(1/

p
2). It is worth noting that the

bearing angle is the only state variable that can be determined
directly in the image plane: b = arctan

⇣
I x
ax

⌘
, where Ix is the x

coordinate of the landmark and ax is a camera parameter (see
also [18]). Hence, when the vehicle is following an involute
it is possible, from the position of the landmark in the image
plane, to determine when the vehicle is on circumference C2.
The extremal arc Z has now to be followed until point P2 is
reached. From a practical point of view, let us consider the
arc Z

e

that corresponds to sequences of conics, segment of
the left half upper (lower) border, conics and segment of the
right half upper (lower) border (arcs ⇤IR ⇤ IL ⇤ IR ⇤ . . . in the
motion plane, reported in blue in Fig. 13). At point P2, the
vehicle is on C2 aligned to a right involute of circle IR. As
a consequence, the landmark is on the left half upper (lower)
border and has to move along it until the left border of the
image plane is reached. At this point the vehicle is on CS. The
landmark has to move now along the left border, toward the
lower (upper) border of the camera. Once the border of Region
I is reached, the landmark moves along a straight line through
and toward the principal point until P is reached. To align the
vehicle toward the landmark a final conic is followed.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, the complete optimal synthesis of optimal
(shortest) or e–optimal paths (when the optimal path does
not exist) has been obtained for a vehicle equipped with a
sensor (e.g. a camera) with both vertical and horizontal bounds,
which moves on a plane toward a desired configuration while
maintaining a given landmark always in sight.

Future works on this subject are dedicated to translate the
synthesis into stabilizing feedback control laws, extending to
this work what it has been done in [17]. Another interesting
problem is to consider different cost to be minimized, as
e.g. time, energy, wheel rotations etc.. In [19] a first attempt
to solve the minimum time problem has been done.

REFERENCES

[1] F. A. Belo, P. Salaris, D. Fontanelli, and A. Bicchi, “A complete
observability analysis of the planar bearing localization and mapping for
visual servoing with known camera velocities,” International Journal
Advanced Robotic Systems, vol. 10, no. 197, 2013.

[2] P. Murrieri, D. Fontanelli, and A. Bicchi, “A hybrid-control approach
to the parking problem of a wheeled vehicle using limited view-angle
visual feedback,” International Journal of Robotics Research, vol. 23,
no. 4–5, pp. 437–448, April–May 2004.

[3] N. Gans and S. Hutchinson, “Stable visual servoing through hybrid
switched system control,” IEEE Transactions on Robotics, vol. 23, no. 3,
pp. 530–540, June 2007.

[4] P. Salaris, D. Fontanelli, L. Pallottino, and A. Bicchi, “Shortest paths
for a robot with nonholonomic and field-of-view constraints,” IEEE
Transactions on Robotics, vol. 26, no. 2, pp. 269–281, April 2010.

[5] P. Salaris, A. Cristofaro, L. Pallottino, and A. Bicchi, “Epsilon–optimal
synthesis for vehicles with vertically bounded field-of-view,” Automatic
Control, IEEE Transactions on, vol. 60, no. 5, pp. 1204–1218, 2015.

[6] P. Salaris, L. Pallottino, and A. Bicchi, “Shortest paths for finned,
winged, legged, and wheeled vehicles with side-looking sensors,” The
International Journal of Robotics Research, vol. 31, no. 8, pp. 997–
1017, 2012.

[7] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents,” American Journal of Mathematics, pp. 457–516, 1957.

[8] T. Pecsvaradi, “Optimal horizontal guidance law for aircraft in the
terminal area,” Automatic Control, IEEE Transactions on, vol. 17, no. 6,
pp. 763–772, Dec 1972.

[9] X. Bui, P. Souères, J.-D. Boissonnat, and J.-P. Laumond, “Shortest path
synthesis for Dubins non–holonomic robots,” in IEEE International
Conference on Robotics and Automation, 1994, pp. 2–7.

[10] J. A. Reeds and L. A. Shepp, “Optimal paths for a car that goes both
forwards and backwards,” Pacific Journal of Mathematics, pp. 367–393,
1990.

[11] H. Sussmann and G. Tang, “Shortest paths for the reeds-shepp car:
A worked out example of the use of geometric techniques in nonlinear
optimal control,” Department of Mathematics, Rutgers University, Tech.
Rep., 1991.

[12] P. Souères and J. P. Laumond, “Shortest paths synthesis for a car-like
robot,” IEEE Transaction on Automatic Control, pp. 672–688, 1996.

[13] D. Balkcom and M. Mason, “Time-optimal trajectories for an omni-
directional vehicle,” The International Journal of Robotics Research,
vol. 25, no. 10, pp. 985–999, 2006.

[14] H. Wang, Y. Chan, and P. Souères, “A geometric algorithm to com-
pute time-optimal trajectories for a bidirectional steered robot,” IEEE
Transaction on Robotics, pp. 399–413, 2009.

[15] H. Chitsaz, S. M. LaValle, D. J. Balkcom, and M. Mason, “Minimum
wheel-rotation for differential-drive mobile robots,” The International
Journal of Robotics Research, pp. 66–80, 2009.

[16] P. Salaris, A. Cristofaro, and L. Pallottino, “Additional material for:
Epsilon–optimal synthesis for nonholonomic vehicles with limited
field-of-view sensors,” http://www.centropiaggio.unipi.it/sites/default/
files/hvfov additionalmaterial.pdf, 2015.

[17] P. Salaris, L. Pallottino, S. Hutchinson, and A. Bicchi, “From optimal
planning to visual servoing with limited fov,” in Intelligent Robots
and Systems, 2011. IROS 2011. IEEE/RSJ International Conference on,
2011, pp. 2817–2824.

[18] P. Salaris, F. Belo, D. Fontanelli, L. Greco, and A. Bicchi, “Optimal
paths in a constrained image plane for purely image-based parking,” in
Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ Interna-
tional Conference on, 2008, pp. 1673–1680.

[19] A. Cristofaro, P. Salaris, L. Pallottino, F. Giannoni, and A. Bicchi, “On
time-optimal trajectories for differential drive vehicles with field-of-
view constraints,” in 53th IEEE Conference on Decision and Control,
2014, pp. 2191–2197.



Paolo Salaris Paolo Salaris received the ”Laurea”
in Electrical Engineering in 2007 and the Doctoral
degree in Robotics, Automation and Bioengineering
in 2011 at the Research Center “E.Piaggio” of the
University of Pisa. He has been Visiting Scholar at
Beckman Institute for Advanced Science and Tech-
nology, University of Illinois, Urbana-Champaign in
2009. He has been a PostDoc at the Research Center
“E.Piaggio” in Pisa (IT) from 2011 to 2013 and
at LAAS-CNRS in Toulouse (FR) from February
2014 to July 2015. He is currently a Chargé de
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