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Abstract
In this paper, we consider planning motions of ob-

jects of regular shape rolling on a plane among obsta-
cles. Theoretical foundations and applications of this
type of operations in robotic manipulation and locomo-
tion have been discussed elsewhere. In this paper, we
propose a novel algorithm that improves upon existing
techniques in that: i) it is finitely computable and pre-
dictable (an upper bound on the computations necessary
to reach a given goal within a tolerance can be given),
and ii) it possesses a topological (local-local) property
which enables obstacles and workspace limitations to
be dealt with in an effective way.

1 Introduction
Relocation and reorientation of objects by rolling

has been studied extensively in robotics in recent years,
for its implications in robotic manipulation ([1, 2, 3, 4,
5, 6]) and robotic locomotion ([7, 8, 9, 10]). In this pa-
per we describe a technique for planning rolling motions
of general objects with smooth surface on a plane. We
consider a kinematic model of rolling, and assume that
the angular velocity components of the rolling body on
the plane can be arbitrarily chosen. Previous methods
proposed for planning motions of such systems include
techniques for particular cases (typically, for a rolling
sphere, see e.g. [4]), and very general iterative meth-
ods such as the generic loops method of Sontag [11],
or the continuation method of Sussmann and Chitour
[12]. A technique was proposed in [13] which effectively
reduced the problem of planning for general surfaces
to the solution of a system of two nonlinear algebraic
equations in two unknowns.

All the above methods share two intrinsic limita-
tions. Firstly they are, in one guise or another, itera-
tive methods whose convergence rate is typically slow
and hard to predict (no general exact planning method
is known at the state of the art). Secondly, they do
not consider the possible presence of obstacles. Plan-
ning among obstacles is a crucial problem in robotic
applications, because of either the presence of physical
obstacles in the workspace of a rolling mobile robot,
or of constraints imposed by joint limits and physical
boundaries of the fingers in manipulating devices.

The problem of planning for nonholonomic systems
among obstacles was attacked by [14] with an itera-
tive method derived from those of [11, 12]. A general
approach to the problem was considered by [15], who
introduced a general topological property of exact plan-
ning algorithms in free space, capable of guaranteeing
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their applicability to planning problems in constrained
spaces.

Our aim in this paper is to devise a planning al-
gorithm for rolling manipulation that i) can guarantee
convergence to within a given tolerance of the desired
final configurations in a finite and predictable number
of steps, and ii) can be applied in the presence of con-
straints in the configuration space.

The basic ingredient of the planner we propose is
a lattice structure we superimpose to the configura-
tion space of the rolling system. The lattice, whose
mesh size can be adjusted to suit the required accu-
racy, is obtained by choosing a finite number of basic
actions (which could be regarded as control “atoms” or
“quanta”) to be taken on the system, and considering
the effects on the system of applying all the (count-
ably infinite) possible different sequences of such ac-
tions. The problem of steering on this lattice will then
be solved by constructing a suitable sequence of con-
trol quanta. This technique was inspired by similarity
with the solution obtained to the planning problem for
rolling polyhedral parts, where the quantized nature of
control inputs is intrinsic (see [16, 17]).

The rest of this paper is organized as follows: in sec-
tion 2 we slightly generalize the definition of the topo-
logical property of [15] to approximate planning algo-
rithms, and discuss its applications to nonholonomic
systems in constrained configuration spaces. In section
3 we describe the general structure of our proposed al-
gorithm; section 4 introduces the basic geometric con-
struction underpinning the algorithm, and section 5
contains the proof of the fact that the proposed al-
gorithm indeed has the invoked topological property.

2 Planning nonholonomic systems
among obstacles

Consider the problem of steering a nonholonomic
system on a manifold M between two configurations
p0, pgoal ∈ M, through a trajectory which is admissible
with respect to both restrictions on the workspace and
nonholonomic constraints. A possible approach is to
find first a solution to the (much simpler) problem ob-
tained by removing the nonholonomic constraints, and
then to find an approximation to that solution that sat-
isfies the nonholonomic constraint, while keeping away
from obstacles.

Assume that the initial and final configurations be-
long to the same connected component of the free con-
figuration space Cfree, which is assumed to be an open
set. Assume further that a trajectory (or geometric
path) γ : [0, 1] �→ M, γ(0) = p0, γ(1) = pgoal results
from a global planner, such that γ(t) ∈ Cfree, t ∈ [0, 1].
The approximating nonholonomic path Γ is in general

1759



~p
j-1 p~j 

p
j 

p j-1

Γj

~p
j-1U(      )

~p
j-1R(      )

ε ε

γ

τ

Figure 1: Iterative application of a local–local plan-
ner provides an approximation of a geometric path
that verifies both nonholonomic and configuration–
space constraints.

comprised of a finite concatenation of subpaths

Γi : [0, 1] �→ M, i = 1, . . . , N,

where Γi(1) = Γi+1(0), Γ1(0) = p0 and Γi(1) ∈ V (pi)
with V (pi) a neighborhood of a point pi on γ. We do
not insist here that the approximating local planner
is exact, because such property is not enjoyed by any
known planner for rolling motion. However, for all i we
assume that the local planner output Γi is

• feasible with respect to the nonholonomic con-
straints, and

• local–local, i.e. if the initial and final points of Γi
are close enough, then Γi does not exit a small
neighborhood of the initial point.

Denoting by B(p, ε) a ball centered in p of radius ε,
a more precise definition of the latter property is as
follows:

Definition 1 A local planning algorithm is local–local
if for any initial configuration p0 and for all neigh-
borhoods U(p0) of p0, there exists a locally reachable
neighborhood R(p0) ⊂ U(p0) such that, for any goal
configuration p1 ∈ R(p0) and for all ε > 0, the algo-
rithm provides a trajectory Γ̂ : [0, 1] �→ M steering the
system from p0 = Γ̂(0) to p̃1 = Γ̂(1) ∈ B(p1, ε) with
Γ̂(t) ∈ U(p0) ∀t ∈ [0, 1].

Such local–local property is clearly a relaxed version of
the “topological property” introduced by [15] for exact
local planners.

Let a tubular neighborhood τ of the geometric path
γ be defined as

τ = ∪p∈γU(p)

with U(p) = B(p, ε(p)), with ε(p) bounded away from
zero (i.e., ε(p) ≥ ε > 0,∀p ∈ γ), and assume that
τ ⊂ Cfree. Under the assumptions above, a nonholo-
nomic path Γ in the free configuration space can be
computed by iteratively applying a local–local algo-
rithm as follows (see fig.2):

1. Denote U(p0) ⊂ τ a neighborhood of p0 entirely
contained in the free configuration space, and
let R(p0) be the corresponding local reachability
neighborhood of definition 1;

2. Choose p1 = γ(t) with t = max{s : B(γ(s), ε) ⊂
R(p0)} and compute Γ1 : p0 �→ p̃1 with p̃1 ∈
B(p1, ε) and Γ1(t) ∈ U(p0) ∀t ∈ [0, 1];

3. For all j ≥ 2, denote U(p̃j−1) ⊂ τ a neighborhood of
p̃j−1 and R(p̃j−1) the associated local reachability
neighborhood. Choose pj = γ(t) with t = max{s :
B(γ(s), ε) ⊂ R(p̃j−1)} and compute Γj : p̃j−1 �→
p̃j with p̃j ∈ B(pj , ε) and Γj(t) ∈ U(p̃j−1) ∀t ∈
[0, 1].

Observe that the procedure above terminates if
γ is such that there exists δ > 0 such that
inf{diam (R(p)), p ∈ B(γ, δ)} = ε̄ > 0. If this is the
case the variable ε of the algorithm must be smaller
than ε̄.

3 A local-local planner for rolling ma-
nipulation

We consider planning motions of an object of general
shape on a planar surface. The kinematic equations of
rolling motion [1, 18, 13] describe the evolution of the
(local) coordinates of the contact point on the surface,
u and on the plane, x, along with the (holonomy) an-
gle ψ between two Gauss frames at the contact point,
as they change according to the rigid relative motion
of the finger and the object described by the relative
velocity v and angular velocity ω = (ωx, ωy, ωz):

ẋ = w̄
u̇ = M−1

o Rψw̄
ψ̇ = ToRψw̄,

(1)

with w̄
def
= RψK−1

o Rψ

[ −ωy
ωx

]
, Rψ =[ cos ψ − sin ψ

− sin ψ − cos ψ

]
and Mo,Ko, To denoting the

metric, curvature, and torsion forms of the rolling
surface.

Let d(·, ·) denote the distance between points p =
(u, x, ψ) in the state manifold for our problem M =
IR2 × IR2 × S1. Set p0 = (u0, x0, ψ0) ∈ M and
pgoal = (ugoal, xgoal, ψgoal) ∈ B(p0, δ̄M), with δ̄M ∈ IR
a (small) positive number.

We propose to steer approximately the system be-
tween p0 and pgoal through the following intermediate
steps:

p0
Step1�→ pa = (ugoal, xa, ψa)

pa
Step2�→ pb = (ugoal, xb, ψ̃goal)

pb
Step3�→ p̃goal = (ugoal, x̃goal, ψ̃goal)

with p̃goal ∈ B(pgoal, ε).
These steps will be described and analyzed in de-

tail in the following. To substantiate our claim that
the algorithm can steer a rolling body to an arbitrarily
small neighborhood of the desired final configuration
using a finite number of maneuvers and satisfying the
local–local property, we need to introduce some further
notation.
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Denote

δu, δx, δψ ∈ IR, positive with δ2
u + δ2

x + δ2
ψ ≤ δ2

M, (2)

δ̄u, δ̄x, δ̄ψ ∈ IR, positive with δ̄2
u + δ̄2

x + δ̄2
ψ ≤ δ̄2

M (3)

and, finally,

ε2
u, ε2

x, ε2
ψ ∈ IR, positive with ε2

u + ε2
x + ε2

ψ ≤ ε2
M; (4)

The local–local property of the algorithm will be
proved by showing that the resulting trajectory
(u(t), x(t), ψ(t)) is such that if ugoal ∈ B(u0, δ̄u) ,
xgoal ∈ B(x0, δ̄x) and ψgoal ∈ B(ψ0, δ̄ψ), then ∀t,
u(t) ∈ B(u0, δu), x(t) ∈ B(x0, δx) and ψ(t) ∈ B(ψ0, δψ)
with

(δu, δx, δψ) �→ 0 for (δ̄u, δ̄x, δ̄ψ) �→ 0. (5)

Step 1 The first step consists simply in applying to
system (1) a constant control w̄(t) = w̄a, 0 ≤ t ≤ ta
such that u0 �→ u(ta) = ugoal exactly. The correspond-
ing trajectory on the plane is a straight line and its
length is equal to the Riemannian distance on the sur-
face between u0 and ugoal. Then if d(u0, ugoal) ≤ δ̄u we
set δu = δx = δ̄u. By geometric analysis of the system
equations (see e.g. [13], the infinitesimal variation ψ is
equal to the infinitesimal variation of the angle between
the coordinate direction of the object surface and the
tangent to the curve. Then in a small neighborhood
of u0 the total variation of ψ(t) is bounded and this
bound decreases to zero with δ̄u.

Step 2 Consider the set L of closed, simple paths
of length � on the object surface. Let θ denote the
direction of the curve at the initial point ugoal in the
reference frame of the plane of the finger. Recall that
rolling an object on a plane along a closed path on
the object surface produces a change in the final ori-
entation of the object which is given by the holonomy
angle, i.e. the integral of the gaussian curvature com-
prised in the portion of region bounded by the curve.
In the following section (4) a particularly useful sub-
set R ⊂ L will be introduced, from which an element
corresponding to a pair (θ̄, �̄) can be chosen such that
the corresponding holonomy angle ∆ψ ≤ εψ

2 . Then
there exists an integer N (the integer part of |ψa−ψgoal|

∆ψ )
such that ‖ψa + N∆ψ − ψgoal‖ ≤ εψ and the corre-
sponding closed path (θ̄, �̄) applied N times steers the
system in a configuration pb = (ugoal, xb, ψ̃goal) with
ψ̃goal = ψa + N∆ψ ∈ B(ψgoal, εψ). The proof of the
local–local property of this trajectory is postponed to
section 5.

Step 3 By this step, the system is steered to some
configuration (ugoal, x̃goal, ψ̃goal) with ‖x̃goal−xgoal‖ ≤
εx by applying the following method: observe that L
is a subgroup of the fundamental group of closed paths
with base point ugoal, i.e. L is closed under concatena-
tion and inverse. Consider the map Ξ:

Ξ : L −→ IR2 × S1

where Ξ(l) = (v,∆ψ), where v denotes the total trans-
lation of the contact point on the plane, and ∆ψ is the

net change in the orientation of the object that are ob-
tained corresponding to applying to the rolling object
a motion that makes the contact point on the object
follow a closed path (i.e., an element of L). For this
map Ξ the following properties hold:

a) let l1 and l2 be any two paths in L with Ξ(l1) =
(v1,∆ψ1) and Ξ(l2) = (v2,∆ψ2), then for their
concatenation we have (in exponential notation)

Ξ(l2 ◦ l1) = (v2e
i∆ψ1 + v1,∆ψ2 + ∆ψ1).

The first component of Ξ(l2 ◦ l1) is the sum of two
vectors of IR2 taking into account that the orien-
tation of the reference frame on the tangent plane
at contact point ugoal has changed by ∆ψ1 after
that the execution of l1 is completed. The second
component denote the total change of orientation
produced by the two paths.

b) As the length l of the path goes to zero, Ξ(l) �→
(0, 0). Indeed, Ξ describes the end point map of
a smooth differential system with piecewise con-
tinuous input, for which continuity of solutions is
given by classical results.

Now, consider the existence of closed paths l ∈ L
that achieve translations of the object on the plane,
without changing its orientations, or in other terms,
such that

Ξ(l) = (v, 0). (6)

By the composition law given above, it is clear that
such paths exist: indeed, for instance, any element of
the commutator subgroup of L defined as

[L] = {[l1, l2] = l−1
1 ◦ l−1

2 ◦ l1 ◦ l2, l1, l2 ∈ L}

satisfies equation 6. Let L̂ ⊂ L denote the set of such
paths, and consider a finite subset {l̂i, i = 1,M}, each
corresponding to a pure translation of the object in
the plane by a quantity v̂i ∈ IR2. By concatenating (in
arbitrary order) such paths taken an integer number
of times, i.e. α1 l̂1 ◦ α2 l̂2 ◦ · · ·αM l̂M , αi ∈ ZZ, a net
translation of the object is obtained that is given by

v̂(α) = α1v̂1 ◦ α2v̂2 ◦ · · ·αM v̂M (7)

In other words, the object can be translated by any
integer combination of the 2-vectors v̂i, that play the
role of control quanta in our planning scheme. It is well
known from the theory of linear integer programming,
that the set of achievable translations resulting from
(7) is a lattice of points in the plane1.

Such lattice can be made arbitrarily fine. Indeed,
assume (it will be proved in section 4) that there exist
paths lji ∈ L, i = a, b, j = 1, 2 such that

‖Ξ(lji )1 = vj
i ‖ ≤ εx i = a, b, j = 1, 2 (8)

Then, paths l̂i = [l1i , l
2
i ] ∈ L̂, i = a, b are such that

max{‖v̂a−v̂b‖
2 , ‖v̂a+v̂b‖

2 } ≤ εx.

1we assume that all v̂i have rational components
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In conclusion, a suitable linear integer combination
of elementary paths l̂i can be easily found (by stan-
dard ILP techniques such as Hermite normal forms,
see e.g. [19]) that steers the system to some configura-
tion (ugoal, x̃goal, ψ̃goal) with ‖x̃goal − xgoal‖ ≤ εx. A
bound on the number of elementary paths that guar-
antee convergence to within the desired tolerance can
be provided (see [20] where the same techniques are
used in planning for polyhedral objects). The local–
local property of this kind of trajectories will be shown
in Section 5.

4 Geodesic Quadrilaterals
A particular class of closed paths can be used such

that the geometrical properties of the system are ex-
ploited and the resulting trajectories can be easily com-
puted. Closed paths on the object’s surface that are
comprised of segments of geodesic curves have the fol-
lowing very useful properties:

• the corresponding trajectory on the finger is piece-
wise linear. Indeed, if the contact point traces a
geodesic curve on one surface of a rolling pair, then
it also traces a geodesic on the second surface (see
e.g. [21]). On the flat finger surface, geodesics are
straight lines;

• each linear segment of the trajectory on the finger
has the same length as the corresponding geodesic
segment on the object surface; the angle between
adjacent segments is the same on the two surfaces;

• by the Gauss-Bonnet theorem, the total change in
the holonomy angle ψ due to a piecewise geodesic
path correspond to the defect to 2π of the sum of
the angles between adjacent geodesic segments.

Consider then a geodesic quadrilateral R(θ, �) com-
prised of four segments of geodesics on the object’s sur-
face. The first point chosen for the construction is the
base point ugoal (i.e., the desired point of contact on
the object surface reached after the first step of the
proposed algorithm).

Recall that the object surface is parametrized by
f : IR2 �→ IR3. A geodesic quadrilateral R(θ, �) of size
� ∈ IR and orientation θ ∈ S1 is built as follows (see
fig. 2):

1. let ϕ1(s) be a geodesic curve such that

ϕ1(0) = ugoal and ϕ̇1(0)
‖ϕ̇1(0)‖

T f̂u

‖fu‖ = cos θ;

2. let ϕ⊥
1 (s) a geodesic curve such that

ϕ⊥
1 (0) = ugoal and ϕ̇⊥

1 (0)

‖ϕ̇⊥
1 (0)‖

T
ϕ̇1(0)

‖ϕ̇1(0)‖ = 0;

3. let ϕ1(t1) = u1 and ϕ⊥
1 (t′1) = u′

1 be two points on
the surface such that their Riemannian distance
from ugoal is �;

4. let ϕ2(s) a geodesic curve such that

ϕ2(0) = u′
1 and ϕ̇⊥

1 (t′1)
‖ϕ̇⊥

1 (t′1)‖
T

ϕ̇2(0)
‖ϕ̇2(0)‖ = 0;

u

u
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u
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ϕ
ϕ

ϕ
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Figure 2: The geometric construction of a geodesic
rectangle (top) and its trace on the plane (bottom)

5. let ϕ⊥
2 (s) a geodesic curve such that

ϕ⊥
2 (0) = u1 and ϕ̇1(t1)

‖ϕ̇1(t1)‖
T ϕ̇⊥

2 (0)

‖ϕ̇⊥
2 (0)‖ = 0.

6. ϕ⊥
2 and ϕ2 intersect each other, at least for � suffi-
ciently small. Denote �̄ = sup{� : ϕ⊥

2 ∩ ϕ2 
= ∅}.
Consider the point of intersection u2 = ϕ2(t2) =
ϕ⊥

2 (t′2) between the two curves and let φ be the
angle between the two curves at point u2.

Finally, let R(θ, �) be the geodesic quadrilateral
joining points ugoal, u1, u2, u′

1, ugoal through the
geodesics ϕ1, ϕ⊥

2 , ϕ2, ϕ⊥
1 .

Observe that, for small enough �, the point u2 be-
longs to some neighborhood of ugoal. Moreover, the an-
gle φ between ϕ⊥

2 and ϕ2 at u2, d(u1, u2) and d(u′
1, u2)

depend continuously on �, in particular

lim
��→0

d(u1, u2) = lim
��→0

d(u′
1, u2) = 0 (9)

and
lim
��→0

φ =
π

2
. (10)

Next we describe the trace of the geodesic quadri-
lateral R(θ, �) on the plane (see fig.2), which is com-
prised of 4 straight segments of length d(u0, u1) =
�, d(u1, u2), d(u2, u

′
1) and d(u′

1, u0) = �, respectively,
and angle θ, θ + π

2 , θ + 3π
2 − φ and θ − φ.

Clearly, any geodesic quadrilateral is an element of
the group L described in the previous section and, de-
noting d(u1, u2) = �1 and d(u2, u

′
1) = �′1, we have
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that its action on the rolling object configuration
Ξ(R(θ, �)) = (v,∆ψ) is given by

v = eiθ
(
� + �1e

i π
2 + �′1e

i 3π
2 −φ + �e−iφ

)
, (11)

and (using the Gauss-Bonnet theorem)

∆ψ =
(
3
π

2
+ φ

)
− 2π = −π

2
+ φ. (12)

5 Proof of the Local–Local Property
Using Geodesic Quadrilaterals

First we show that the second step of the proposed
algorithm verifies the local property. By equation (10)
and (12) we can fix � ≤ �̄ such that ∆ψ ≤ εψ

2 . Then
the trajectory u on the object surface is the geodesic
quadrilateral R(�, θ) repeated N =

[
|ψ1−ψ2|

∆ψ

]
times.

Clearly u ⊂ B(ugoal, δu) with δu = C ′� for some con-
stant C ′. As to locality of Step 2 in the plane, observe
first that v ∈ IR2 with Ξ(R(�, θ)) = (v,∆ψ) is such
that

‖v‖ ≤ C�2 (13)

for some constant C. Indeed from equation (11) we
obtain

‖v‖2 = (� − �′1 sin φ + � cos φ)2 + (�1 − �′1 cos φ − � sin φ)2

and, being φ = π
2 + O(�), �1

� = 1 + O(�), and
�′
1
� = 1 + O(�), we immediately obtain (13). Moreover,
we have the following facts:

1.

∆ψ =
∫

Ω

Kdu dv ≥ Kmin�2

where Ω is the region bounded by the geodesic
quadrilateral and K and Kmin are respectively the
Gaussian curvature and the minimum of the Gaus-
sian curvature in the closed region Ω, and

2. let V =
∑N

n=0 vein∆ψ be the total displacement on
the plane; then ‖V ‖ < N‖v‖

From equation (13) it follows that

‖V ‖ ≤ |ψ1 − ψgoal|
∆ψ

C�2 ≤ |δ̄ψ|
Kmin�2

C�2 ≤ |δ̄ψ|
Kmin

C

Then we have that the trajectory x on the plane is
such that x ⊂ B(x1, δx) with δx = C

|δ̄ψ|
Kmin

= C ′δ̄ψ,
C ′ = C

Kmin
.

There remains to show that the local–local property
also holds for the third step 3 of the proposed algo-
rithm. To prove this, it is sufficient to find � ≤ �̄ such
that Ξ(R(�, θ)) verifies equation (8). By equation (13)
it is sufficient to choose � ≤ min{C ′√εx, �̄}, with C ′
some positive constant.

On the object surface the trajectory u is entirely con-
tained in a neighborhood B(ugoal, δu) with δu = C ′� for

u  ,B(           )

B(           )u  ,

u      

u

u     ,B(             )

0 uδ
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~
goal
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__

goal
~
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x 

x 
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Cx   ,B(               )
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x   ,B(          )

x   ,B(          )
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2

1
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δψ1

0 x
δ

__

δx2

δ0 u

__
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Figure 3: The complete trajectory of the contact point
on the object surface (top) and on the plate (bottom)
provided by the geodesic quadrilateral algorithm (ζ̄ =
C�min).

some constant C ′. Moreover, along the trajectory, by
equation (10),

|ψ(t)| ≤ |∆ψ1| + ∆ψ2| = |π
2
− φ1| + |π

2
− φ2| = C ′�

for some constant C ′. Then for the trajectory ψ of the
orientation it holds ψ ∈ B(ψgoal, δψ) with δψ = C ′�.

Finally for the trajectory x on the plane, a suitable
combination of l1 and l2 can be found such that x ∈
B(x2, δx) with δx = δ̄x.

Finally, let C be a constant bigger than all the con-
stants C ′ found above, then we have that the parame-
ters of equation (2) which hold for the global trajectory
through steps 1,2, and 3 are (see fig.3) as follows:

δu = δ̄u + C�min

δψ = Cδ̄u + δ̄ψ + C�min

δx = δ̄u + δ̄x + Cδ̄ψ

where �min is the minimum among the parameters
� of Steps 1,2 and 3. Clearly any � ≤ �min satisfy
the local and steering properties of the algorithm and
equation (5).

To illustrate the results of the above described al-
gorithm, we report in fig.4 the solution obtained for
the problem of planning rolling motions for an ellip-
soid (with principal axes of length 30, 30, and 20 cm)
within a corridor of width 55 cm and height 25 cm.

6 Conclusion
In this paper we have considered the problem of

planning motions of objects rolling on a planar sur-
face, and provided an algorithm that allows to deal
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Figure 4: Four frames of the animation for the planning
problem described in the text. The whole video can be
downloaded from ftp://131.114.28.35/pub/uploads

with obstacles in the workspace in a systematic and
effcient manner. The topological properties proved for
the algorithm are a desirable characteristic also in the
perspective of an iterative application for stabilization
(cf. [6]), which is, as of today, an important and chal-
lenging open problem.
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