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Abstract—With the aim of getting closer to the performance
of the animal muscleskeletal system, elastic elements are pur-
posefully introduced in the mechanical structure of soft robots.
Indeed, previous works have extensively shown that elasticity can
endow robots with the ability of performing tasks with increased
efficiency, peak performances, and mechanical robustness. How-
ever, despite the many achievements, a general theory of efficient
motions in soft robots is still lacking. Most of the literature focuses
on specific examples, or imposes a prescribed behavior through
dynamic cancellations, thus defeating the purpose of introducing
elasticity in the first place.

This paper aims at making a step towards establishing such
a general framework. To this end, we leverage on the theory
of oscillations in nonlinear dynamical systems, and we take
inspiration from state of the art theories about how the human
central nervous system manages the muscleskeletal system. We
propose to generate regular and efficient motions in soft robots by
stabilizing sub-manifolds of the state space on which the system
would naturally evolve. We select these sub-manifolds as the
nonlinear continuation of linear eigenspaces, called nonlinear
normal modes. In such a way, efficient oscillatory behaviors
can be excited. We show the effectiveness of the methods in
simulations on an elastic inverted pendulum, and experimentally
on a segmented elastic leg.

Index Terms—Soft Robotics, Compliantly Actuated Robots,
Robot Control, Nonlinear Normal Modes, Human Inspired Con-
trol.

I. INTRODUCTION

Actuation in living beings shows characteristics very dif-
ferent from the classic rigid robotic structures. Tendon and
muscles elasticity, rather than being an impediment, enables
animals to robustly interact with the external world and to
efficiently perform dynamic and oscillatory tasks [1]. Inspired
from the natural actuation, in soft robots elastic elements
are purposefully introduced in the mechanical structure. Two
main branches exist in soft robotic research according to their
main source of inspiration. The first one involves robots made
by continuously flexible materials. In analogy to the animal
invertebrate body, the compliance is here distributed in the
whole structure [2]. Notable examples are [3], [4], [5]. The
other branch is instead inspired by the vertebrate muscle-
skeletal system. Here the compliance is mostly concentrated in
the joints [6]. Such robots are typically referred as articulated
soft robots or compliantly actuated robots. Examples are [7],
(81, [91, [10], [11].
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Figure 1. Exploiting the muscle-skeletal dynamics, humans are able to
generate efficient multi-DoF natural oscillations by stabilizing manifolds
of reduced dimensionality, called UCM. Similarly, we propose to generate
efficient cyclic motions in soft robots by individuating in invariant modal
manifolds an artificial counterpart of the natural UCM, which we then make
attractive by control.

Together with the new possibilities, soft robotics comes with
the new challenge of developing control strategies being able
to properly exploit the intelligence embedded in the robot
mechanics [12], [13]. Several works exist in literature, where
analytical optimal control is used to derive strategies fully
exploiting the dynamics of soft robots, e.g. in terms of adapt-
ability and safety [14], maximization of peak performances
[15], efficient execution of cyclic motions [16]. However,
while very effective in generating meaningful strategies, ana-
Iytical optimal control is limited to low dimensional systems
and specific tasks. Thus, to reach a full exploitation of the
intrinsic soft robot dynamics, the investigation of more general
paradigms is crucial.

In this work we specifically target the problem of generating
regular oscillatory behaviors in soft robots with multiple de-
grees of freedom (see Fig. 1). Classical techniques of trajectory
tracking can be used to reach this goal, such as feedback
linearization [17], backstepping [18], adaptive control [19],
just to cite a few. However, as discussed in [20], these
approaches deeply change the plant inherent behavior. Instead
of exploiting the intelligence embodied by design, they replace
the natural dynamics with a different desired model, defeating
the main purpose of introducing physical compliance. With the
aim of overcoming this limitation novel approaches specif-
ically designed for soft robotic systems were proposed. In
[21] the model of an elastically actuated segmented leg is



matched to the SLIP one. In [22] joints dynamics is decoupled
by control, canceling Coriolis, centrifugal and gravitational
effects, in combination with energy regulation. In [23] virtual
holonomic constraints are imposed, again in combination with
energy regulation. However, these techniques still envisage a
certain level of dynamics cancellation, which results only in a
partial exploitation of the intrinsic system dynamics.

Looking instead at the natural world, humans are able to
intuitively execute complex oscillatory movements, exploiting
the muscleskeletal dynamics [24] despite the vast abundance
of the body degrees of freedom. This ability was pinpointed
for the first time by Nicolaj Bernstein [25], in the so-called
motor equivalence problem. According to more recent neuro-
scientific theories [26], [27], the central nervous system is
able to implement such a behavior by stabilizing a set of
variables of interest, while leaving the remaining degrees
of freedom to evolve naturally. Regulating these variables
implicitly identify a manifold, the so-called UnControlled
Manifold, or UCM. The neural mechanism deputed to UCM
stabilization is referred as synergy [28].

Inspired by these neuro-scientific evidences, we propose to
exploit the soft robot’s embodied intelligence by stabilizing
manifolds of reduced dimensionality on which the robot can
naturally evolve. The evolution is natural in the sense that
it is a direct expression of the autonomous dynamics of
the physical system. The theory that studies these manifolds
in dynamical system field is the so-called modal analysis,
which is a classical result in linear systems theory. Nonlinear
extensions of this concept are a more recent development,
taking the name of Nonlinear Normal Modes [29]. To the
best of authors knowledge, their application to robotic systems
analysis and control is considered here for the first time,
while the application of so-called similar normal modes were
investigated in [30] (see Sec. III for more details).

In this work we consider the control of soft robots that
can be modeled with a finite set of ordinary differential
equations. This of course includes articulated soft robots, and
we will focus mostly on them for the sake of tractability.
However, in the past few years, several works [31], [32], [33],
[34] demonstrated that continuously deformable robots can
be described at any given level of accuracy through a finite
dimensional discretization. So the proposed results are to be
considered generally applicable also to continuous and hybrid
kinds [35].

The work is organized as follow. In Sec. II the control
strategy is introduced and discussed in the linear case. In
Sec. Il we survey the literature related to the non linear
extensions of linear modal analysis. In Sec. IV the nonlinear
case is faced, and a control algorithm assuring the modal
manifold attractiveness is proposed. The problem of exciting a
specific orbit on the manifold is also discussed. In Sec. V we
apply the proposed strategy to the control of a spring loaded
inverted pendulum. The modal analysis is discussed, and
simulations are provided. Finally an experimental validation
of the robustness of the control architecture is proposed in
Sec. VI. Conclusions are drawn in Sec. VIL
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Figure 2. A simple example of soft robotic system with linear dynamics. m;
and my are the masses of the two bodies, while x| and x, are their positions.
ky is the stiffness of the spring connecting the first body to ground, while k»
is the stiffness of the spring connecting the two bodies together. Two forces
71 and 7, can be independently exerted on the masses.

II. LINEAR CASE

We consider as simplest prototype of soft robotic systems
with n degrees of freedom (DoFs hereinafter), the following
generic linear mechanical system

Mi=—-Kx+71, (D

where x € R” are the system’s configuration coordinates. K €
R™" guch that K = KT = 0 is the stiffness matrix. M € R""
such that M = M7 = 0 is the inertia matrix. T € R" are the
generalized forces. For the sake of brevity, we consider the
system to be conservative. However all the arguments that
follow are easily generalizable to the dissipative case.

The natural oscillations of a linear mechanical system are
well studied in the classic linear system theory. In this case
unforced evolutions are always a linear combination of a
finite set of normal modes, in number less or equal to the
DoFs. The modal evolutions can be evaluated as complex
exponential of the system’s eigenvalues. Each mode evolves
in its own eigenspace spanned by the generalized eigenvectors
associated to the mode. The projection of an eigenspace in
the configuration space indicates the directions of oscillation.
In non dissipative systems these directions can be directly
evaluated through spectral decomposition of the matrix M~'K.
For a complete description of modal analysis and resonance
in linear systems please refer to [36].

Thanks to these well known properties, designing control
strategies exploiting the dynamics of a linear system to gen-
erate natural oscillatory behaviors is a relatively simple task.
Lets examine the problem of stabilizing the system in one
of its eigenspaces. We consider without loss of generality the
eigenspace spanned by the generalized eigenvectors associated
to the first eigenvalue.

Proposition 1. The system (1) can be stabilized along the
eigenspace associated to its first eigenvalue Ay, through the
feedback control action
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Each column of V. € R"*" is a distinct generalized eigenvector
of the matrix M—'K in (1), ordered such that the first m;
left columns are a base of the eigenspace associated to Aq.
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Figure 3. Panel (a) shows the evolution of system (3), controlled through
(5), for the initial conditions x;(0) =0, x2(0) = la.u., x;(0) =0, %(0) = 0.
Panel (b) shows the corresponding evolution of the control action. After about
10s the system converges to the desired modal oscillation. From there on the
robot has no need of extra energy injection to follow the desired trajectory.

Licixn_1 € RV s the identity matrix, Oy xcm, € R™MXML
Oy xn—my € R0,y wm, € RYMXM gre null matri-
ces, my is the algebraic multiplicity of A1, and B € R" is a
positive constant.

Proof. Please refer to Appendix A for the proof of this
proposition. O

Lets consider as an example the linear system in Fig. 2.
We describe it through the following set of linear ordinary
differential equations

m ¥ —ki—ky ko | |x1 T
.| = + ; 3
maip ka —ka| [x2 (7
where x; and xp are the positions of the two bodies, k; and
ko are the stiffnesses of the springs, m; and my are the body
masses. Two forces 7; and 7> can be exerted on the bodies.
For the sake of simplification we fix m; =1 a.u., my =1 a.u,,
and k» = 1 a.u.. The two directions of modal oscillation in
configuration space are the columns of the matrix
V24 ko VP K

V= 2 2 2 2. )
1 1

The first column describes an in-phase motion, while the
second one describes a motion in phase opposition. Through
proper choice of the physical stiffness kj, a vast range of
modal oscillations can be implemented. Consider for instance
an oscillation for the second body with double the amplitude

w.r.t. the first one. This can be obtained by fixing k| = %a.u..
Applying now the control strategy (2), yields the following

feedback law ) .
MR ®
2 2 Tallv
where f§ = %a.u.. In this way, the system evolves along the
second mode as a damped oscillator, eventually converging
to a stable oscillation in the direction described by the first
column of V. The resulting closed loop behavior is presented
in Fig. 3. After about 10s the system reaches the desired
oscillatory behavior, evolving without the need of any extra
energy injection from there on out.

Of course the linear case is easy to address. However,
applications where oscillations of a linear mechanical system
could be practically exploited are relatively few in robotics. As
discussed above, moving instead from linear to the nonlinear
domain, many important applications can be included. On the
other hand, the analysis, design and control problems become
much harder, and even defining normal modes turns into a
challenging task.

III. NONLINEAR NORMAL MODES
A. Background

Lets consider a generic nonlinear mechanical system with
n degrees of freedom in the form

X = fi(x,%), (6)
where x = [x1,...,x,] € R" are the system configuration
coordinates, X = [¥Xj,...,X%,] € R" their derivatives, and

fi(x,%) : R2" — R is the dynamics of the j—th DoF.

Generalizing the powerful linear modal analysis to nonlinear
mechanical systems occupies the dynamical system theorists
since Lyapunov times (see e.g. [37]). In his seminal work [38],
Rosenberg defines a nonlinear normal mode as vibrations
in unison” where all the material points of the system reach
their extremal points and cross the origin simultaneously. The
modes are called similar or rectilinear if they move in a flat
space, and non-similar otherwise. While similar normal modes
are not typical in nonlinear systems, nontrivial examples exist
in literature [39], [30]. Non-similar Normal Modes are well
studied, e.g. from the point of view of resonances [40],
localization [41], and bifurcations [42]. However Rosenberg’s
definition has two major limitations: i) in resonant conditions
the relative phases of the oscillations can change, violating the
unison hypothesis; ii) it requires the system to be conservative.

In their 1993 work [43], Shaw and Pierre proposed an
alternative extension of linear modes overcoming these lim-
itations, by generalizing eigenspaces to curvilinear spaces
through the concept of invariant manifolds. A manifold is
invariant w.r.t a dynamics, if the vector field describing the
system dynamics is always tangent to the manifold, i.e. if
a trajectory initialized on the manifold remains on it. As
discussed in the previous section, this invariance property is
a main characteristics of eigenspaces in linear system, which
are thus invariant manifold.

Shaw-Pierre Nonlinear Normal Modes (NNM) were defined
as “a motion which takes place on a two-dimensional invariant



manifold in the system’s phase space”, which is tangent to an
eigenspace of the linearized system in an equilibium point.
We will refer in the following to such invariant manifold, as
modal manifold.

For the sake of brevity and clarity, we introduce the follow-
ing common assumptions

i We consider the modal manifold to be parameterizable
through two independent variables [44], which are typi-
cally selected as one configuration coordinate and its time
derivative [43].

ii We select x1,x; as independent variables.

iii We assume the system equilibrium to be such that x; = 0.

Note that the first assumption constraints the NNM to be a
continuation of a linear mode unidimensional in configuration
space. In other words, the algebraic multiplicity m; of the
first eigenvalues A; of the linearized system is equal to 1.
Second and third assumptions are instead imposed without loss
of generality. It is convenient, but not necessary, to perform a
linear change of variables such that x; points in the direction
of modal oscillation, as e.g. in (54).

Under these three assumptions the manifold can be implic-
itly defined by the set of nonlinear algebraic equations!

XjZXj(xl,Xl), XjZXj<xl,X1) Vie{l...n}, (7)
where X;: R> - R and X; : R? > R Vj € {1...n} (hereinafter
also called maps). For j =1 the maps have the trivial forms
X1 (x1,%) = x; and X (x1,%;) = x;. Using (7), the dynamics
of x; on the manifold can be expressed independently from
the values of x»,...,x, as

X1 = Fm(x1,%1)
Fin(x1,51) £ f1(X (x1,41), X (x1,%1))

where X (x1,%1) : R? = R?>" and X (x1,%) : R*? — R?" are
vector valued functions having as j—th element X; and X g
respectively, and Fp,(-,-) specifies the modal dynamics.

Thus, if initialized on the modal manifold the mechanical
system is equivalent to the one dimensional dynamics (8),
which drives the remaining n — 1 degrees of freedom through
the set of algebraic relationships (7). This resembles the behav-
ior of a linear system initialized on one of its eigenspaces. We
summarize such physical interpretation in Fig. 4. To further
underline this distinction, in literature x; is referred as master
variable, and xp,...,x, as slave variables.

®)

B. Evaluation of the Invariant Manifold

The manifold geometry can be connected to the system
dynamics by deriving (7), and substituting the vector field (6)
on the manifold. This yields to the set of tangency constraints

. 9X:  9X; .
Xj:T;X1+T)€]f1(X>X)
! ! vie{2...n}, (9
Fxx) =50 9% g ke x)
A 78)C1x1 8)611 ’

"'Note that the dot on top of X should not be considered as a time derivation.
This abuse of notation is instrumental to simplify the notation afterwards.

x9 = Xo(z1, 1)

i =

w3 = Xg(x1,41)

J

T3 = Xy(r1,41)

Master oscillator

i1 = fl(X (@1, 81), X (21, 41))

T = Xp(21,21)

iy = X (1, 81)

Slave oscillator n
})

Figure 4. If initialized on the invariant manifold, the evolution of the system
is fully defined by the one dimensional dynamics of the master variable. The
remaining n — 1 slave variables are specified by the master variable through
a set of nonlinear algebraic functions.

X1

Figure 5. Representation of the NNM control problem for the j—th
configuration coordinate x;. We considered two control goals: i) making the
manifold attractive, i.e. assure that A; tends to 0; ii) injecting or removing
energy in order to change the amplitude of oscillation.

where we omitted the dependency of X and X on xi,x;. We are
also not considering the trivial case of j = 1, that automatically
holds. This set of 2 (n— 1) nonlinear partial differential equa-
tions is hardly solvable in the general case, as also pointed out
by Shaw and Pierre in [43]. As alternative to the exact solution
of (9) two approaches exist in literature. One is to search for
analytical approximated solutions in the Galerkin sense [45].
The basic idea is to apply some constraints on the functional
spaces in which X;,X;, f; live, to express them with a finite
set of basis functions. This allows to approximate the PDEs
with a set of algebraic equations. Approaches of this type that
were employed so far are Taylor expansion [43], Koopman
operator [46], and Harmonic balance [47]. In alternative to
this approach, several numerical methods were proposed in
literature, as e.g. finite element analyses. See [48] for an
extensive review. The result is a numerical approximation
of the PDE solution. For further details on theoretical and
applicative results in Nonlinear Normal Modes please refer to
[29] and [49] respectively.



IV. CONTROLLING NONLINEAR NORMAL MODES

As discussed in Sec. II for the linear case, we propose here
to generate efficient nonlinear oscillations in soft robots by
stabilizing a modal invariant manifold, which thus assumes
the role of an artificial counterpart of the natural UCM [26].
We will also briefly discuss the problem of injecting or
removing energy in the system, in order increase or decrease
the amplitude of modal oscillations.

A. General model definition

Accordingly to the standard formulation in [50], a generic
soft robot can be modeled as

M(xe,%m) O, xm)] | & ..
{QT(xr,xm) B(xr,xm) Xm +C(xr’xm7xr7xm)+g(xnxm)
AV (¢, Xm) z (10)
+ WQ%>+dW”“:[¢}

where xp, are the configuration coordinates associated to the
motors, and x; is the robot configuration. M (x;,xm), B(Xr,Xm)
and Q(x;,xy) are inertia matrices of links, motors and coupling
respectively. ¢(X;,Xm,%:,Xm) collects Coriolis and centrifugal
effects. g(x;,xm) models the gravity torque, and V (x;,xp) is the
elastic potential. 7, and 7, are the actuations. Note that, while
formulated with articulated soft robots in mind, this definition
also includes discrete models of continuous soft robots [32],
[34].

By considering x = [x] x;]T,
_ M(xe,xm)  Q(Xe,Xm) - Tr
T [QT(xryxm) B(x¢,Xm) Tm|’ (i
and
N M (X, xm) QX Xm)| .
f(x7x) = |:QT(xr7xm) B(xr,xm) (c(xryxmaxnxm)
OV (xe.tm) (12)
+g(xr7xm)+ av(ax/:’rxm) +d(-xr;xm))a
Jxm

Eq. (10) is rewritten as the actuated version of the generic
nonlinear mechanical system (6). Thus the dynamical model
of the j—th configuration coordinates of a soft robot that we
consider in the following is

Xj:fi(x,x)+rj, (13)

where X;, ; ,x;, 7j, and f; are the j—th elements of %, & ,x,
T, and f respectively.

We introduce ¥ : R? — R 1xn=1 gnd [: R?2 — Ro-Ixn—1
with elements (i, j) defined as

Y j(x1,%1) = i

i,j\X15 Oxjt1 x=X,i=X (14)
Ly j(xr,%1) = i

i,j\X1, O0Xjt1 =X, %=X .

These two matrix-valued functions generalize the role that
damping and stiffness had in the linear case. Note indeed that
X(0,0) is the stiffness of the slave variables in the equilibrium
point, and T'(0,0) the damping.

We refer the total energy of the soft robot (13) as E(x,x).
We also define the equivalent energy on the manifold as

EM(xl,xl):E(X(xl,xl),X(xl,xl)). (15)

B. Stabilization

In this work we consider the following definition of mani-
fold stability

Definition 1. Given a manifold parametrized by the two maps
X (x1,%1) and X (x1,%1) in (7), we call it locally attractive if
36 > 0 such that if x;(0),%;(0) Vj € {1...n} are such that
[1xi(0) = Xi(x1(0),%1 (0)) ||+ %:(0) — Xi(x1(0),%1(0))|| < 8 Vi
{1...n}, then it holds

tli_)I{lcxi(l) — Xi(x1(2),x1(2))
}Lr?cx,(t) — Xi(xl (t>7x1 (t))

vie{l,...,n}. (16)

0
0

The following theorem generalizes Proposition 1 to the
nonlinear case, providing a control strategy able to regulate
the soft robot on one of its modal manifolds.

Theorem 1. Let X (x1,x) and X (x1,%1) be the parametrization
of a nonlinear modal manifold for the n-DoF nonlinear
mechanical system (6).

Then the feedback law

71 (X,X)
. 0
T(x,%) = — {8 IO ] (K A+ KgA) + : , 3amn
n—1 .
0
where Kk, € RT, kg € RT, A=X(x1,%1) —x, and
7 (x, %) = fi (X (x1,%1), X (x1,%1)) — f1(x,%), (18)

preserves the invariance of the manifold.
Furthermore, the two following sufficient conditions for the
local attractiveness hold

i) 8 € R" always exists such that if
B, <8, [[0(x,x0)] < 8
then the manifold is attractive VK, Kq such that

AT (Bl X)) > =K, AT (T(xn,h)) > =K,

where A~ (+) is the minimum eigenvalue of the argument.
i) If X(x1,%1) and T'(x1,%1) are simultaneously diagonaliz-
able by a matrix p1(xy,%1) € R*™1"=1 then the manifold
is attractive if
A,'(Z(xl,)h» > —Kp
Ai(E(x1,41))
Ai(E(x1,%1)) — Kp

19
Ai(l“(xl,xl)) > —Kg— (19)

where A;(+) extracts the eigenvalue corresponding to the
i—th column of W(xy,%)).

Proof. On the manifold (i.e. when x; = X;(x1,%) and %; =
Xi(x1,%1)) 71 =0 and 7; = 0. Thus, condition (9) is identical
for the actuated and not actuated system, which proves the
first thesis.



To prove the attractiveness, we define the displacement w.r.t.
the manifold as (see Fig. 5)

Aj £ Xj(x1,%1) —x; (20)
Deriving w.r.t. time yields
. 0X; 0X;
Aj =—X;+ 7135] + J[fl (X,X) —|—’L'1]
8x1 8x1 (2])

. 0X; .
= =k + X (x1,%) + Tx:[f] (x,%) = fi(X,X) + 7],
where in the first step we used the chain rule, and in the second
step we used (9), i.e. the manifold invariance. Now, we close
the loop with (18) obtaining

Aj:Xj(xl,fcl)—xj, (22)

which now describes the displacement between velocities and
corresponding manifold coordinate. We derive (22) a second
time obtaining
)
— — T
7 T o, [f1(x, %) + 7]
) X .
= —f]'()C’.X) — Tj —+ TXIX] -+

Aj = —fj(x,)é) - T+
oX; .
o X (80, X (n,%0))
X1
(23)
taking again the control (18) into account. Now, by exploiting

the manifold invariance and substituting (20) and (22), we
write

Aj= (X (x1,01), X (x1,%1))
— [ (X (x1,01) — A, X (x1,%1)
To complete the proof we linearize the dynamics around a

generic equilibrium trajectory on the manifold, i.e. for A; =0
and A;=0Vje{2...n}

—A)—’L’j. (24)

£~ s mn oy sman] [

where & = [Az...A,JT and & = [Az...An]T, and where we
exploited that A} =0 and Al=0 by construction. In (25), x;
and x; do not appear as an input, but only as dependencies in
the dynamic matrix. Indeed it holds

afj(xl JX1,X2.. Xn) _ afj(xl ,X1,X0 — A .. X, — An)
dx dxi Aj=0
Aj=0
) . (26)
3fj(x1 ,X1,X0 .. .Xn) _ afj(xl,xl,Xz N X, — An)
%1 91 A;=0
Aj=0
27
Note that the controller 7; decouples the dynamics
of master variable from the slave variables. Indeed it
holds ¥ = fl(x,)'c) + (fl(X(xl,xl),X(xl,xl)) — fl(x,)'c)) =

fi(X(x1,%1),X (x1,%1)), i.e. x; evolves accordingly to the
modal dynamics (8) also outside the manifold. Thus, the
dependency of Eq. (25) from x; and X; can be regarded as
a time-variance, and (i) is directly proven by applying the
Lemma 1 in appendix B.

For proving (ii), we consider that two matrices are simulta-
neous diagonalizable if and only if they commute [51]. Hence,

the hypothesis of simultaneous diagonalizability of ¥ and I
implies that they commute, which in turn assures that also
E(x1,%1) + &1 and T'(xp,%) 4+ k4T commute
(1, x1) + 1 1) (T, 1) + Ka 1)
=X (xp,x0)T(xq,%1) +Z(xp, %1 ) Kg + 1 T(x1,X1) + K ka1
:F(xl , X1 )Z(X] , X1 ) + K‘dZ(xl , X1 ) + F(x1 ,X]) Kp + Kakp 1
:(F(xl,xl) + K'dI) (Z(xhxl) + KpI) .

(28)

Thus the thesis results from the application of Lemma 2 in
appendix B, considering the hypothesis (19).
O

The proposed control law (17) is indeed a nonlinear gener-
alization of (2):

a) If ¥ < 0 the damping injection is sufficient to stabilize
the manifold, i.e. kK, = 0, as in the linear case.

b) We need here the extra control action 71 = f(X,X) —
f1(x,%), which is essentially non-local. Indeed, due to
the tangency property of the modal invariant manifold,
in the case of x; pointing in the direction of the first

eigenvector of the linearized system, 32 1=0.51=0 =0
91’1 _
and T)&l‘x1=0,)€1=0 =0.

c) Note also that we are expressing the control in modal
coordinates (i.e. x; master variable) for the sake of clarity
and conciseness. Thus no change of coordinates (cf. V in
(2)) explicitly appears in (17). It should also be noticed
that the pre-multiplications for the inertia matrix present
in (2) are happening implicitly in the non linear case
through (11) and (12).

C. Orbit excitation

In this section we investigate the possibility of injecting or
removing energy in order to increase or decrease the amplitude
of oscillation. To this end, we start by asking under which
conditions it is possible to generate a control action 7(x,x),
that does not vanish on the manifold (i.e. 7(X,X) # 0) and
such that the closed loop manifold is parametrized by the same
maps X and X of the open loop one. This is equivalent to
impose that both (6) and (13) verify (9) for a same X and X.
So, lets start by considering the second set of equations in (9),

- X, . IX; .
fj(X,X) = Txljxl + ij [X,X)

; ; IX; IX; ; .
fj(X7X)+Tj(X7X)_ axllx1+axf(fl(X7X)+Tl(X?X))a

(29)
where 7; is the j—th element of 7. By subtracting the first
equation from the second, the following condition results

Ti==21, (30)

dx;
which prescribes how to exert 7;, given ;.

Lets consider now the first equation in (9), for the two
systems (6) and (13)

- (9X
X = S+ 2
{ ) X, X) (31)

Xj= i+ AKX X) + 1 (X, X))



Subtracting the two yields

X
—1=0 Vj. (32)
dx;
This equation leads to two possible scenarios. If
8X
— =0, 33
then 7; can be freely exerted. Note that (33) means x; = X;(x),

i.e. the manifold is described by a set of virtual holonomic
constraints. In this case exerting 7 such that (30) holds would
be sufficient to inject energy into the system without ruining
the invariance of the modal manifold.

However, this circumstance is rather restrictive. For this
reason we will not consider it further in the paper. Under this
assumption, (32) leads to 7; =0, which in turn leads to 7; =0
Vj € {2...n} through (30). Thus exerting any generalized
force always pushes the system away from the manifold.

Adopting the philosophy of [52], the following theorem
proposes a simple extension of the stabilizing controller of
Theorem 1, which is able to regulate the system energy within
a certain interval despite the discussed limitations.

Theorem 2. Lets consider the soft robot (13), with a modal
manifold parametrized by X (x1,%) and X (x,%;), controlled
through the feedback law

71 (%, %) + 71 (x1,%1)
. 0 0 . 0
T(x,%) = — [O Inl:l (K’pA+ KaA) + : ,

(34)
with T as in (18), and
0 ifx ¢ [x ,x/]VEuEE ET]
1 ifxy € [x,x]] A
(EM<E- Ax1>0)V
—1 otherwise

(Em>ET A <0))

(35)
where ¥ >0, E* > E~ >0, and )cl+ > 0> x| are scalar
constants. If the following conditions hold simultaneously

H1 the soft robot is conservative, i.e. dl ‘ =0

H2 the level curves of Ey are closed

H3 fl( (-xla )aX(th)) 7é 0 Vxy ¢
fi(X(x1,0),X (x1,0)) # v Va1 € [x7,x]]

H4 the hypotheses of Theorem 1 are verified

=0

[x;.,x{] and

then the invariant manifold is locally attractive and

}Lr?qE(x(t)) €ELET].

Proof. We consider the case E(x1(0),%(0)) < E~, also
sketched in Fig. 6. The case E(x;(0),%;(0)) > E™ can be
derived with similar arguments. For this initial condition the
closed loop dynamics of the master variable is

¥ = fi(X (x1,%1),X (x1,%1))
0 ifxy ¢ [x,x]]
+94+ v ifxi €, x]AH >0
— Y otherwise,

(36)

which is an autonomous dynamics, not depending on the
evolution of slave variables x;...x,. As common in the theory
of hybrid systems [53], we make a partition of the time into
a sequence of intervals

0! ) 0

=(UmMmuUuU i)
1 1 1

where £ is the i —th interval for which x| € [xf,xl | and %, #
0, 19" is the j—rh interval for which x ¢ [x',x/], tk is the k—
th 1nterva1 for which x; € [x;",x{] and £ = 0. i (),j* ().k" (1)
are the number of intervals ;"¢ ) contained [0,1).

Conditions x; € [x; ,x]] and x1 =0 hold only for isolated
instants, since H3 leads to i; # 0. Thus tk are all of zero
measure.

If x1(¢) ¢ [x; ,x]] then (36) becomes

X1 = fi(X(x1,%1),X (x1,41))

which is the master variable’s dynamics on the manifold (8).
Thus H1 leads to
i.e. x1 evolves on the level curves of EM. This, in combination
with H2, implies that its orbits intercept the interval [x; ,x]].
Finally H3 assures that (8) has no equilibria on the orbit, i.e.
that the evolution of x; reaches the interval [x,x]] in finite
time. So each t;-’“t is finite, and it is always followed by a #".
Finally, when x; € [x ,x]] and %; # 0, (36) is excited by a
nonconservative force. This implies a energy change equal to

—dEM(x %) =x ﬂ/
dt 1,41 1 _}/
=ylx|>€>0,

(37

(38)

ifx; >0

otherwise 39)

Ve e,
Thus

' dE
Enm(t) = Em(0 +/ M

(40)

where = 21 ) max (ti“), and in the second step we changed
the integral coordinate to express the time as union of #"
intervals.

Eq.s (39) and (40) imply that Ey(#) is increasing for Ey <
E~. Thus x; and x; eventually reach a value such that Ey =
E~. HI assures that the system in open loop is conservative,
thus once reached this condition Ey remains in [E~,ET].

Therefore a T € R always exists such that Eni(x; (¢),%1(7)) €
[E~,E"] forall the t > T'. This implies that 7; (x;(z),%;(¢)) =0,
and (34) is equal to (17) for all the # > T. Invoking Theorem
1, the manifold attractiveness follows from H4, and in turn

lim E(x(r)) = lim By (x1 (1), %1 (1)) =E~ € [E-,E*].
O

that both con-
7, — 0, since

Remark 1. It is worth mentioning
trollers (17) and ((34) are such that
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Figure 6. The master variable of a multi-DoF soft robot evolves under the
control action (34). Panel (a) presents an evolution in the state space, while
Panel (b) presents the corresponding evolution of the energy in time. When the
system is in a neighborhood of equilibrium configuration x; =0 (i.e. when it
crosses the gray area), energy is injected by the controller, moving the system

to another of its natural evolutions. Eventually this brings the soft robot in
the region of state space with the desired amount of energy.

Ti(x1,%1,X2,X2, - - -, X, X)) = 0. So they fulfill our main goal,
i.e. that the system at steady state evolves in open loop without
any injection of external energy.

V. THE GENERALIZED SLIP
CASE OF STUDY

In the following we present the application of the proposed
strategy to a simple yet relevant example of soft robot: the
radial elastic pendulum. This system generalize the so-called
spring-loaded inverted pendulum (SLIP) by the introduction
of a polar spring. From the bio-mechanical and robotic point
of view, SLIP models assume a wide interest if considered
that the center of mass evolution for legged animals can be
generated as a trajectory of the SLIP model, both during run-
ning and walking gates [24], [54]. Existing control strategies
implement locomotion by matching the robot dynamics to the
SLIP one [21], [55].

A. Dynamical Model
The elastic pendulum model is
.. o, 0
6=—-220+%sin(6) — 1

! , 41
P =+r0? —gcos(0) — i (r—rp) “D

Figure 7. A sketch of the inverted elastic pendulum with main quantities
underlined. In Cartesian coordinates the robot’s pose is expressed by x and
y, while 6 and r = \/x2 +? are the polar coordinates. k; and k; are a polar
and a radial spring, normalized by the mass. kj is equal to zero in the classic
SLIP model. The mass is subjected to a constant gravitational field.

where 0 and r are the polar coordinates of the body, with their
derivatives 9, 6, 7, . g is the gravity constant. k7 and k, are
the ratio between spring stiffness and the body mass, i.e. what
in the linear case would have been called natural frequencies
of oscillation.
The system has an equilibrium in 6 =0 and r =rp — K%. Its
K

linearized dynamics is 6 ~ oy 0, and Ar ~ —iuAr. So, the
K

linearized system normal modes are two decoupled evolutions
along each degree of freedom: an angular oscillation with fixed
radius, and a radial oscillation with fixed angle. The nonlinear
extension of the latter radial mode remains a linear oscillation
in the direction of the radial degree of freedom, since for 6 =
0 and § = 0 the dynamics collapses into a linear one. The
other mode instead turns into a much more complex oscillation
which we investigate in the next subsections.

B. Analytical Approximated Solution of the Complete System
By considering as master variables 0, 6, (9) and (41) yield

X, oX X, g K6,
9601 5T 2x 0ty sin(0) -5 ) =X
oX . 90X, X. g . K10, .o

—gcos(0).
(42)

where X(6,8) and X(0,0) are the invariant manifold
parametrization. We investigate the evaluation of the invariant
manifold parametrization through the polynomial Galerkin
method, as introduced in Sec. III. Upon their ability of locally
approximating functions, polynomials have the advantage of
being close w.r.t. derivation, product and sum. Thus, the
solution can be found by i) approximating the dynamics as
a reduced order polynomial, and guessing a polynomial form
for X and X, ii) substituting in (42), and evaluating the free
parameters in X and X such that same order terms are equal.



Given a smooth function f: R?" — R" it is well known that
its polynomial approximation can be evaluated as multivariate
Taylor expansion. We consider here terms up to the third order

0~ —21”9(% - %O(r—ro))
+gG%"%(V‘*m)*’%(V‘4h))9 A )
flq(% — %(I‘*V())Jr%(l’fl’o) )6

P 402 —g(1— &) —xa(r—rp) .

Regarding instead the maps X and X, we start by consider-
ing the symmetry of Eq. (41), in 6 w.r.t. 0. Indeed it is easy
to realize that if (é, é,?,f) is a system evolution, than also
(,é’ fé,f",f’) verifies the dynamics. This implies that X and
X must be even, i.e. that their polynomial approximation does
not present odd terms. As trade-off between complexity and
accuracy we consider a forth order polynomial

X(0,6)] [ro—% . [ N
ool =" o] seap]rea s @
with
. a39+a49 a59
5(6,0) = {b39+b49 bsé]
F(G 9): a1063+a136:62+a129:29 a11629+a1463
’ bi003+b1300%2+b1,0%0 511020 +b1463|°

where a;, b; with i € {3,4,5,10,11,12,13,14} are the free
parameters defining the geometry of the manifold. Introducing
(43) and (44) into (42) yields 16 algebraic equations in the
unknowns a;, b;, that we report in Appendix C. To solve them
standard symbolic solvers can be employed (we used solve
from MatLab). The solutions exist in closed form and they are
ratios of two multivariate polynomial of the 15th order in the
parameters ki, K», g, ro. We can not report their general form
here for the sake of space, however Appendix D presents the
case in which ro = Im and g = 9.81%‘“. We obtain the mode
dynamics by substituting the two maps in the 6 dynamics

H&GM 2X(6,0)sin(0) —
X(6,86) X(0,6)2

6=-_2 K16

(45)

where the dependency of X and X on ki, K2, ro, g is omitted.

C. Simulative Results

In order to obtain a convex oscillation (i.e. running- hke)
for all the considered angular velocities 6, we set k; = 20 2
and K = 6081. Fig. 8 presents the modal trajectories of
the system, superimposed at the corresponding tangent force
field (i.e. (45)). Fig 9(a) and Fig. 9(b) present the manifold
(i.e. respectively the maps X and X), on which the orbits
corresponding to the initial condition # =0 and 6 = 5@ are
drawn in solid line.

We consider now the application of the control law (17) to
stabilize the manifold parametrized by X and X. Note that,
since the system has two degrees of freedom X and I" (14) are
scalars

Y=1-06%, I'=0. (46)

Figure 8. Graphical represematlon of the modal dynamics (45) of the SLIP
system of Eq. (41), for ki =201 K =60 = g—981:", ro = Ilm. Solid
lines are examples of trajectories. Arrows represent the tangent force field.
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Figure 9. Graphical representation of the modal invariant manifold (44) of
the SLIP (41), for k) = 20% 2 K= 60 2 8= 9. 81 , ro = Im. The solid line

is the trajectory correspondmg to the 1n1t1al condmon 6=0and § = ” rad

Thus the second condition of Theorem 1 can be applied. We
consider here a pure damping feedback on the slave variable
r, resulting in the following control law

A X X(0.6)
r*—X(6,0)
K X062 0 @7
n= Kki(#—X(6,0)),

which, from (19), stabilizes the manifold if
206
62 — K> ’

>0, K> (48)
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Figure 10. Inverted elastic pendulum (41) controlled through (17), with k4 =1 (a,b,c), k4 = 10 (d,e,f). The considered physical parameters are k] = 208%,

rad
S °

K= 605%, g= 9.815%, ro = Im. The selected initial condition is 6 =0, 6= %rc— r~0.54m, r = 0.5%. Note that for these values the system is outside
the invariant manifold, indeed r(0) —X(6(0),0(0)) ~ —im and #(0) —X(6(0),0(0)) = —0.5™. Panels (a,d) present the time evolution of the Lagrangian
variables 6 and r. Panels (b,e) show the control action generated by the controller. Panels (c,f) present the evolution of the mass in Cartesian space.
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Figure 11. Evolution of inverted elastic pendulum (41) controlled through
(34), with ;= 108, = =21J, E* =221, x = -5, x" =+%, y=IN.
The system starts from the equilibrium r = ry — Ki 6 = 0. The controller
successfully increases the system oscillations, while maintaining the two
degrees of freedom synchronized (i.e. on the modal manifold). This is
particularly evident in panel (b).

Control action

“—Tg [Nm] ‘—TT [N]- -‘Tgwfa [Nm] - Trfa [N]‘i

0 2 4 6
Time [s]
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Figure 12. The control actions generated by (34) while controlling (41) are
presented in solid line. The consider parameters are k; = 10%, E- =21],
Et=22],x =—%,xt =+%, y=1N, and initial condition r =ry— <,
6 = 0. The dashed lines indicate the corresponding actions that would have
been needed to implement the same behavior in a rigid system.

where 6 is defined by (45). Note that all the terms in (47)
are polynomial, except for sin(6). This makes the control
evaluation relatively fast, and easily implementable in real
time.

Fig. 10 presents the evolution of the system (41) con-
trolled by (47), for two different choices of kj: a low gain
Kg = 1%, and an higher one x4 = 10%. The initial condi-
tion is 6 =0, 6 = L7, r=X(0,%7) — fm ~ 0.54m, 7 =
X(0, 116717) —0.5% =0.5%. In both cases the robot converges
to a stable running-like oscillation. Panels (a,d) show the time
evolutions. In the less damped case the r variable converges
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Figure 13. Cartesian evolution of inverted elastic pendulum (41) controlled
through (34), with k; =10, E- =21J, E* =22], x = -5, xt = +7,
Y= 1IN. The system starts from the equilibrium r = ry — Kil, 6 = 0. Note that
due to the particular choice of k7 and K trajectories are convex for all the
simulated evolutions.

more slowly and with an overshoot. Looking to the control
actions (b,e), this translates into a much more complex action
of the decoupling controller Tg. Note that in both cases the
control action converges to zero, i.e. the robot evolves on the
manifold following autonomous trajectories. Panels (c,f) show
the trajectory of the center of mass in the Cartesian space. In
(c) a much more dynamic transient can be observed.

Fig. 11 presents the time evolutions of system (41) con-
trolled through (34). Note that the system is conservative, and
the energy

E(0,0.57) = 3767+ 7)
(49)

+ %(;qez +1(r—ro)*) + g (r cos(6))

has closed level curves, thus fulfilling the hypotheses of
Theorem 2. We considered E~ =21J, EtT =22], x~ = —%,
xt =44, y=IN. The system starts at the equilibrium, i.e.
0=0,r=rg—£ ~0.84m, 6 =0, 7 =0. The orbit excitation
controller perturbs the system putting it in oscillation. The
system reaches the desired level of energy at about 9s. Note
that thanks to the stabilizing controller, evolutions remain
synchronized during the whole excitation phase despite the
perturbations. This is particularly evident from the zero-
crossings of the velocities, Fig. 11 panel (b).

The same figure also highlights a key characteristic of the
considered mode: the frequency of oscillation of 6 is half of
the frequency of oscillation of r. This is a purely nonlinear
behavior, made possible by the fact that the parametrization
of the manifold X decreases in one direction and increases in
the other (see Fig.s 9(a) and 9(b)).

For the same simulation, Fig. 12 presents a comparison
between the control actions exerted by the proposed controller
(T and 7,), and the ones that would have been necessary to
regulate an equivalent rigid robot along the same trajectory

(Tofa and T,.g,). For all the evolution the soft robot controlled
through the proposed controller visibly outperform the rigid
counterpart. The forces are in the worst case around one order
of magnitude less than the control actions needed to a non
elastic version of the robot to implement the same trajectory,
as shown by Fig. 12(b). Finally, Fig. 13 presents the Cartesian
evolution of the center of mass.

VI. EXPERIMENTAL RESULTS:
OSCILLATORY CONTROL OF A SEGMENTED LEG

As a first experimental validation of the proposed strategy,
we consider the soft segmented leg in Fig. 14. We are
interested here in generating swing oscillations of its center
of mass, in analogy to what was obtained in simulation. The
segmented leg is composed by two links of the same length
a, considered here massless, and a main body, with mass m.
The leg is mechanically constrained to evolve on the sagittal
plane, and the main body to remain vertical. We hypothesize
infinite friction between the foot and the environment. Thus
the configuration of the robot can be described by the two
angles g and ¢ in Fig. 14.

We consider the following change of coordinates,

_Nta
2 (50)
r=a\/2(1+cos(q1 —q2)),
where 0 and r are the polar coordinates of the center of mass

w.r.t. the foot position. The resulting dynamics has the SLIP-
like form (see [30] for the detailed derivation)

{ézf9’+§sin(6)2r'§"+re

0

P =410 —gcos(0) — k———

4a2—r2

(p(r)=p(r0)) + o

(5D
where p(r) = arccos(l — %) Kk is the stiffness of both
springs, Tg and 7, are the control actions, and the other terms
are as in (41). The maps X (6,8) and X(8,8) can be evaluated
as in the SLIP case (see Sec. V-B), and they are not reported
here for the sake of space.

Note that the physical system presents several non ideal ef-
fects making its control challenging, as e.g. actuator dynamics,
contact with the ground, non zero weight of the legs, inexact
identification of system parameters, neglected friction effects.
Furthermore, the angular velocity 6 could not be directly
measured, and it was instead estimated through a simple high
pass filter.

Though it is beyond the scope of this paper to investigate
robustness analytically, we empirically test it here with this
example, where we do not assume any knowledge of the
dynamic form in the decoupling control. We instead consider
only the two main ingredients of the proposed control strategy
(34), i.e. an excitatory action in the direction of the master
variable 6, and a damping action along the slave direction r

Ay 71(0,0)
©(6,0) = [10(#5{(9,9))} !
where 7 is as in (35). Empirically we considered a high gain
for the damping controller, since in the simulative case this

(52)



Figure 14. Experimental setup: a 2-DoF (the upper part is constrained to stay
vertical) segmented leg. A sketch of the robot with main quantities highlighted
is superimposed.

translated into a small authority of the decoupling controller
neglected here.

As in simulation, we consider the target energy level
E~ =21J, E* = 22]. We performed experiments for five
different values of the orbit excitation gain « in 7;: 0.2Nm,
0.3Nm, 0.5Nm, 0.7Nm, 0.9Nm. Due to friction, the desired
level of energy could not be reached. Instead energy injected
through 7; is compensated by the dissipation and a different
equilibrium is reached for each value of . Fig. 15 presents
the photo-sequences of a single oscillation for two of the
considered gains. Fig. 16 presents the evolution of 6 and
r for & = 0.5Nm. Control action is turned on at Os, and it
takes about 2s to bring the system on a stable oscillation. It is
worth noticing that the resulting nonlinear oscillation (8,7) is
actually very close to the ideal one (6,X(8,0)), as evidenced
by Panel (b) of the same figure.

Fig. 17 shows the center of mass’ evolutions in Cartesian
coordinates, for all the considered gains and for a period
of 15s. Note that the bigger is the gain, the larger are
the oscillations, i.e. the higher is the energy level reached.
The resulting oscillations are slightly concave, and highly
repeatable.

These results suggest that the proposed strategy can be used
to excite the normal modes of soft robots, generating stable
and repeatable nonlinear oscillations also in the presence of
many unideal behaviors in the controlled system.

Fig. 18 illustrates the resulting evolutions superimposed to
the ideal modal manifold, i.e. to the surface r = X(6,0). The
matching is good, with larger discrepancies for high speeds
and positive values of 0. The asymmetry of behavior w.r.t.
to 6 was already evident in Fig. 16, and it is probably due
to the effect of leg dynamics, which is neglected in (51).
The error observed for large velocities is instead probably
due to the persistent excitation (as theoretically discussed in
Sec. IV-C), and to the imperfect knowledge of 6. Future work
will be devoted to more in-depth analysis of the theoretical
implications of these aspects.

Finally, the algorithm was preliminarily tested on a
quadruped built using four of the above discussed soft seg-
mented legs. The proposed control strategy is able to excite
stable natural oscillations also in this more complex system, as
shown in Fig. 19. Future work will be devoted to the exploita-
tion of such oscillations in performing efficient locomotion
patterns.

VII. CONCLUSIONS

Soft Robots are robotic systems in which elastic elements
are purposefully introduced in the mechanical structure. It
is thus intuitively clear that soft robots should be able to
perform oscillatory tasks with good efficiency. We formal-
ized this intuition in the linear case in Sec. II. However,
the nonlinearities of the robot dynamics make the problem
of studying and generating oscillations non-trivial. Classical
techniques can regulate the system on a specific trajectory
or limit cycle by a partial or complete cancellation of the
dynamics, thus defeating the purpose of introducing springs.
In this work we took inspiration from the natural world and
from nonlinear dynamical system theory, proposing to generate
very efficient oscillations in soft robots by regulating the
system on a nonlinear extension of a linear eigenspace. This
way the natural dynamics of the system is fully exploited.
After a brief survey about the nonlinear normal mode theory,
we moved to the mode stabilization in the nonlinear case.
We also considered the problem of exciting a specific set of
trajectories on the manifold. We then discussed the analysis
problem, proposing an approximated analytic solution for
the SLIP model. Simulations were presented to show the
effectiveness of the method. Finally, leveraging on insights
gained from simulations, an empirical simplification of the
proposed controller is used to experimentally induce nonlinear
oscillations in a segmented leg. In addition to showing the
practical feasibility and robustness of the method, experiments
served to understand its main practical limitations, which we
briefly discussed at the end of the same section.

Many are the aspects of this work that will require further
investigation in the future. For what concerns the control part,
future work will be devoted to better understanding the role of
the decoupling controller, and to the possibility of generating
persistent oscillatory actions without sensibly changing the
manifold shape. e.g. by exciting nonlinear resonances (as it
happens in the linear case). Regarding the analysis problem,
application to multi-DoF soft robotics systems calls for the
development of novel tools and techniques for NNM analytical
derivation. Finally, from an experimental point of view our
work will focus on implementing stable natural oscillations in
more complex systems and meaningful tasks, as the execution
of locomotion gates with legged robots, oscillatory pick and
place with multi-DoF soft arms, etc.

APPENDIX A

We present in this section the proof of Proposition 1.



Figure 15. Photo-sequences of nonlinear oscillations induced by the proposed algorithm

o = 0.3Nm, while panels (f-j) show the case of o =0.9Nm.
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Figure 16. Experimental evolutions of master variable 6 and slave variable r,
for oo = 0.5Nm. After an initial transient in which the algorithm injects energy,
the segmented leg starts to evolve according to a stable nonlinear oscillation.
Panel (b) also presents the ideal evolution on the manifold X(6,8) of the
slave variable r for the measured evolution of 6.

on a segmented soft leg. Panels (a-e) present one oscillation for
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Figure 17. Experimental trajectories in Cartesian coordinates of the segmented
leg’s center of mass controlled through (52), with different values of the energy
injection gain ¢. Stable oscillations result for all the considered gains.
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Figure 18. Experimental evolutions represented in the space (8,8, r), obtained
for several choices of the gain & and 15s of oscillations. We also superimpose
the ideal modal manifold r = X(8,8). The matching is good for all the
considered gains, despite the many unideal characteristics of the system.

Proof. Lets express (1) in state form by considering the state
vector [pT vI|T = [xT &T|T

o= Lot o] B

Consider the orthonormal matrix V € R"*"  such that J =
VTKYV is in Jordan form. By considering the following change

(33)



Figure 19. Photo-sequence of nonlinear oscillatory behavior induced on a soft quadruped by the proposed algorithm. While preliminary, this experiment

shows the ability of the strategy to deal with more complex systems.

b=l VI

the dynamics (53) becomes

3= o ]+ [

where f = VTM~!7. This is equivalent to a set of decoupled
systems in the form

Tl 0 Im;><m, T 0
V; o —J; 0 V; - f, ’

where 7;,v;, f; € R™ are elements of m, v, f related to the
i—th eigenspace. J; is the i—th diagonal block of J.
Consider now the following relationship

of coordinates,
(54)

(55)

(56)

K} M KK 2 =K:M'K? = (K2M'KH)T  (57)
where we exploited the hypothesis K > 0 to define K %, and
the symmetry of both K and M in the second step. Eq. (57)
tells us that M~'K is similar to a symmetric matrix. Thus all
its eigenvalues are real.

Note also that Vv € R™

VIKITM K2y = (K2v)™M ' (K1v) >0,  (58)

where in the last step we exploited that M = 0 = M~! > 0.
Thus, M~ 'K is similar to a positive and symmetric matrix,
and therefore all its eigenvalues are also positive.
This implies that J; has the form
AL O - O
o A 1 -+ 0
e R (59)

0 0 0 A 1
0 0 0 0 A
with A; > 0. This is in turn implies that through simple
permutations the system (56) can be expressed as a series of
m; linear oscillators

ol =[5 ol [l 12 ) -0
vij|  [~A 0] [, fij Tij-1]’

where 7; ;,V; j, fi; € R are the j—th elements of m;,v;, f; €
R™ . Note that series of linear systems are stable if each sub-
system is stable. Thus to stabilize (56) it is sufficient to damp
each oscillator separately. At this end we can use

f‘,‘:*,B'l)i,

where § € RY is a strictly positive constant.

(60)

(61)

So, to make attractive the eigenspace associated to the first
eigenvector it will be sufficient to regulate at 0 the dynamics
expressed on all the other eigenspaces. This can be done by
applying (61) for all i # 1

f: _ﬁ Om|><m1 0ml><n7m1 V. (62)
On—ml xXmy In—ml Xn—my
In the original coordinates (62) is
T= 7ﬁMV Om1><m1 0ml><n—m1 VTx (63)
On—ml xXmy In—ml Xn—mp
O

APPENDIX B
In this appendix we propose two lemmas about the stability

of linear time variant mechanical system, which are instru-
mental to the proof of Theorem 1. Lets consider the system

H - [_1?@ —1;0)} [’1 ’

where p € R" is the system configuration space, v € R” are
the velocities. K(¢) € R™" and D(r) € R"™*" are respectively
the time-varying stiffness and damping.

(64)

Lemma 1. A § < o always exists such that if ||K(t)|| < 8,
[|D(t)]| < 8, p(K(t)) >0, and p(D(t)) > 0, then (64) is stable.

Proof. We prove here the thesis in the case of Frobenious
norm. This is without loss of generality since any other
standard matrix norm can be upper and lower bounded by
the Frobenious norm [56].

Classic results [57] assure that always exists a ¥ € R* such
that if

d 0 I
'dt [—K(r) —D(t)} LT 65)
and 0 I
([ ke o)) <0 ©0
then (64) is stable.
The first condition is assured by considering 7= v/28
df o 7] o o 1|
ar [k -p)]|; T I|[-k0) -] ||,
(67)

=[[K 0[5+ (1D [;
< 262 = 7’2 y
which leads to (66) by extracting the square root.

It is worth noticing that condition (66) is equivalent to
considering the stability of all the possible time invariant



systems obtained by fixing the time in the dynamic matrix.
Thus we can prove condition (66) by considering that a suffi-
cient condition for the stability of a linear mechanical system
is that its stiffness and damping matrices are both positive
definite. This is assured by the hypotheses p(K(z)) > 0, and
p(D()) > 0. O

Lemma 2. If M(t) € R™" exists such that MT KM and
MT DM are both diagonal Vt, and if

4(D(1)) > —igg 83 Vi

where Ai(-) extracts the eigenvalue corresponding to the i —th
column of M(t), then (64) is stable.

(68)

Proof. By considering the following change of coordinates,

o1 ol )

the dynamics becomes equivalent to a set of decoupled undi-
mensional time variant oscillators

- Lake -aom) [

The stability of such system under the bounds (68) can be
proven using the Lyapunov candidate

V(ﬂ,’,’l)i,l‘)ZTCi—F . L

and the Barbalat lemma. For the sake of conciseness we do not
report here the whole derivation, that can be found in [58]. [

APPENDIX C

We report in the following the 16 algebraic equations
resulting from the evaluation of Eq. (9) for the system (41)

bio—aizdi +asds =0
bis—4ajg—2apd) +asds+2asdg =0
bip—3a;3—3andi+2asds+asd7; =0
b3—a4d1 =0

b1 —2ap —4auudi+2asd7+2asbsdz; =0
b4—2a3—2a5d1 =0

biy—aj1+4asbsdy; =0

b5—a4:0

byds —b13d1 —ajpkr =0

byds —a3K0 —2b1pdy —4b1g+2b5dg =0

a3 —3b;z—apnky—3bi1di+2bsds +bsd; =0
g—2a3 K2—2b4d120
as—2byp—ay Ky —4biady +2bsd;+2bybsds =0
2bs+askr+2bsd; =0
a5fb117a141<‘2+4b52d3:0

ro— by —asx 7%:0

(69)

o LoR(1}
_ 1 8
ds = Tl K192
— 2 6g
d4 T’ + Ky rot

ds =2b3dz+gasd, — K1asdy
de=gazdr — K a3d4+6‘%
d7=2byds+gasd, — K1 asdy

(70)

APPENDIX D

We present here the coefficients of the manifold
parametrization X(6,6) and X (0,0) derived in Sec. V in the
form described by (44), when rp = Ilm and g = 9.811\1—2m

0 (K1, K2)

) )

(71)

o3 =5 (—400d:? K +3.910° ¢, +210° dy 16 +999 10,%)

(72)

73 =10° 1% (4d; + 1) (73)

o5 = —20d; +20K —2d,4 K27K22 74)
¥ = Kko? (4d) + K2) (75)

o =1210°d3d, —2.710° d; > + 1444, 1*
—2610*d k> +2.510°d,* kr + 788 kr* +399d5
— 78810 +29K:° +1.510%d,? 1% + 6884, 10> +310%d; % 10
—28d,2 10 —199d,% 15> —277d,* 15° —9.210° d, > dy 10°
+488d,%dr 10° +1.310° d1? dh 10* — 633d,% d3 16°
—3.110%d 3 d3 10> + 64d, > ds ot +177d 3 ds 160°
+4.510%d % dr iy —4.610° d1 dr 10> —2.510%d 3 db 162
+177d,dy * —4.610°dy d3 k2> +1.510%d > ds 16
—1.210%d;? dy k1 +400d, d3 16" +2.710% dy 11 1>
—78ds k1 K0t —4.610° di % dy ki K> + 4884, dy K K>
+2.5103d, 3 dy Ky Ko — 16d) dy Ky 10 +944dy % dy K1 K>

—48d12d4 K1 K'23 — 133d13d4 K1 K22
(76)

Yo =210% (4di +x2)? (16d; + k) (77



a4k, k) =210°di* dy

+9.210%d°d5 +2.710°d 102 — 1.510° d, > 1
—566d; k> +3.410*dy ko> —4.210°d}> 10 + 224, 10*
—1.510%dr 2> +277d1* 10 +20dh 1% — 1.210° d3 16°
+39d3 1% —2.510°d)* +78810° — 49 10* 4 1°
—2.310°d,? 1% + 133d,° 15> +300d,> 1% + 877 d,° dy K>
—2210%d\?d3 160> +80d,% d3 1> + 96 d,° d3 12
+1.410°d dr ko — 110%d 1 dr k2> —2.910*d, % dr K>
+244d1dr 1% —6.910°d d3 k2> +1.410*d\ > d3 k>
—2.110%d%dy k1 +78d, d3 k2> —1.910°d}> ds i
+8d1dy 10t —3.510°da k1 K02 + 177 dy Ky K>

—2dy K k0 +1103d dy k1 22 +310%d) > dy ) Ko
—24d,ds k) 0> — 88di % dy ki Ko® — 1.410%d dy i Ko

(78)

Yia(K1, %) = K> (4di +k2)* (64d1% +20d; Kz +1%)  (79)
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