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Abstract— Despite the emergence of many soft-bodied robotic
systems, model-based feedback control has remained an open
challenge. This is largely due to the intrinsic difficulties in
designing controllers for systems with infinite dimensions. In
this paper we propose an alternative formulation of the soft
robot dynamics which connects the robot’s behavior with the
one of a rigid bodied robot with elasticity in the joints. The
matching between the two system is exact under the common
hypothesis of Piecewise Constant Curvature. Based on this
connection we introduce two control architectures, with the
aim of achieving accurate curvature control and Cartesian
regulation of the robot’s impedance, respectively. The curvature
controller accounts for the natural softness of the system,
while the Cartesian controller adapts the impedance of the
end effector for interactions with an unstructured environment.
This work proposes the first closed loop dynamic controller
for a continuous soft robot. The controllers are validated
and evaluated on a physical soft robot capable of planar
manipulation.

I. INTRODUCTION

Animals move very differently from rigid robots. Animals
interact robustly, compliantly, and continuously with the ex-
ternal world through their body’s elasticity, and they perform
dynamic tasks efficiently. Inspired by biology, researcher are
designing soft robots with elastic bodies [1], for example a
soft robotic fish [2], adaptive soft grippers [3], soft worms
[4], and soft octopuses [5].

Creating robots with soft bodies promises machines with
great motion agility and compliance — such motion requires
a soft robotic brain to compute the control for the soft
body. Soft robotic systems have to robustly manage the
intelligence embedded in their complex structure [6] in order
to generate reliable and repeatable behaviors. Developing
control strategies suited for soft body control has been
very challenging. Part of the difficulty is creating an exact
mathematical formulation for the soft robotic model, which
requires taking into account the infinite dimensionality of the
robot’s state space [7].

The theory of infinite state space control is still con-
fined to relatively simple systems, and its applications are
still preliminary [8]. The use of learning techniques was
considered as a possible alternative in [9], [10]. However,
model-based techniques have an important role in achieving
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Fig. 1. Dynamically controlled soft robot approaching and then tracing
along an environment. The robot has five actuated soft segments and is
controlled through a model-based Cartesian feedback controller, one of two
control architectures presented in this paper.

higher levels of performance in the control of both artifi-
cial and natural systems [11]. This observation drove the
development of simplified models capable of describing the
robot’s behavior through a finite set of variables. Several
works focused on reduced descriptions of the soft robot’s
kinematics. Using such models, several quasi-static control
strategies were proposed. Finite element methods (FEM)
are the most natural way to achieve this goal. FEM-based
kinematic models were used to design an algorithm for kine-
matic inversion [12] and planning [13]. However, a reduced
kinematic model most commonly used in soft robotics is the
so-called Piecewise Constant Curvature (PCC) [14]. Other
prior work on modeling and control of soft robots includes
modeling biological systems [15], automatically designing
the soft robot’s kinematics [16], and developing algorithms
for inverse kinematics [17], [18]. The use of purely kinematic
strategies for soft robot control, together with heuristically
tuned low-level high gain feedback controllers, work well
in static situations with sparse contacts with the environ-
ment. However, a dynamic model is required for control
strategies for dynamic tasks and continuous interactions with
the environment. Prior work on dynamic models with finite
dimensions includes the Ritz-Galerkin models [19], and the
discrete Cosserat models [20]. We are not aware of any prior
work that applies these dynamic models to controlling soft
robotics. Dynamic models based on the PCC hypothesis were
presented in [21] and [22]. In both works, the models are
merely used for generating purely feed-forward actuations.
To the best of our knowledge, there has been no work on
the design of dynamical feedback controllers for continuum
soft robots.

In this paper we propose two novel feedback control archi-
tectures that were specifically designed for controlling soft



robots. The proposed architectures are able to compensate
for dynamical forces, while using the intelligence embedded
in the soft robotic behavior to stabilize a desired trajectory in
the curvature space. The architecture is designed to preserve
the natural softness of the robot and adapt to interactions
with an environment. The first controller aims to achieve
regulation of time-varying curvatures profiles in free space.
The second controller is an impedance controller that allows
the end effector to control its position in free space and
to move along a surface, while staying in contact with
that surface. The proposed control scheme is based on an
“augmented formulation” linking the soft robot to a classic
rigid serial manipulator with a parallel elastic mechanism.
Prior tools developed for rigid bodied robots can be used
with this formulation [23]-[25].

In this paper we develop the model, design and analyze the
control algorithms, and evaluate them in a suite of physical
experiments. This work contributes:

« a closed loop dynamic controller for a continuous soft
robot capable of dynamically tracking desired curva-
tures.

e a closed loop dynamic controller for a continuous
soft robot capable of moving in Cartesian space and
compliantly tracing a surface.

o an “augmented formulation” linking a soft robot to a
classic rigid serial manipulator under the PCC hypoth-
esis.

« an experimental validation of the controllers on a planar
system.

II. MODEL

In this section, we propose a framework for modeling the
dynamics of soft robots, linking it to an equivalent rigid robot
constrained through a set of nonlinear integrable constraints.
The key property of the model is to define a perfect match-
ing under the hypothesis of piecewise constant curvature,
enabling the application of control strategies typically used
in rigid robots onto soft robots.

A. Kinematics

In the Piecewise Constant Curvature (PCC) model, the
infinite dimensionality of the soft robot’s configuration is
resolved by considering the robot’s shape as composed
of a fixed number of segments with constant curvature
(CC), merged such that the resulting curve is everywhere
differentiable. Consider a PCC soft robot composed by
n CC segments, and consider a set of reference systems
{S0},...,{Sn} attached at the ends of each segment. Fig. 2
presents an example of a soft robot composed by four CC
segments. Using the constant curvature hypothesis, S; 1 and
S; fully define the configuration of the ¢ —th segment. Thus,
the robot’s kinematics can be defined by n homogeneous
transformations 7Tg,..., T ;, which map each reference
system to the subsequent one.

In the interest of conciseness, we will consider the planar
case. Please refer to [14] for more details about the PCC
kinematics in 3D case. Fig. 3 shows the kinematics of a sin-

Fig. 2. Example of a Piecewise Constant Curvature robot, composed
by four constant curvature elements. {So} is the robot’s base frame. A
reference frame {S;} is connected at the end of each segment. Tz‘i—l is the
homogeneous transformation mapping {S;_1} into {S;}.
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Fig. 3. Kinematic representation of the i-th planar constant curvature
segment. Two local frames are placed at the two ends of the segment,
{Si—1} and {S;} respectively. The length of the segment is L;, and g;
is the degree of curvature.

gle CC segment. Under the hypothesis of non-extensibility,
one variable is sufficient to describe the segment’s configura-
tion. We use the relative rotation between the two reference
systems, called the degree of curvature, as the configuration
variable. Let us call this variable g; for the ¢ — th segment.
Then, the ¢ —th homogeneous transformation can be derived
using geometrical considerations as

cos(q;) —sin(g;) Lisinq#
Ti_1(q:) = sin(q;)  cos(g:) Lilf%j(m Cm
0 0 1

where L; is the length of a segment.

B. Dynamically-Consistent Augmented Formulation

An equivalent formulation of Eq. (1) in terms of elemental
Denavit-Hartenberg (DH) transformations is introduced in



[26]. The framework we propose in this section leverages
the intuition that such equivalence implicitly defines a con-
nection between a soft robot and a rigid robot described
by the equivalent DH-parametrization. Fig. 4(a) shows an
example of robotic structures (an RPR robot) matching a
single CC segment. More complex rigid structures matching
a generic PCC soft robot can be built by connecting such
basic elements.

We will refer to the state space of the equivalent rigid robot
as the augmented state representation of the PCC soft robot.
We call £ € R™™ the augmented configuration, where m is
the number of joints per CC segment and n is the number
of segments. The two configurations are connected through
the continuously differentiable map

m:R" — R"™, )

The map & = m(q) assures that the end points of each CC
segment coincide with the corresponding reference points
of the rigid robot. Note that from a kinematic point of
view, any augment representation satisfying this condition is
equivalent. However, as soon as we consider the dynamics
of the two robots, another constraint has to be taken into
account: the inertial properties of the augmented and the soft
robot must be equivalent. We thus ensure that the inertial
properties are equivalent by matching the centers of mass
of each CC segment by an equivalent point mass in the
rigid robot structure. Considering a point mass placed in
the middle of the main chord as a suitable approximation
of the mass distribution of the CC segment, a dynamically
consistent DH parametrization is described in Tab. 1. The
segment map is

mz(Qz) = & . 3)

We show a graphical representation of this robot in
Fig. 4(b). A generic PCC continuous soft robot can always
be matched to a dynamically consistent rigid robot, built as
a sequence of these RPPR elements. We present in Fig. 5 an
equivalent rigid formulation for the PCC soft robot of Fig. 2.
The robot’s configurations are connected by the map

T

m(q) = |m (ql)T

C. Dynamics

Consider the dynamics of the augmented rigid robot

Be(6)E+ Ce(&,6)E+ Ge(&) = e + JE () fext s ()

where &, 5 , f is the robot configuration with its derivatives,
B¢ is the robot’s inertia matrix, Cgf collects Coriolis and
centrifugal terms, G¢ takes into account the effect of gravity
on the robot. The robot is subject to a set of control inputs

TABLE I
DESCRIPTION OF THE RIGID ROBOT EQUIVALENT TO A SINGLE CC
SEGMENT. THE PARAMETERS 0, d, a, & REFER TO THE CLASSIC DH
PARAMETRIZATION, WHILE @t REFERS TO THE MASS.
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sin(%)
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sin( =+ T
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iz
sin(5)
2L, —2

(a) RPR (b) RPPR

Fig. 4. Two examples of augmented robots kinematically consistent with
a planar CC segment. Several of these basic elements can be connected
to obtain a kinematically consistent representation of a PCC soft robot. Of
the two examples only (b) takes into account the positioning of the mass
of the segment, which is here placed in the middle of the chord, i.e. mass
concentrated at the two ends of the segment.

Te, and a set of external wrenches fox;, mapped through
the Jacobian J¢. To express Eq. (5) on the sub-manifold
implicitly identified by § = m(q), we evaluate the augmented

configuration derivatives &, &, w.r.t. ¢, ¢, ¢

£ =m(q)
é: = Jm(q)q (6)
5 = Jm(qu.)q. + Jm(q)q .

where Jpu(q) : R — R™™*™ is the Jacobian of m(-),
defined in the usual way as Jy, = %. For example, when
m;(q) is defined as in (4), the Jacobian is

T

Jm,i(Qi) = % Lc,i(Qi) Lc,i((b‘) % (7)
where L i(q;) = L; i cos(%Q);?z sin(%)

into (5), it follows

. By substituting (6)
Be(m(4))(Jmn (9, 4)d + Jn(9))
+ Ce(m(q), Jm(0)9) Jm(q)g + Ge(m(q))  (8)
= T¢ + Jg(m(Q))fext .

This generalized balance of forces can be projected into
the constraints through pre-multiplication with JI (q). This
yields the compact dynamics

B(q)i+C(q,9)q+Gala) =7+ I () fext» (9



Fig. 5. Example of augmented state representation of a four segment PCC
soft robot. Each segment has mass p; and it is actuated through a torque
T

where
B(g) = J5(q) Be(m(q)) Jm(q)
Clg,q) = JE(q) Be(m(q)) Jm(g,q)
+Jh(q) Ce(m(q), Jm(q)q) Jm(q) (10)
Galq) = Jh(g) Ge(m(q))
T = Jm(q) e
Ja) = Je(m(q)) Jm(q)

Note that the terms in (5) can be efficiently formulated
in an iterative form, as discussed in [27]. The soft robotic
model (9) inherits this property through (10).

We complete (9) by introducing linear elastic and dissipa-
tive terms. The resulting model describing the evolution of
the soft robot’s degree of curvature ¢ in time is

Bi+(C+D)g+Ge+Kq=74J" foxi, (11)

where D is the damping and K is the stiffness. Note that the
dependencies of ¢, ¢, ¢ were omitted for the sake of space.

III. CONTROL DESIGN

In the following, we present our proposed controller
design for curvature-based dynamic control and Cartesian
impedance control with surface following. The uncertainty
introduced by the PCC and the hypothesis on the mass
distribution must be properly managed by algorithms de-
signed to be robust to model uncertainties. We thus avoid
the use of complete feedback cancellations of the robot’s
dynamics, as well as other kinds of control actions that
presented issues with robustness in classical robots, such as
pre-multiplications of feedback actions by the inverse of the
inertia matrix [25], [28].

A. Curvature Dynamic Control

We propose the following controller for implementing
trajectory following in the soft robot’s state space

TzKﬁD@C@@ﬁB@@cawﬂgﬂw@am

where ¢,q,q are the degree of curvature vector and its
derivatives. g, ¢, ¢ are the desired evolution and its derivatives
expressed in the degree of curvature space. B is the robot’s
inertia, C' is the Coriolis and centrifugal matrix, K and D
are respectively the robot’s stiffness and damping matrices.
The constant I is the gain of the integral action.

The resulting form of the closed loop system is

B(g)(d—§) +C(q,0)(d — @) — T (q) fext
=Ko +1, [@-0+Di-d. (3

The feed-forward action Kq + Dq is combined with the
physical impedance of the system, generating a natural
proportional-derivative (PD) action K (7 — q) + D(q — §).
In this way the natural softness of the robot is preserved
during possible interactions with an external environment.
Please refer to [29] for more details on this. The integral
action is included for compensating the mismatches between
the real system and the approximated model considered here.
Note that I is the only parameter that needs to be tuned in
the proposed algorithm, since K and D are defined by the
physics of the system.

The stability of the closed loop can be proven through
arguments similar to the ones in [30]. For the sake of
space we will discuss these aspects in more detail in future
extensions of this work.

B. Cartesian Impedance Control and Surface Following

A correct regulation of the impedance at the contact point
is essential to implement robust and reliable interactions
with the environment. Without loss of generality, we will
consider in the following as point of contact the soft robot’s
end effector. We define a local frame (nj,n1) connected
to the end effector, as depicted in Fig. 6. The unit vector
n is chosen to be always tangent to the environment. The

Fig. 6. The goal of the proposed Cartesian impedance controller is to
simulate the presence of a spring and a damper connected between the
robot’s end effector and a point in space z4. The frame (n,n ) defines
the tangent and parallel directions to the environment in the contact point.



unit vector n, is such that nl n; = 0, and always points
from the inside to the outside of the environment. For the
purpose of approaching, contacting, and moving along the
environment, we assume the knowledge of the following
information:

o the coordinate x( of a point included within the envi-
ronment

o the occurrence of a contact between the end effector
and the environment, acquired by isInContact()

o parallel n| and perpendicular n, unit vectors at the con-
tact point, extracted by the methods readParallelDirec-
tion() and readPerpendicularDirection(), respectively

« the final target x; on the surface of the environment

Note that the occurrence of a contact and the contact
direction can be obtained by a motion capture system or
an array of force sensors mounted to the end effector.

Leveraging these knowns and the robot’s dynamic model,
we propose to implement the desired compliant behavior
through the following dynamic feedback loop

T = JT(q)(KC(l'd - IL') - DCJ(q)Q)
+C(q,¢)4+ Galq) + Kq

(14)
+I.J"(q)ny /nﬁ(xd —x),

where ¢, ¢ are the degree of curvature vector and its deriva-

tive. J(q) is the Jacobian mapping those derivatives into the

end effector velocity &. x4 is a reference position for the end

effector, and x is the current end effector position.

The term JT(q)(K.(zq — ) — D.J(q)¢) simulates the
presence of a spring and a damper connected between
the robot’s end effector and x4. This imposes the desired
Cartesian impedance. K. and D, are the desired Cartesian
stiffness and damping matrices. We choose them to be
diagonal in order to implement a full decoupling within the
degrees of freedom.

The elements C(q,¢)q + Ga(q) + K ¢ cancel the cen-
trifugal, Coriolis, gravitational and elastic force terms. This
action is instrumental to obtain the desired decoupling at the
end-effector [31].

Finally, we  introduce  the integral action
I.J(g)n [n{(za — x). Note that we project the
error (rq — x) on the tangent direction 7. In this way we
target the goal of compensating uncertainties introduced by
the proposed approximations, obtaining zero error in steady
state, while avoiding generating high contact forces.

We specity the values of zq and n on-line through Al-
gorithm 1. Algorithm 1 consists of two phases: approaching
and exploring. In the first phase (lines 1-5), a generic point
inside the environment z is selected as reference for the
impedance controller. No integral action is considered here.
When the soft robot makes contact with the environment,
the second phase begins (lines 6-10). Here, the desired
end effector position is chosen as the final target z;. A
constant displacement § € RT in the direction —n  is
manually defined to ensure maintenance of contact with the
environment. Algorithm 1 terminates when the seminorm of

the error weighted on nunf is under a manually defined
threshold. In this way, only the error along the surface is
considered.

Algorithm 1 High level control

1: while isInContact() == False do > Approaching
2 n| < [0 O]T

3 ny < [0 0]T

4 XTq < o

5: end while
6
7

8

: while ||z — xd”n”nﬁ> e do > Exploring
n) < readParallelDirection()
n, + readPerpendicularDirection()

9: Tq Ty —NL0

10: end while

IV. EXPERIMENTAL RESULTS

In this section, we first describe the experimental setup,
followed by the experimental validation of the proposed
curvature controller and the Cartesian impedance controller.

A. Experimental setup

The experimental setup used here is a modified version
of a soft planar robotic arm used for kinematic motions
within confined environments [32] and autonomous object
manipulation [33]. The version of the soft robot used here
is composed of five bidirectional segments with inflatable
cavities. Each segment of the soft arm is 6.3 cm long. The
independent pneumatic actuation of the bidirectional arm
segments is achieved through an array of 10 pneumatic
cylinders. The connection element between each segment
is supported vertically by two ball transfers that allow the
arm to move with minimal friction on a level plane. A
motion tracking system provides real-time measurements of
marked points along the inextensible back of the soft arm.
A rigid frame holds all the sub-systems together providing
reliable hardware experiments without the need for camera
recalibration.

B. Identification

The proposed model (11) has several free parameters to
be identified: masses u;, lengths L;, stiffnesses k;, dampings
d;. In addition to the robot’s dynamics, we also characterize
the behavior of the actuators. The available inputs to our
soft robot are the desired placements of the pistons within
the cylinders. The placements are expressed in encoder tics,
ranging from —1000 to 1000 tics. We model the actuator’s
dynamics with a second order linear filter (%?W ;
and v; are two additional variables to be included in the
identification. The identification data were collected through
three experiments. For each experiment, a step input is
injected into all pneumatic cylinders. The amplitudes of the
steps were 300, 600, and 900 tics, respectively.

The free parameters L; and p; were directly measured
with 0.063m and 0.034 kg, respectively. We hypothesized
the same stiffness and damping for each segment in order
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Fig. 7. Evolutions resulting from the application of the dynamic controller
(12) to the tracking of a trajectory (15). The integral gain is Iq = ONT“‘.
Panel (a) shows the evolution of the degree of curvature g. Panel (b) presents
the corresponding actuation torques.
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Fig. 8. Evolutions resulting from the application of the dynamic controller
(12) to the tracking of a trajectory (15). The integral gain is Iq = O.OSNT"‘.
Panel (a) shows the evolution of the degree of curvature g. Panel (b) presents
the corresponding actuation torques.

to reduce the search space for the identification proce-
dure. We identified the remaining parameters by iteratively
fixing d; to a value picked from a predefined grid. The
remaining seven parameters were identified as the ones
minimizing the 2—norm of the error between estimated
and measured evolutions. For this regression problem we
used the pseudo-inverse to achieve this goal. The best
performing set of parameters between all identified sets
was chosen. The identified stiffness & is 0.56 Nm. The
damping d is 0.1066 Nms. The actuator parameters are
& = 107%[0.16, 0.24, 0.2, 0.25, 0.23]N"'m~! and
4 =10.1, 0.25, 0.1, 0.1, 0.1]s.

C. Curvature Control

To test the ability of the proposed curvature controller (12),
we consider the problem of tracking the following trajectory
in the degree of curvature space

™

_ ™ 2 ‘
ql(t)fﬁfﬂcos(gwt) Vie{l,...,5}. (15)
The input to the pistons is generated by filtering 7 through
1 (% 1)2
Tw , (16)
G&; (5T s+1)2
where T' = 0.015s is the sampling time of the control
system.

Fig. 7 presents the evolution of measured degrees of
curvature and applied torques, with the integral action set
tol,=0N ms~!. Even without any integral compensation
of the model uncertainties, the algorithm is able to produce
a stable oscillation close to the commanded one. The corre-
spondent L2-norm of the error is 0.1311 rad. Fig. 9 presents
the photo sequence of one of the resulting oscillations.

Fig. 8 shows the evolution of the same quantities for I, =
0.08 Nms~!. This low gain feedback appears to scarcely
modify the torque profile. However this small variation
reduces sensibly the tracking error, resulting in a L?-norm
equal to 0.0965rad. The error can be further reduced by
increasing the gain to 0.3Nms~!, for which the L2-norm
is 0.0861 rad.

D. Cartesian Impedance Control and Surface Following

We test the effectiveness of the proposed Cartesian
impedance controller and surface following strategy. The
robot’s goal is to first reach the wall and then slide along it
until the desired position is reached. Note that we are not in-
terested in a precise regulation of the contact forces. Instead,
the constraint imposed by the environment is purposefully
exploited in combination with the decoupled compliance
imposed by the control, to naturally generate the interaction
forces and guide the end effector toward the desired position.

The input to the pneumatic cylinders is produced by
filtering 7 in (14) through the filter described in (16). The
desired impedance at the end effector is

13 0 6 0
K. Nmrad™! D, =

0 13 0 6

Nmsrad™!.
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Fig. 9. The photo sequence shows the soft robot controlled along the reference trajectory (15) by the proposed curvature controller (12). No integral
action is used here, i.e. Iq = ONTm. Note that the bottom segment is not actuated and constrained in its vertical position through a mechanical stop.
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Fig. 10. Photo sequence of the soft robot controlled through the proposed Cartesian impedance controller (14). We report superimposed the two reference
positions commanded by Algorithm 1 (red crosses) and the trajectory of the end effector (blue dashed line). Panels (a-c) show the first phase of the
algorithm: the robot’s tip is attracted toward the environment by a virtual spring connected to a reference point inside the surface. Panels (d-f) illustrate
the second phase of the algorithm: the robot traces along the surface toward the desired end position. Note that the bottom segment is not actuated and

constrained in its vertical position through a mechanical stop.
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Fig. 11. Actuation torques commanded by the proposed Cartesian

impedance controller (14) while executing the Algorithm 1. The contact
detection happens at 6.5s.

The integral gain is . = 1.9Nmrad 's™'.

As described in Algorithm 1, the experiment is divided in
two phases. In the first one, the end effector of the soft robot
is attracted toward a point within the environment (z¢g =
[0.283, 0.135]m), which is manually defined.

After contact is established, it triggers the execution of
the second phase. The end-effector is now pulled towards a
new target (zq = [0.220,0.160Jm) while staying in contact.
The distance to the wall is maintained with 6 = 0.05m. The
values of n; and n) are considered known.

For one example experiment, the commanded actuation
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Fig. 12.  End effector’s evolution in Cartesian space resulting by the appli-
cation of the proposed Cartesian impedance controller (14) and Algorithm
1. The contact detection happens at 6.5s.

torques are shown in Fig. 11. The evolution of the end
effector in Cartesian space is shown in Fig. 12, while the
correspondent photo sequence is shown in Fig. 10.

V. CONCLUSION

In this paper we present two new algorithms that achieve
dynamic control of soft robots and enable interactions be-
tween soft robots and their environment. Both algorithms
leverage on the idea of connecting the soft robot to an
equivalent augmented rigid robot, in such a way that the
matching is exact in the common hypothesis of constant



curvature, and under the introduced hypothesis on the mass
distribution. Classic tools in robotic control are used to
develop robust feedback control strategies able to compen-
sate for any model mismatch. We implement the control
algorithms on a planar multi-link soft robotic manipulator
and demonstrate curvature control and surface following
using our strategy.

The control algorithm presented in this paper has been
evaluated in the context of exploring a two-dimensional
surface using a soft planar robot manipulator. However,
the potential for this work is much broader. The control
algorithm is general and has the potential to enable a
wide range of dynamic tasks, ranging from exploring three
dimensional spaces through contact, learning the geometry of
the world, picking up delicate objects, moving heavy objects
and enabling dynamic interactions with the world.
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