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Rolling Bodies with Regular Surface: Controllability
Theory and Applications

Alessia Marigo and Antonio Bicchi,Senior Member, IEEE

Abstract—Pairs of bodies with regular rigid surfaces rolling
onto each other in space form a nonholonomic system of a rather
general type, posing several interesting control problems of which
not much is known. The nonholonomy of such systems can be
exploited in practical devices, which is very useful in robotic
applications. In order to achieve all potential benefits, a deeper
understanding of these types of systems and more practical algo-
rithms for planning and controlling their motions are necessary.
In this paper, we study the controllability aspect of this problem,
giving a complete description of the reachable manifold for general
pairs of bodies, and a constructive controllability algorithm for
planning rolling motions for dexterous robot hands.

Index Terms—Nonholonomic systems, nonlinear controllability
theory, robotic manipulation.

I. INTRODUCTION

NON-HOLONOMIC systems have been attracting much at-
tention in control literature recently, due to both their rel-

evance to practical applications (to Robotics in particular), and
to the challenges involved in their planning and control [1] and
[2].

Let us recall a few classical definitions from rational me-
chanics. Consider a mechanical system whose configurations

evolve in a smooth -dimensional manifold , and whose
velocities are subject to locally independent con-
straints in the Pfaffian form

(1)

where is an matrix of real-valued analytic
functions. Constraints are said to beholonomicif their differen-
tial form (1) is integrable. In this case, there exists a family of
integral submanifolds of dimension that are
invariant.

If the constraints are not holonomic at some, then there
will exist an integral submanifold throughof dimension

, . The number is referred to as degree of
nonholonomy. If , the constraints, and by extension the
system, are said to be maximally nonholonomic.

According to the viewpoint expressed by this definition, non-
holonomy is a property pertinent to constraints imposed on a
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system, and is usually regarded as an annoying accident in-
hibiting simplicity in steering and control. This is in the atti-
tude of most drivers toward the nonholonomy of the automobile
kinematics when a parallel parking maneuver is necessary.

In this paper, we take a different perspective. A convenient
“control” form describing the constrained system can easily be
obtained from the differential constraints (1). In fact, if we let

denote a matrix whose columns
form a basis for the annihilating distribution of

, then all admissible velocities can be
written as linear combinations of the columns of ,

(2)

where is a vector ofquasivelocitiestaking values in .
When quasivelocities can be assigned values at will in time,
functions can be regarded ascon-
trol inputs of the driftless, linear-in-control, nonlinear system
(2). A physicalactuatoris associated to each control input,
e.g. a motor for electromechanical systems. Nonholonomy of
the original system, i.e. nonintegrability of (1), is reflected
through Frobenius’ theorem in the fact that the distribution

in (2) is not involutive. In fact, let the
smallest involutive distribution which contains the columns
of have dimension : if the system is non-
holonomic; if , the system is maximally nonholonomic.
Hence, it can be steered through any two configurations of its

-dimensional manifold along the flows of vector fields.
Observe that the whole manifold is an equilibrium manifold
for the system with . Controllability to an equilibrium
manifold of higher dimension than the control space is not
possible for any linear system, and is in fact a peculiarity of
nonholonomic systems.

From an utilitarian engineer’s viewpoint, the latter definition
may be rephrased as “an-dimensional nonholonomic system
can be steered at will using less thanactuators.” This formu-
lation underscores the appealing fact that devices with reduced
hardware complexity can be used to perform nontrivial tasks, if
nonholonomy is introduced on purpose, and cleverly exploited,
in the device design. Examples of systems designed according
to such a philosophy have been reported by Brockett [3], Arai
and Tachi [33] Sordalen and Nakamura [66]Ostrowski and Bur-
dick [5], Nakamura and Mukherjee [4], Bicchi and Sorrentino
[7].

Nonholonomy of rolling is particularly relevant to robotic
manipulation, one of the main goals of which is to manipulate an
object grasped by a robot end-effector so as to relocate and re-
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Fig. 1. The first dexterous gripper (DxGrip-I), designed at Centro “E.
Piaggio,” University of Pisa. The gripper has two planar parallel jaws: the
upper applies a suitable grasping force on the object, while the lower translates
in the plane imposing a desired rolling motion to the object. Arbitrary
configurations of the object in contact with the plates can be achieved by
rolling: full dexterity is obtained by adding a vertical translation of the whole
gripper, by an actuator not shown in the picture.

Fig. 2. The second generation dexterous gripper (DxGrip-II). The gripper
has two parallel jaws translating independently, and two turning disks with
direct-drive motors on each jaw, endowed also with force/torque, tactile
sensors. The hand can arbitrarily relocate and reorient any convex body with
regular surface by rolling it among the fingers. The design represents an
industry-oriented version of DxGrip-I.

orient it arbitrarily, the so-calleddexterityproperty. Dexterous
robotic hands developed so far according to an anthropomor-
phic paradigm employ far too many joints and actuators (a min-
imum of nine) to be a viable industrial solution. Nonholonomy
of rolling can be used to alleviate this limitation. In fact, while
rolling between the surfaces of the manipulated object and that
of fingers has been previously regarded as a complication to be
neglected, or compensated for, work of Coleet al.[8] and Bicchi
et al.[7] tried to exploit rolling for achieving dexterity with sim-
pler mechanical hardware.

In particular, several prototype dexterous grippers have been
developed at Centro “E. Piaggio” of University of Pisa, using as
few as 4 actuators (see Figs. 1 and 2).

These grippers are able to perform manipulation of grasped
objects by rolling them in between their fingers, and have been

demonstrated with a fairly wide variety of objects and tasks.
These grippers were dubbed “dexterous” based on what was
actually a “generic controllability” conjecture ([7]):

Conjecture. A pair of bodies can be brought from any initial
to any final relative configuration by rolling in contact with each
other, except at most for nongeneric pairs.

In this paper, we prove the above conjecture, characterize pre-
cisely what pairs of surfaces are not controllable, and describe
the structure of the reachable manifolds in all cases. Further-
more, we consider the constructive controllability problem, and
provide an algorithm to steer a system of rolling bodies through
two arbitrary reachable configurations.

A. Related Work

Introducing nonholonomy on purpose in the design of robotic
mechanisms can be regarded as a means of lifting complexity
from hardware to the software and control level of design. In fact,
planning and controlling nonholonomic systems is in general a
considerablymore difficult task than forholonomic systems.The
very fact that there are fewer degrees-of-freedom available than
there are configurations implies that standard motion planning
techniques can not be directly adapted to nonholonomic systems.
From the control viewpoint, nonholonomic systems are intrin-
sically nonlinear systems, in the sense that they are not exactly
feedback linearizable, nor does their linear approximation retain
the fundamental characteristics of the system, such as controlla-
bility. Simple, continuous, time-invariant feedback control laws,
on theotherhand,cannotbeapplied tostabilizingnonholonomic,
nonsingularsystems[9].

An important class of nonholonomic systems for which a rea-
sonably satisfactory understanding has recently been reached is
the class of two-input nilpotentizable systems that can be put,
by feedback transformation, in the so-called “chained” form. A
complete characterization of such systems (i.e., necessary and
sufficient conditions for the existence of a feedback transforma-
tion to chained-form) has been provided by Murray [10], while
an algorithm for finding the necessary coordinate transform has
been presented by Tilbury, Murray, and Sastry [11]. For ex-
ample, a car pulling an arbitrary number of trailers has been
shown to be a chained-form system by Sordalen [12]. Planning
algorithms for chained-form systems in free space have been
described by several authors: in his early work, Brockett [13]
used sinusoidal inputs, which were subsequently investigated
in more detail by Murray and Sastry [14]. The methods of Laf-
ferriere and Sussmann [15], Monaco and Normand-Cyrot [16],
and Jacobs [17], using piecewise constant inputs in different
arrangements, are particularly well-suited to chained systems,
where they achieve exact planning. Only approximate, iterative
planning schemes are obtained in the general case. Furthermore,
chained systems aredifferentially flat, and therefore the tech-
niques of Rouchonet al. [18] can be profitably applied.

Unfortunately, the system of rolling bodies considered in
this paper differs substantially from the class of chained form
systems. Consider, for example, the case such of theplate-ball
system, which is a classical problem in rational mechanics,
brought to the attention of the control community by Brockett
and Dai [13]. The plate-ball system is a 5-dimensional, 2-input
nonholonomic system, which is not differentially flat [19],
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and can be regarded as an instance of the famous 5-variables
problem of Cartan. Montana [20] derived a differential-geo-
metric model of the rolling constraint between general bodies,
and discussed applications to robotic manipulation. Li and
Canny [21] showed that the plate-ball system is controllable,
and that the same holds for two rolling spheres, provided that
their radius is different. Jurdjevic [22] studied the problem of
finding the path that minimizes the length of the curve traced
out by the sphere on the fixed plane. It turns out that optimal
paths also minimize the integral of their geodesic curvature, so
that solutions are those of Euler’selasticaproblem. Levi [23]
gave explicit formulas for evaluating the final configuration of
the ball after a circular motion of the plate.

This paper is organized into four main sections. In Section II,
we derive a complete mathematical model of rolling between
arbitrary surfaces. Section III explains our main theorem,
concerning the proof of the conjecture above and the study of
the structure of the reachable manifold for a system of rolling
bodies. Finally in Section IV, we describe a planning algorithm
for manipulating an object of arbitrary shape by rolling between
two plates.

II. K INEMATIC MODEL OF ROLLING BODIES

In this section, we report the derivation of a mathematical
model of rolling between regular geometric surfaces (II-A),
and on the restrictions imposed by the impenetrability of rigid
bodies on admissible contacts (II-B). The kinematic model
obtained in II-A is not completely new in the literature when
compared with [20], [24], but is derived here in a different
way, which is useful to report for the rest of our development
(specifically, breaking up Montana’s equations in (12) and
(18), allows the analysis of admissibility of rolling reported in
Section II-B-2).

A. Kinematics of Rolling Surfaces

Consider two arbitrary regular surfaces in touch at
a point as represented in Fig. 3. Let the two surfaces be de-
scribed, in a neighborhood of the contact point, by two orthog-
onal parameterizations as

respectively. These parameterizations induce Gauss frames
and , defined at every point in the con-

tact neighborhood with axes
and

,
respectively We will use here and henceforth the shorthand
notation , etc.

To take the rigid-body motions of our surfaces into account,
we introduce time dependencies of the geometric quantities in-
troduced above by defining new maps

as , with .
By a slight abuse of notation, we will indicate that

, and . We also in-
troduce the notation for the elements of the
tangent space of .

Fig. 3. A pair of smooth rolling surfaces.

At the contact point, , while the first axes of the
two Gauss frames form an angle

(3)

We locally describe the configuration space of the system
as the 5-dimensional manifold with coordinates

. This choice of parameterization
directly eliminates the obviously holonomic constraint of zero
penetration-detachment velocity between the two surfaces.

Let two smooth directed curves on the surfaces be
(see Fig. 3), and

let the two curves be parametrized by the arc lengths , re-
spectively. Consider the family of rigid motions of relative to

, the latter assumed fixed in space, such that the contact point
traces out the curves on the two surfaces in the given directions
at different velocities. Rolling without slipping between the two
surfaces imposes the constraint that the length of the paths cov-
ered by the image of the contact point on the two curves in a

corresponding time are equal, . Further-
more, points of the surfaces which are in contact at the time of
concern have zero relative velocity,

(4)

This equation must hold in particular for , and from the
assumption it easily follows that the translational
velocity of , , must be zero, hence

. From (4) one gets

(5)

Multiplying both sides of (5) by one has
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while, multiplying by ,

Dividing the results by and , respectively, and by
letting , ,
these equations can be rewritten more compactly as

(6)

where matrix

takes into account the relative orientation of the axes of the
Gauss frames on the tangent plane. Notice that .
Also observe that matrices are the symmetric, positive def-
inite square roots of the first fundamental form of the surfaces,
i.e. , i.e., the Riemannian metric forms of theth
surface. The Pfaffian form of the rolling-without-sliding con-
straint (6) is therefore

(7)

It should be noticed that a “spinning” rotation of the two
bodies about the common normal direction is still allowed if
only constraint (6) is enforced. This type of “spinning” motion
is actually difficult to actuate in most practical cases of manipu-
lation, and very often friction and micro-deformations near the
contact point constrain spinning velocity to be zero. Therefore,
in these cases a further constraint is to be considered in which
the relative angular velocity has zero component along the
common normal direction at the contact point, that

(8)

As the contact points move on , , by derivation of
(3), noticing that, for any unit vector, , and
using the facts

(9)

one gets

(10)

Expanding the derivatives and introducing Cartan’s notation of
torsion forms

and

the constraint of rolling without spinning (10) can be rewritten,
together with constraint (6), in Pfaffian form as

(11)

Rolling motions subject to (11) will be called “pure” rolling
motions.

The control form of the kinematic model of rolling bodies
under constraint of no sliding is obtained by calculating the an-
nihilating distribution of the constraint (7) as

(12)

while for pure rolling, by annihilating (11) one has

(13)

The relationship of the pseudo-velocity inputsto the phys-
ically accessible variables, i.e. to the relative angular velocity
of the bodies , can be calculated as follows. For a unit vector

fixed on a rigid body moving with , it
holds . Solving for one gets , with

undetermined. Applying this formula to vectors
fixed on , and fixed on , and expressing the motion
of the bodies with respect to an observer fixed on the moving
tangent plane at the contact point, one gets the relationships

(14)

(15)

(16)

(17)

The components of and along the axes of the Gauss
frames , respectively, are computed using (14)–(17) as

The relative angular velocity expressed inis

By expanding the derivatives of and and com-
paring with equation (12), one gets
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where is the second fundamental form of surface, and

Observing that

where and are thecurvature formsfor the two surfaces,
and introducing therelative curvature form

a more compact equation is obtained as

(18)

When the no-spinning model of (11) and (13) is used, it will
suffice to set in (18) [see (8)].

B. Admissibility of Rolling Contacts

Rolling contacts of impenetrable solid objects imposes some
additional constraints than those studied in the previous sec-
tion for geometric surfaces. We will model henceforth objects as
closed subsets of , whose boundary is a surface on which the
normal direction is conventionally taken to be directed outward.
In the sequel, we will deal with conditions for admissibility of
contactper se, and of rolling motions, separately.

1) Contact Admissibility:
Definition 1: A contact is locally admissible if the inter-

section of the interior parts of the objects in a neighborhood
of the contact point is void.

Simple conditions for admissibility of contact can be stated
as follows:

Lemma 1: If the contact between two surfaces at a point
, with relative orientation , is locally ad-

missible, then the relative curvature form is nonnegative
definite. If is positive definite, then the contact is locally
admissible.

Proof: Local admissibility is equivalent to the following
statement: for any two points on and

for which the vector is parallel to the
contact normal, it holds

(19)

Considering the second-order development of about the
point of contact, the signed distance to the tangent plane is given
by

where and , and the relation of
orthogonality between , and have been used. Similarly
we obtain the expression for the second surface as

Points , such that is parallel
to share the same projection on the tangent plane. Their
coordinates relative to the contact point can hence be evaluated
as

Hence we obtain

The contact admissibility condition (19) in a neighborhood of
the contact point can therefore be written

The necessity that is nonnegative definite follows directly.
If is positive definite, on the other hand, then there exists
some a neighborhood where contact is admissible, which
proves the sufficiency claim. Furthermore, the contact point is
isolated in that neighborhood. A pair of surfaces in a configura-
tion with positive definite is calledrelatively strictly convex.
If with nonnegative definite, contact may
not be admissible. If it is, there exists a one-dimensional mani-
fold of contact points [the tangent bundle to this manifold being

]. A pair of surfaces in such configuration are called
relatively weakly convex. If , contact may not
be admissible. If it is, there exists a two-dimensional manifold
of contact points. Such a pair of surfaces is calledrelatively
flat, or conformal. Note that these concepts are strictly local.
If is not definite, or nonpositive definite, the contact is not
admissible.

2) Admissibility of Rolling:
Definition 2: A rolling motion between two surfaces in an

admissible contact configuration is admissible with respect to
constraints (7), [resp., (11)] if there exist some nonzero relative
angular velocity such that (7) [(11)] are satisfied at each point
of contact. An admissible rolling motion is said to havede-
grees-of-freedom, DOFs, if there exists a-dimensional linear
space of angular velocities satisfying (7) [(11)].
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Lemma 2: Locally around an admissible contact configu-
ration, the DOFs of admissible rolling motions are as reported
in Table I.

The case holds if and only if the
contact manifold is linear.

Proof: Recall the relation (18) between the relative an-
gular velocity and the velocity along the unconstrained direc-
tions , and the fact that, under constraints (11), . The
two cases with , and the case with

under constraints (11) follow directly.
When the contact manifold is not an isolated point, condi-

tion (7) must hold at every point in the contact manifold. Be-
cause only one axis of fixed points may exist under a rotation

, and this axis is normal to the surfaces, must be
zero to avoid slippage at some points of the contact manifold,
hence condition (6) alone is equivalent to (6) and (10). The case

under constraint (7) follows.
If , using the fact that the left upper 2-by-2

block of is antisymmetric, and that , one gets

(20)
From the fact that is the same for all points of the rolling

bodies, and that is the tangent bundle to the con-
tact manifold and is one-dimensional, it follows that the con-
tact manifold must be a line segment. Rolling will be possible
around an axis including the segment, as in the case of a cylinder
or a cone rolling on a plane.

Based on the two preceding lemmata, a classification of
rolling pairs ensues which is reported in Appendix A.

III. STUDY OF THE REACHABLE MANIFOLD

In this section we investigate the conjecture reported in the
introduction, and more particularly the degree of nonholonomy
of the rolling constraints (7) and (11), by analyzing the structure
of the reachable manifold for the control systems (12) and (13),
respectively. We will first focus our attention on the case that
the pure rolling constraints (11) are enforced, i.e., on the control
form of the kinematics of pure rolling (13).

Notice that in (13), inputs may possibly be subject to re-
strictions entailed [because of (18)] by limitations on admissible

as discussed in Section II-B. For instance, for two conformal
surfaces having and zero DOF.’s, (13) degen-
erates to the trivial equation by imposing .

A. Relatively Weakly Convex Bodies

Consider an admissible contact of a pair of relatively weakly
convex bodies, which instantaneously has one rolling DOF. By
equations (18) and (20), ,
hence the control form (13) has only one independent input at
such configurations.

If the set of configurations for which is open
in the configuration manifold , the control system (13) has a
single nonsingular control vector field, which is obviously in-
volutive. Therefore, the reachable submanifold is a one-dimen-
sional submanifold of . An example is a cylinder (or a cone)

TABLE I
DOFS OF ADMISSIBLE ROLLING

MOTIONS

rolling on a plane, for which the allowed angular velocity is al-
ways perpendicular to the line of contact.

If otherwise in a submanifold of in-
cluding the contact configuration, the control system (13) has
a singularity in . Due to analyticity of the manifold and of the
control equations, there will be maximal integral submanifolds
for the system motion [25]. However, the dimension of these
submanifolds may vary from one (as in the case of two cylin-
ders rolling on each other with aligned axes), to five. An ex-
ample of the latter extreme is provided by a cone rolling on
a cylinder, starting with aligned axes: all infinitesimal rolling
motions take the relative configuration out of the singularity
[where ], and make the bodies relatively convex
[ ]. Maximal nonholonomy will follow from
Theorem 1 in the next section.

B. Relatively Convex Bodies

We consider now the “genuine” 3D rolling case where the
contact point is isolated, is full rank, and the system has
two DOF.’s. The main result of this paper is as follows:

Theorem 1: The pure rolling contact constraints (11) be-
tween two relatively strictly convex surfaces are:

a) holonomic if and only if bodies are specular images of
each other;

b) maximally nonholonomic otherwise.

Remark 1: In nonlinear control terms, the thesis can be
rephrased as

a) iff specular;
b) otherwise;

where denote the vector fields forming the columns
of in (13), and denotes the smallest distribution
containing the second argument, which is invariant under
Lie-bracketing with the first argument.

Roughly speaking, two bodies are said specular if they are,
locally around the contact point, the mirror image of each other.
A mathematical definition of specularity is given as follows.
Recall that the image of a surface through a rigid motion

is defined as .
Let , with and , and

denote a symmetry. In particular, by taking , with

(21)
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then is the symmetric surface of
with respect to a plane tangent to through the

point .
Definition 3: A surface is said to be thespecular

imageof a surface at a point if there exist a

rigid motion , a symmetry as in
(21), and a diffeomorphism
such that .

Notice explicitly that a surface and its specular image, as de-
fined above, have a point in common, the mirror plane being the
tangent plane at such contact point.

In the proof of theorem 1, the following lemma will be instru-
mental:

Lemma 3: If two surfaces are specular, the change of coordi-
nates in definition 3 is a map whose Jacobian
has either of these forms:

or

Proof: Suppose , then

The condition of orthogonality of the local coordi-
nates implies that the inner product

is zero. Hence the three conditions
, and together gives either

or .
Suppose the first case holds. The inner and cross products of
both sides are evaluated, recalling that , as

hence

(22)

The sign of the components of is derived con-
sidering the convention of outwardly pointing nor-
mals. This implies

. Using the fact that
, we get ,

hence , have opposite signs and has the first of the
two forms in the lemma statement.

If instead , similar arguments can
be used to prove that has the second form.

We are now in a position to prove Theorem 1.
Proof: Part 1: Holonomy Specularity.

The control vector fields in (13) are written explicitly as

and

where

The Lie bracket is evaluated as shown in (23) at
the bottom of the page, where by we denote the derivative
of with respect to the variable. It will be shown below that

at a specular configuration.

(23)
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In fact, the first two components trivially satisfy this condi-
tion. The third and fourth components do also, by simply ob-
serving that

and

The last component of satisfies the condition if the surfaces
are specular. In this case, we know that there exists a change of
coordinates such that with
as in Lemma 3. If

then

and

hence

(24)

and

(25)

If otherwise has the second form in the statement of Lemma
1, then, by similar calculations and taking into account that,
because of the orthogonality of the parameterization, it holds

and , one gets

(26)

and

(27)

It should be noticed that either (24) and (25), or (26) and (27),
hold true for all points in the neighborhood of the contact point
where specularity holds. To verify that the last component of
in (23) is equal to , it suffices to notice that, as a
consequence of either (24) or (26), it holds

(end of Proof of the Part 1).
Part 2: Holonomy Specularity.
By hypothesis, the constraint equation (11) are integrable, i.e.

there exists a two dimensional submanifold described by
, with a map

such that its rank-3 Jacobian is

By the Implicit Function Theorem, there exists locally a
map such that

. Let denote the trivial restriction of
, .
Consider the surface , which is

the specular image of at point . The
theorem will be proved by showing that the surface and

are indeed the same.
The elements of the first fundamental form ofare evaluated

as

which implies

hence the first fundamental forms of and coin-
cide, i.e.

(28)

Further, it holds that

The elements of the second fundamental form ofare evaluated
as
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and, by some calculations, the relation between the second fun-
damental forms of and is found as

(29)

where .
The first and second fundamental forms for a sur-

face holonomically rolling on are derived con-
sidering once again the rolling-without-sliding constraint (7) in
the form (5), rewritten as

It directly follows that . Further, observing that

by some calculations one gets

where . Therefore, as (28) implies , we
have

(30)

Recalling from Bonnet’s theorem [26] that two surfaces
with equal fundamental forms coincide up to a rigid motion
in , it is proved that a surface rolling holonomically
on must be specular of in a neighborhood of the contact
point.

(end of Proof of Part 2).
Part 3: Nonspecularity Maximal Nonholonomy.
Because of Chow’s theorem, we only need to show

that in a neighborhood of a
nonspecular configuration. From (23), the vector field

at a generic configuration can be rewritten as
, with , and

.
We have then

(31)

with
and

. For all the matrix appearing

in the last term of (31) can be put into diagonal form by
elementary columns operations, and its eigenvalues are:

The matrix is always full rank whenever (in which case
the matrix has rank 2). Recalling from part 1 and 2 of this proof
that the condition in a neighborhood of the contact point
is equivalent to specularity of objects, the proof is finalized.

Based on the above results, the structure of the reachable
manifold of a system of relatively convex rolling bodies can be
described as follows:

Casei) : the whole is
reachable. This is the case withalmostall pairs of strictly
relatively convex bodies;

Caseii) : the configura-
tion manifold is foliated in two-dimensional maximal in-
tegral submanifolds. This is the case e.g. with two equal
spheres rolling on each other.

Caseiii) varies on : There are con-
nected 2-dimensional submanifolds of spec-
ular configurations which are maximal integral subman-
ifolds. In other words, every configuration can
be reached from if and only if . The comple-
ment is comprised of (possibly several, non-
connected) five-dimensional maximal integral submani-
folds.

Example: The system of two identical rugby balls possesses
two-dimensional and one five-dimensional maximal

integral submanifolds. In fact, consider an initial configuration
of the balls touching at their medium circle such that their
axis of symmetry is parallel. This is a specular configuration,
and the family of such configurations is clearly diffeomorphic
to . Indeed, they could be obtained by detaching the
balls slightly, rotating either one about its symmetry axis, and
bringing them back in contact. Rolling the balls arbitrarily,
starting from any of these initial configurations, will keep the
balls specular, generating orbits that can not intersect with
those starting from a different initial condition of the described
family. If starting from a nonspecular configuration, on the
other hand, although local controllability is guaranteed, it will
never be possible to reach a specular configuration.

Finally, for the sake of completeness, we report the following
Theorem 2: The rolling-without-sliding constraints (7) be-

tween two relatively strictly convex surfaces is maximally non-
holonomic.

Proof: The proof directly follows from the computation
of the Lie Algebra generated by the vector fields in (12), and is
omitted here.

IV. PLANNING ALGORITHM

It may be worthwhile noticing that, as a particular case of the-
orem 1, any convex body rolling on a flat surface is controllable.
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Hence, the possibility of achieving dexterous robotic manipula-
tion of arbitrary convex objects by means of a robotic hand with
as few as three motors and flat fingers, is guaranteed in prin-
ciple. To realize such principle, it is necessary that a mechanism
for the hand can be designed that allows application of arbitrary
angular velocities to the object. Two examples of such mech-
anisms are reported in Figs. 1 and 2. Notice that in practice, a
fourth motor may be needed to keep hold of the manipulated
object, and achieve sufficient friction forces to impart rolling
motions.

To realize the goal of nonholonomic dextrous manipulation,
several problems of both technological and theoretical nature
remain to be solved. Among theoretical difficulties to be over-
come, the two prominent ones are to find an efficient algorithm
to steer the system between two given configurations (theplan-
ning problem), and providing feedback laws stabilizing motions
in the presence of uncertainties. In this paper, we confine our-
selves to describing a method for planning, and leave the control
problem as a challenging open question.

Generally speaking, the problem of planning a driftless
system

(32)

consists in finding, for each pair , a control function
within an admissible set such

that, for the corresponding solution of (32), it holds
. A brute force approach to this problem con-

sists in:

1) solving (32) for a generic input in a sufficiently
general family suitably parameterized by

, and
2) solve the set of nonlinear equations

in the unknowns .
Obviously, both steps may possibly hide enormous difficul-

ties, as solving an O.D.E. in closed form1 is rarely possible, and
solving large systems of nonlinear equations is notoriously hard.
Indeed, the mathematically interesting problem behind planning
is not to solve steps 1) or 2) above, but rather to find a feedback
equivalence (i.e., a change of coordinates and a state feedback
law) such that steps 1) and 2) become easily solvable.

As mentioned in the introduction, while there exist efficient
planning algorithms for systems that are feedback equivalent
to chained or nilpotent forms, only iterative planning schemes
(such as the generic loops method of Sontag [27], or the con-
tinuation method of Sussmann and Chitour [28]) exist for gen-
eral nonholonomic systems. Because of their generality, such
schemes offer limited performance in computational terms, and
algorithms that are more efficient should be sought that exploit
any structure of the model at hand.

Although the kinematics of rolling bodies (13) do not fall in
any of the categories to which the specialized, efficient algo-
rithms mentioned above apply, they do possess an interesting
property when one of the bodies has planar surface (as it hap-
pens, e.g., in the dexterous grippers of Figs. 1 and 2). In fact, the
following proposition was shown to hold in [29]:

1The meaning of “closed” or “symbolic” form solution is not well defined.
What is basically meant here is “easily computable.”

Theorem 3: The kinematic equations (13) of a strictly convex
body rolling on a planar surface are feedback equivalent to a
strictly triangular form.

In other words, for (13) with say surface 2 a planar surface
(i.e., , , ), there exist a reg-
ular static state feedback and a state diffeomor-
phism (actually, a simple reordering of coordinates
with ) such that

(33)

The relevance of strict triangular forms to planning is twofold.
In fact, an O.D.E. in strictly triangular form can be easily solved
by quadratures, i.e. the flow of the control vector fields is found
simply by subsequently integrating their components over time.
Furthermore, strict triangularity allows to break the solution of
the system of nonlinear equations of step 2) of the generic
algorithm above, into the solution of multiple systems of fewer
equations.

These advantages of the form (33) are exploited in the
following algorithm. The algorithm will be illustrated re-
ferring to the case of a convex object rolling on a plate,
whose surface is described in spherical coordinates as

,

For objects with an axis of symmetry, which we consider hence-
forth for simplicity, spherical coordinates can be chosen such
that they are everywhere orthogonal (except at the north and
south pole singularities) and . The strictly triangular form
(33) reads in this case as

(34)

A possible choice for the admissible input setis to con-
sider piecewise constant inputs over time intervalswith an
alternating pattern,

even
odd

such that the flows of the two control vector fields are
followed sequentially times ( ). The
flows can be integrated explicitly starting from initial conditions

for even as

(35)
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Fig. 4. Shape of the convex object used in the example.

where

and for odd as

(36)

with

In terms of these positions, the planning problem can be restated
as:

Problem 1: Given a pair , find an integer and an
-tuple of real numbers such that the non-

linear, discrete-time system defined by (35), (36), with
, has .
A solution to this problem is provided by the following algo-

rithm, which exploits the strictly triangular structure of (34):

Algorithm
Step 1) Apply first inputs that take

the first two variables to the de-
sired value: set ,

, such that
;

Step 2) Apply a sequence of five inputs
that does not alter the first two vari-
ables, i.e.

2 . By choosing

2The void input � = 0 is included for preserving
consistency of index parity with (35) and (36), and
of course it is not necessary to wait for the corre-
sponding interval T before applying the next input.

with arbitrary [provided that
], the third variable reaches its

desired value: ;
Step 3) Apply a sequence of 15

controls that does not alter the
first three variables, namely

. For such a sequence
to take the last two variables to
their desired value, it is sufficient
to choose any quadruple
solving the system of two nonlinear
algebraic equations

.

Remark 2: The algorithm description highlights the role of
commutator sequences of type 3 in planning the
input (a simple commutator is used at step 2, and a commutator
of commutators at step 3). The final sequence of steps can how-
ever be written more compactly by imposing some further con-
ditions, reducing the redundancy of solutions to the equations
in step 3 but not compromising generality:

A) If , setting , and ,
a control sequence is obtained

, with ,
,

, and
solving the system of two nonlinear algebraic equa-
tions ,
that steers from to in just ;

B) If otherwise , the control se-
quence

, with ,
,

arbitrary provided that ,
and solving the system of two nonlinear
algebraic equations ;

, steers the system in .
Example: As an example of application of the planning algo-

rithm, consider the problem of rolling an object of general shape
described in spherical coordinates by a weighted sum of suitable
basis functions. In particular, recalling that spherical harmonics
form a complete orthogonal basis for the space offunctions
on a spherical domain, one can write

(37)

where are weights, and

3The inverseA of an inputA: [0; T ]! is defined here asA =
�A(T � t).
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Fig. 5. Trajectory followed by the contact point on the plane for the planning
example. Circles denote the states at the end of each planning interval; an
asterisk denotes the initial conditions.

Fig. 6. Plot of the state variablesu; v;  in the planning example.

for . Here,

, , are the Legendre polynomials, and are the
Legendre functions

Observe that objects with an axial symmetry can be written with
.

In Fig. 4 is reported the shape of an object ob-
tained as the sum of the first three harmonics, with

. The inputs resulting from

application of the above algorithm, modified as in Remark 2-A,
to the problem of steering from to

, are computed as
. The solution

of the system of nonlinear equations at the last step of the
algorithm is performed numerically. The path followed by
the coordinates along the 12 intervals used for planning are
reported in Figs. 5 and 6.

V. CONCLUSION

We have shown that almost all contacting pairs of bodies with
regular surface can be brought to an arbitrary relative configu-
ration by rolling. This is the proof of a conjecture that was ad-
vanced to justify construction of dextrous robotic hands with re-
duced hardware complexity. Furthermore, we presented a plan-
ning algorithm for a rather general class of objects rolling on a
plane.

Several generalizations of the problem considered in this
paper are practically relevant and present challenging open
issues, of which we mention a few: firstly, paths planned by our
algorithm may turn out to be rather long and complicated for
some objects and configurations. Efficient algorithms to find
optimal controls resulting in shortest paths, generalizing the
work of [22] to generic objects, would be very useful. Work in
this direction is reported in [30], who also derive controllability
conditions equivalent to ours in an elegant coordinate-free
setting. Secondly, if the object shape is not known beforehand,
identification techniques need to be applied based on outputs
from tactile sensors on the hand (see [31]), and adaptation
mechanisms for re-planning paths should be devised. Thirdly,
if objects to be manipulated do not possess a regular surface,
tools adopted in this paper do not apply. In fact, quite different
behaviors may appear, such as nondensity of the reachable set,
that have been studied in [32]. Finally, feedback stabilization of
a configuration of the manipulated object is an open problem
which, due to the nonflatness of the system, appears to be
rather hard to solve.

APPENDIX

CLASSIFICATION OF ADMISSIBLE ROLLING PAIRS

Consider the diagonal decomposition of the curvature forms

with the principal curvatures of the first and
the second object. Assume the eigenvalues are ordered so that

. The relative curvature form
is given by

The following cases apply:
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TABLE II
CLASSIFICATION OF ADMISSIBLE ROLLING CONTACTS

A) Surfaces have an isolated contact point and have two
rolling DOF.’s iff

where denotes the th element of matrix .
These conditions hold iff

. They hold for some values of iff
.

B) Surfaces have a one-dimensional contact manifold iff

B-i)

or

B-ii)

Case B-i) holds iff ;
iff ; and

for iff . Case
B-ii) holds for iff

. Moreover, if surfaces have one rolling DOF., then

and (contact points must be hy-
perbolic or parabolic).

Possible cases and examples are summarized in Table II,
where the number of DOFs of rolling refers to enforcing both
constraints (6) and (10).
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