
Robust Footstep Planning and LQR Control for
Dynamic Quadrupedal Locomotion

Guiyang Xin1, Songyan Xin1, Oguzhan Cebe1, Mathew Jose Pollayil2, Franco Angelini2,
Manolo Garabini2, Sethu Vijayakumar1,3, Michael Mistry1

Abstract—In this paper, we aim to improve the robustness of
dynamic quadrupedal locomotion through two aspects: 1) fast
model predictive foothold planning, and 2) applying LQR to
projected inverse dynamic control for robust motion tracking. In
our proposed planning and control framework, foothold plans
are updated at 400 Hz considering the current robot state
and an LQR controller generates optimal feedback gains for
motion tracking. The LQR optimal gain matrix with non-zero off-
diagonal elements leverages the coupling of dynamics to compen-
sate for system underactuation. Meanwhile, the projected inverse
dynamic control complements the LQR to satisfy inequality con-
straints. In addition to these contributions, we show robustness of
our control framework to unmodeled adaptive feet. Experiments
on the quadruped ANYmal demonstrate the effectiveness of the
proposed method for robust dynamic locomotion given external
disturbances and environmental uncertainties.

Index Terms—Legged Robots, Whole-Body Motion Planning
and Control, Motion Control

I. INTRODUCTION

LEGGED robots have evolved quickly in recent years.
Although there are robots, such as Spot from Boston

Dynamics, which have been deployed in real industrial sce-
narios, researchers continue to explore novel techniques to
improve locomotion performance. A popular technique is the
staged approach which divides the larger problem into sub-
problems and chains them together. Typically the pipeline is
composed of state estimation, planning and control, which
may be running at different frequencies. The motion planner
typically runs at a slower frequency comparing to controller
due to model nonlinearities and long planning horizons. The
lower-level feedback controller runs at a higher frequency to
resist model discrepancies and external disturbances. After
years of evolution, optimization becomes the core approach
for motion planning and control of legged robots.

Manuscript received: October, 15, 2020; Revised January, 16, 2021; Ac-
cepted February, 25, 2021.

This paper was recommended for publication by Editor Abderrahmane
Kheddar upon evaluation of the Associate Editor and Reviewers’ comments.
This work was supported by the following grants: EPSRC UK RAI Hubs
NCNR (EP/R02572X/1), ORCA (EP/R026173/1), EU Horizon 2020 THING
(ICT-27-2017 780883) and NI (ICT-47-2020 101016970).

1Guiyang Xin, Songyan Xin, Oguzhan Cebe, Sethu Vijayakumar and
Michael Mistry are with the School of Informatics, Institute of Perception,
Action and Behaviour, University of Edinburgh, EH8 9AB, 10 Crichton Street,
Edinburgh, United Kingdom guiyang.xin@ed.ac.uk

2Mathew Jose Pollayil, Franco Angelini and Manolo Garabini are with
the Department of Information Engineering of the University of Pisa and
with the Research Center “E. Piaggio” of the University of Pisa, Italy
mathewjose.pollayil@phd.unipi.it

3The author is a visiting researcher at the Shenzhen Institute for Artificial-
Intelligence and Robotics for Society (AIRS).

Digital Object Identifier (DOI): see top of this page.

Fig. 1. ANYmal with adaptive feet stepping on rough terrain.

A. Related planning methods

Legged robot motion planning is a trade off between several
criteria: formulation generality, model complexity, the plan-
ning horizon and computational efficiency. While the goal is
to maximize all at once, this is not realistic given current
available computational resources. As a result, different design
choices lead to different formulations.

To generate motions in a more general and automated
fashion, trajectory optimization (TO) has been used. In [1], a
Zero Moment Point (ZMP)-based TO formulation is presented
to optimize body motion, footholds and center of pressure
simultaneously. It can generate different motion plans with
multiple steps in less than a second. In a later work [2],
a phase-based TO formulation is proposed to automatically
determine the gait-sequence, step timings, footholds, body
motion and contact forces. Motion for multiple steps can be
still generated in few seconds. In these two works, the TO
formulations are both extremely versatile in terms of motion
types that can be generated, however, online Model Predictive
Control (MPC) has not been demonstrated yet.

A linearized, single rigid-body model has been proposed
[3][4] to formulate the ground reaction force as a QP op-
timization problem and which can be solved in an MPC
fashion. In both works, the footstep locations are provided
by simple heuristics. Online TO based on a nonlinear single
rigid-body model has been given in [5], and can generate
stable dynamic motion for quadruped robots based on a given
contact sequence. A whole-body dynamic model has been
considered in [6][7] to generate robot motion in a MPC

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

ar
X

iv
:2

01
0.

12
32

6v
2 

 [
cs

.R
O

] 
 1

3 
M

ar
 2

02
1



fashion. Crocoddyl [8] improves the computation speed further
more. A frequency-aware MPC is proposed in [9] to deal with
the bandwidth limitation problem for real hardware. In those
four works, the contact planning problem has been decoupled
from the whole-body motion planning problem.

Footstep optimization on biped robots has been proposed in
[10] [11]. An underactuated linear inverted pendulum model
(LIPM) has been used to formulate the footstep optimization
problem. The idea has been extended and generalized to both
biped and quadruped robots in our previous work [12]. In
this work, we realize real-time footstep optimization that can
be executed in a MPC fashion and test it on the hardware
ANYmal.

B. Related control methods

In recent years, there has been a convergence among
legged robot researchers to formulate the control problem
as a Quadratic Program (QP) with constraints. The problem
can be further decomposed into hierarchies to coordinate
multiple tasks within whole-body control [13][14][15]. These
optimization-based controllers usually rely on manually tuned
diagonal feedback gain matrices. Also, these controllers only
compute the best commands for the next control cycle, and
therefore are not suitable for dynamic gaits with underac-
tuation. Classical optimal control theory, such as LQR, can
consider long or even infinite time horizons and generate op-
timal non-diagonial gain matrices exploiting dynamic coupling
effects which benefit underactuated systems such as a cart-pole
[16].

Classical LQR does not consider any constraints except
system dynamics. However, for legged robots, we have to
satisfy inequality constraints such as torque limits and friction
cones on contact feet. The works [17][18] proposed to use the
classical LQR controller for bipedal walking, but inequality
constraints were not enforced. In this paper, we propose an
LQR controller for dynamic gait control under the framework
of projected inverse dynamics [19][20]. Projected inverse
dynamic control enables us to control motion in a constraint-
free subspace while satisfying inequality constraints in an
orthogonal subspace. In our previous work, we used Cartesian
impedance controllers within the constraint-free subspace to
control both the base and swing legs during static walking
of a quadruped robot. Here, we use LQR in the constraint-
free subspace to replace the Cartesian impedance controller
for base motion control and to handle the underactuation in
the trotting gait.

C. Contributions

This paper focuses on improving the robustness of dynamic
quadrupedal gaits. The trotting and pacing gaits of a quadruped
robot will be studied and demonstrated in simulations and
real experiments (see Fig. 1). The main contributions lie in
the computation speed of the MPC and the optimal feedback
control. As an additional contribution, our approach is shown
to be valid both with the default spherical feet and the adaptive
feet [21] with flexible soles. The main contributions are listed
as follows:

1) We propose to formulate foothold planning as a QP
problem subject to LIPM dynamics, which can be solved
within the control cycle of 2.5 ms. Running re-planning
at high frequency allows the robot to be responsive
to disturbances and control commands. The higher the
updating frequency of the MPC, the better the reactivity
achieved by the robot.

2) We use unconstrained infinite-horizon LQR to generate
optimal gains for base control in order to improve the
robustness of the controller and cope with underac-
tuation. Meanwhile, we inherit the advantage of our
previous projected inverse dynamic framework to satisfy
the inequality constraints in an orthogonal subspace,
which is different to the purely QP-based controllers
[13][14][15].

D. Paper organization

The paper is organized in accordance with the hierarchical
structure of the whole system, which is shown in Fig. 2. Given
the desired velocity, the foothold planner plans future footsteps
based on the current robot state which is explained in Section
II. Section III describes the derivation of the LQR for base
control. Simulations, experiments and discussions are given in
Section IV. Finally, Section V draws the relevant conclusions.

II. MOTION GENERATION

When considering dynamic gaits such as trotting, two
contact points cannot constrain all six degrees of freedom
(DOF) of the floating base. The system becomes underactuated
as one DOF around the support line is not directly controlled.
Researchers have been using the LIPM as an abstract model
for balance control in this situation. The Centre of Mass (CoM)
position and velocity can be predicted by solving the forward
dynamics of the passive inverted pendulum. In order to keep
long term balance, the next ZMP point has to be carefully
selected to capture the falling CoM. For trotting, the ZMP
point always lies on the support line formed by the supporting
leg pair. As a result, the footholds optimization problem can
be transformed to a ZMP optimization problem.

A. MPC formulation

The dynamics of the linear inverted pendulum is as follows:

ẍCoM =
g

zCoM
(xCoM − px)

ÿCoM =
g

zCoM
(yCoM − py)

(1)

where xCoM , yCoM and zCoM are the CoM position coor-
dinates, px and py are the coordinates of ZMP, g represents
the acceleration of gravity. Considering zCoM as constant, the
dynamics become linear and result in the following solution:

xCoM (t) = A(t)x0
CoM + B(t)px

yCoM (t) = A(t)y0
CoM + B(t)py

(2)

where xCoM = [xCoM ẋCoM ]>, yCoM =
[yCoM ẏCoM ]>, are the state vectors, and x0

CoM and

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.



Constraint-free Space

Constraint Space

Footstep planner
(MPC)

Foot trajectory
generator

Base trajectory
generator

Swing leg
impedance control

Base motion 
LQR control

QP optimization 
s.t. ineq constraints

State estimator

Fig. 2. Control framework block diagram. All the modules are running at 400 Hz. The joystick sends desired walking velocities. The MPC generates desired
ZMPs. The ZMPs are mapped to foot placements which generate swing foot trajectories by interpolation. The desired base trajectory is generated based on
desired ZMPs. An LQR and two impedance controllers are employed to track desired base trajectory and swing foot trajectories in the constraint-free space.
Constraints, such as torque limits and friction cone, are satisfied in the constraint space.

y0
CoM are the initial state vectors. A(t) and B(t) are defined

as
A(t) =

[
cosh(ωt) ω−1 sinh(ωt)
ω sinh(ωt) cosh(ωt)

]
(3)

B(t) =

[
1− cosh(ωt)
−ω sinh(ωt)

]
(4)

while ω =
√
g/zCoM .

For a periodic trotting gait with fixed swing duration Ts,
assuming instant switching between single support phases, the
states of N future steps along x direction can be predicted
given step duration Tsi

xCoM1 = A(Ts1)xCoM0 + B(Ts1)px1

xCoM2 = A(Ts2)xCoM1 + B(Ts2)px2

...
xCoMN

= A(TsN )xCoMN−1
+ B(TsN )pxN

(5)

where xCoM0
is the state at the moment of first touchdown,

which can be computed from

xCoM0
= A(t0)x0

CoM + B(t0)px0
(6)

where t0 is the remaining period of the current swing phase.
x0
CoM and px0

are the current CoM state and ZMP location
given by the state estimator which also runs at 400 Hz.

Also, considering the kinematic limits of the swing feet, the
following inequality constraints are enforced:
px0
− d
−d

...
−d
−d

 ≤


1 0 · · · 0 0
−1 1 · · · 0 0

...
...

...
...

...
0 0 · · · 1 0
0 0 · · · −1 1




px1

px2

...
pxN−1

pxN

 ≤

px0

+ d
d
...
d
d


(7)

where d is a constant value derived from kinematic reacha-
bility relative to the stance feet. Additionally, Eq. (7) can also
be used to avoid stepping into unfeasible pitches on the ground
by redefining d.

The state along y direction has the same evolution as shown
in Eq. (5). Regarding ZMPs as the system inputs, we define
the cost function of the MPC as follows

N∑
i=1

1

2
[Qi(ẋCoMi − ẋCoMd

)2 +Ri(pxi − pxi−1)2] (8)

where ẋCoMd
is the desired CoM velocity in the x direction,

Qi and Ri are weight factors. The cost function for the y
direction has the same form as Eq. (8). The MPC is formulated
as a QP minimizing Eq. (8) subject to Eq. (5) and Eq. (7).
Solving the QP results in the optimal ZMPs for the future N
steps p∗x = [p∗x1

p∗x2
. . . p∗xN

]>.
Similarly, solving another QP for y direction yields the co-

ordinate p∗y = [p∗y1
p∗y2

. . . p∗yN
]> for the optimal ZMPs

in this direction. It should be noted that the cost function for
y direction is slightly different to Eq. (8), which is as follows
N∑
i=1

1

2
[Qi(ẏCoMi

− ẏCoMd
)2 +Ri(pyi

− pyi−1
− s(−1)iry)2]

(9)
where ry is a constant distance between right and left ZMPs.
ry 6= 0 for pacing gait to avoid self-collision while ry = 0
for trotting gait. s indicates the support phase the robot is in,
s = 1 for left support and s = −1 for right support.

We only use the first pair p∗1 = (p∗x1
p∗y1

) to generate the
swing trajectory. Since the MPC is running in the same loop
of controller, the position p∗1 = (p∗x1

p∗y1
) keeps updating

during a swing phase given the updated CoM state (x0
CoM

y0
CoM ) and desired CoM velocity (ẋCoMd

ẏCoMd
).

B. Reference trajectories of trotting gait

This section explains the algorithms to generate the desired
trajectories of swing feet and the CoM for trotting gait based
on the results of the MPC. The MPC provides the optimal
ZMP that should be on the line connecting the next pair of
support legs. We choose the ZMP to be the middle point of
the support line for trotting gait. We keep the distance from
the ZMP to each support foot location to be a fixed value r.
Then we use the following equations to compute the desired
footholds when the feet are swinging (in Fig. 3):

LF :

[
pLF
x

pLF
y

]
=

[
p∗x1

p∗y1

]
+ r

[
cos(θ0 + ∆θ)
sin(θ0 + ∆θ)

]
RH :

[
pRH
x

pRH
y

]
=

[
p∗x1

p∗y1

]
+ r

[
− cos(θ0 + ∆θ)
− sin(θ0 + ∆θ)

]
RF :

[
pRF
x

pRF
y

]
=

[
p∗x1

p∗y1

]
+ r

[
cos(θ0 −∆θ)
− sin(θ0 −∆θ)

]
LH :

[
pLH
x

pLH
y

]
=

[
p∗x1

p∗y1

]
+ r

[
− cos(θ0 −∆θ)
sin(θ0 −∆θ)

]
(10)

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.



Fig. 3. Geometrical relationship between footholds and ZMPs. We assign the
current ZMP (p0) to be the middle point of the support line at the touchdown
moment. The desired footholds (p∗LF, p∗RH) are calculated from the desired
ZMP (p∗1) and two foot pair parameters r and θ. r determines the distance
between the foot pair and θ determines the orientation of the foot pair with
respect to the robot heading direction. Nominal values are used for these two
parameters. If there is a given steering command ωz , the orientation can be
updated θ = θ0 + ωz · dt.

where LF, RH, RF and LH are the abbreviations for left-fore,
right-hind, right-fore and left-hind feet. θ0 is a constant angle
measured in the default configuration while ∆θ is the rotation
command sent by the users. For pacing gait, θ0 = 0.

Here we do not tackle the height changing issue. We use
the current height of support feet to be the desired height
of desired footholds for swing feet. The peak height during
swing is a fixed relative offset. This technique has to be
adapted for some tasks such as climbing stairs. However the
robustness of the planner and controller can handle slightly
rough terrains, as we demonstrate through experiments. After
determining the desired footholds, we use cubic splines to
interpolate the trajectories between the initial foot positions
and desired footholds for the swing feet, and feed the one
forward time step positions, velocities and accelerations to the
controller.

The desired positions and velocities for CoM are determined
by the LIPM, i.e., Eq. (2) where the initial states x0

CoM and
y0
CoM are updating with 400 Hz as well. Setting the variable
t in Eq. (2) to be a constant value t = 2.5 ms results in
the desired CoM positions and velocities along x and y for
controller. We set the desired height of CoM to be a constant
value with respect to the average height of the support feet.

III. LQR FOR BASE CONTROL

We continue to use our projected inverse dynamic control
framework [20] as it allows us to focus on designing trajectory
tracking controllers without considering physical constraints.
The physical constraints will be satisfied in an orthogonal
subspace. This framework gives us the opportunity to use the
classical LQR without any adaptation.

The dynamics of a legged robot can be projected into
two orthogonal subspaces by using the projection matrix
P = I− J+

c Jc [22][23] as follows:
Constraint-free space:

PMq̈ + Ph = PSτ (11)

Constraint space:

(I−P)(Mq̈ + h) = (I−P)Sτ + J>c λc (12)

where q =
[
Ix
>
b q>j

]> ∈ SE(3) × Rn, where Ixb ∈
SE(3) denotes the floating base’s position and orientation with
respect to a fixed inertia frame I , meanwhile qj ∈ Rn denotes
the vector of actuated joint positions. Also, we define the gen-
eralized velocity vector as q̇ =

[
Iv
>
b Bω

>
b q̇>j

]> ∈ R6+n,
where Ivb ∈ R3 and Bωb ∈ R3 are the linear and angular
velocities of the base with respect to the inertia frame ex-
pressed respectively in the I and B frame which is attached
on the floating base. M ∈ R(n+6)×(n+6) is the inertia matrix,
h ∈ Rn+6 is the generalized vector containing Coriolis,
centrifugal and gravitational effects, τ ∈ Rn+6 is the vector
of torques, Jc ∈ R3k×(n+6) is the constraint Jacobian that
describes 3k constraints, k denotes the number of contact
points accounting foot contact and body contact, λc ∈ R3k

are constraint forces acting on contact points, and

S =

[
06×6 06×n
0n×6 In×n

]
(13)

is the selection matrix with n dimensional identity matrix
In×n.

Note that Eq. (11) together with Eq. (12) provides the whole
system dynamics. The sum of the torque commands generated
in the two subspaces will be the final command sent to the
motors as shown in Fig. 2. In this paper, we focus on trajectory
tracking control in the constraint-free subspace. We refer to our
previous paper [20] for the inequality constraint satisfaction
in the constraint subspace. The swing legs are controlled by
impedance controllers proposed in our former paper [20]. In
this paper, we propose to replace the impedance controller
for base control with an LQR controller, benefiting from
the optimal gain matrix instead of the hand-tuned diagonal
impedance gain matrices.

The similar works of [17][18] did not enforce any inequality
constraints with the classical LQR controller. The advantage
of using projected inverse dynamics is that we can satisfy hard
constraints, such as torque limits and friction cone constraints,
in the constraint space by solving a QP as shown in Fig. 2,
in case the LQR controller and impedance controller generate
torque commands that violate those inequality constraints.

A. Linearization in Cartesian space

Based on Eq. (11), we derive the forward dynamics

q̈ = M−1c (−Ph + Ṗq̇) + M−1c PSτ (14)

where Mc = PM+ I−P is called constraint inertia matrix
[22]. Eq. (14) could be linearized with respect to the full state
vector

[
q> q̇>

]>
. However, the resulting linearized system

would not be controllable as the corresponding controllability

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.



matrix is not full rank. Instead of resorting to one more
projection as done in [17], we linearize the dynamics in the
Cartesian space to control only the base states rather than all
the states of a whole robot.

Just using a selection matrix, we can derive the forward
dynamics with respect to Ixb

ẍb = JbM
−1
c (−Ph + Ṗq̇) + JbM

−1
c PSτ = f(Ixb, ẋb, τ )

(15)
where Jb = [I6×6 06×n]6×(n+6), ẋb =

[
Iv
>
b Bω

>
b

]>
.

By using Euler angles for the orientation in Ixb, we can
define the state vector as

X =

[
Ixb

ẋb

]
12×1

(16)

We linearize Eq. (15) to state space dynamics around a con-
figuration (q0, q̇0, τ 0) where τ 0 is the gravity compensation
torques, yielding

Ẋ = Ab
0X + Bb

0τ (17)

Eq. (17) is detailed as[
ẋb

ẍb

]
=

[
0 I

A21 A22

] [
Ixb

ẋb

]
+

[
0
B2

]
τ (18)

where A21, A22 and B2 are defined as

A21 =
∂f(Ixb, ẋb, τ )

∂Ixb
|q0,q̇0,τ0 (19)

A22 =
∂f(Ixb, ẋb, τ )

∂ẋb
|q0,q̇0 (20)

B2 =
∂f(Ixb, ẋb, τ )

∂τ
= JbM

−1
c PS|q0

(21)

For simplicity, we use a central finite difference method
to compute the partial derivatives of Eq. (19) and Eq. (20).
The deviation factor for finite difference we used for the
experiments is 1× 10−5.

B. LQR controller

We consider Eq. (17) as a linear time-invariant system and
solve the infinite horizon LQR problem to compute the optimal
feedback gain matrix K. The cost function to be minimized
is defined as

J =

∫ ∞
0

(X>QX + τ>Rτ )dt (22)

and the resulting controller for the base control is

τm2 = K(Xd −X) + τ d (23)

where Xd is the desired state, τ d is the feedforward term
derived from inverse dynamics based on the desired state.

We use ADRL Control Toolbox (CT) [24] to solve the
infinite-horizon LQR problem and obtain the K matrix. It
should be noted that the linearization is computed in every
control cycle based on the current configuration (q0, q̇0, τ 0).
The K matrix is updated at 400 Hz, which is different to [18]
where they only compute the K matrices corresponding to few
key configurations. We think linearization should be updated

around current configuration in order to improve computation
accuracy if the computation is fast enough.

In practice, we increase the weights in R of Eq. (22) for
swing legs, relying more on the support legs for base control.
Otherwise, the torque commands of Eq. (23) can affect the
tracking of swing trajectories too much.

In addition, the motion planner in Section II feeds the
desired CoM trajectory to the controllers, whereas the LQR
controller controls the base pose. In theory, we should replace
Ixb with xCoM in Eqs. (11)(12) and transform the dynamic
equations to be with respect to CoM variables as in [25]. Then
the LQR controller will directly track the desired CoM trajec-
tory. In this paper, we approximately consider the translation of
base along x and y aligned with CoM since the base dominates
the mass of the whole robot.

IV. VALIDATIONS

We use a torque controllable quadruped robot ANYmal
made by ANYbotics to conduct our experiments. The onboard
computer has an Intel 4th generation (HaswellULT) i7-4600U
(1.4 GHz-2.1 GHz) processor and two HX316LS9IBK2/16
DDR3L memory cards. The robot weights approximately
35 kg and has 12 joints actuated by Series Elastic Actuators
(SEAs) with maximum torque of 40 N ·m. The real-time
control cycle is 2.5 ms. The control software is developed
based on Robot Operating System 1 (ROS 1). We use the
dynamic modeling library Pinocchio [26] to perform the model
linearization of Section III. An active set method based QP
solver provided by ANYbotics is used to solve the QPs for the
MPC planner and the controller. A video of the experimental
results can be found at: https://youtu.be/khP6PQ9xuso.

A. Trotting speed

We first tested the fastest walking speed when using the
proposed algorithms. Figure 4 shows the recorded speeds
along x direction in real robot experiment and in simulation. In
simulation, the robot could stably trot forward with maximum
speed 1.2 m/s. On real robot, the maximum speed reached
0.6 m/s. The results are reasonable since the trotting gait does
not have a flying phase. The fact that the real robot cannot
achieve as fast motion as in simulation is also reasonable
considering model errors and other uncertainties. Model errors
also cause drifting on the real robot which is difficult to
resolve without external control loops. Constant values for

0 5 10 15
t (sec)

0

0.5

1

1.5

V
el

oc
ity

 (
m

/s
)

Trotting speed in simulation

0 5 10
t (sec)

0

0.2

0.4

0.6

0.8

V
el

oc
ity

 (
m

/s
)

Trotting speed of the real robot

Fig. 4. Recorded fastest trotting speeds on real robot and in simulation. The
desired velocities are generated from LIPM dynamics, i.e. Eq. (2), which
explains why the reference velocities are not smooth.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

https://youtu.be/khP6PQ9xuso


Fig. 5. Footstep and swing trajectory replanning under disturbances. The robot is walking forward and an external force (green arrow) is applied to the base
of the robot. The push results in a sudden change of the CoM position and velocity. The footstep planner uses the updated state to replan the footholds. The
swing trajectories (red lines) are updated accordingly.

Fig. 6. Kicking the robot during trotting. Benefiting from the 400 Hz MPC
update frequency, the robot can quickly update the optimal footholds to
recover from disturbances.

the parameters of the gait planner were employed. They are
Ts = 0.3, zCoM = 0.42, g = −9.8, N = 3, Qi = 1000,
Ri = 1, θ0 = 0.56, r = 0.41. It should be noted that the
prediction number N in the MPC does not need to be as large
as possible with the concern of computation efficiency. We
tested N = 2 ∼ 5, and they showed similar performance.

B. Push recovery

In this subsection, we demonstrate the benefit of high
frequency replanning for disturbance rejection. We first use
simulation to show the replanned footholds and trajectories
as shown in Fig. 5. The disturbance is added when RF and
LH feet are swinging. The disturbance results in sharp state
changes. The MPC computed the new footholds after receiving
the updated state. Figure 6 presents snapshot photos of the
push-recovery experiment on the real robot during trotting
while recorded state data is shown in Fig. 7. The robot was
kicked four times roughly along the y direction. We can see
the peak velocity of y reached −1 m/s during the last two
kicks, but it was quickly regulated back to normal using one
or two steps. The orientation did not change too much after
kicking, which also indicates the robustness of the method.

C. Balance control

Most of the trotting gait control algorithms rely on quick
switching of swing and stance phases to achieve dynamic

0 5 10 15 20 25
t (sec)

-1

-0.5

0

0.5

1

V
el

oc
ity

 (
m

/s
)

0 5 10 15 20 25
t (sec)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

V
el

oc
ity

 (
m

/s
)

0 5 10 15 20 25
t (sec)

-0.4

-0.2

0

0.2

0.4

0.6
P

os
iti

on
 (

m
)

0 5 10 15 20 25
t (sec)

-0.3

-0.2

-0.1

0

0.1

O
rie

nt
at

io
n 

(r
ad

)

Fig. 7. Recorded state when the robot was kicked four times. The desired
Euler angles were 0. The robot was quickly regulated back to normal even
though the velocity reached −1m/s after kicking.

Fig. 8. Visualization of the gain matrix as computed by the LQR controller
during trotting. The size of the gain matrix is 18 by 12. The first 6 columns
correspond to the position and orientation while the remaining 6 columns are
for velocity control. Off-diagonal gains demonstrate that dynamic coupling
effects may be exploited for control.

balance. Recently researchers demonstrated that quadruped
robots with point feet can stand on two feet to maintain balance
[27][28]. Although we did not manage balancing on two feet
on our robot, we compared the longest period of swing phase
of trotting when using our proposed LQR controller versus
the default trotting controller of ANYmal [29]. The longest
swing phase when using LQR is 0.63 s whereas the default
controller only achieved 0.42 s. When the base is controlled
by our previous impedance controller, the longest swing phase
is 0.4 s. This verifies the improved performance of our LQR
controller in terms of balance control. Figure 8 shows two gain

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.



matrices for the two phases of trotting during this experiment.
It should be noted that the gain matrices are updated in
every control cycle (but the changes are small). We can see
that the elements of the first 6 rows are 0 because of the
existence of selection matrix S. The Q12×12 we used in the
experiment was Q = diag(diag(1500)6×6, diag(1)6×6). The
R18×18 was switched depending on the phase. The diagonal
elements corresponding to the two swing legs in R are 10
times larger than the other diagonal elements for stance legs
and the base, reducing the efforts of swing legs in balance
control. The elements in R for stance legs and the base we
used in this experiment are 0.03.

D. Trotting on slippery terrains

The most important advantage of the proposed control
framework compared to similar works [17][18] is that we
can satisfy inequality constraints while using LQR for tra-
jectory tracking. We do not change the classical LQR to be
a constrained LQR. By contrast, using the projected inverse
dynamic control allows us to satisfy inequality constraints in
the constraint subspace. The LQR controller only serves as a
trajectory tracking controller and does not need to consider the
inequality constraints. The QP optimization in the constraint
subspace plays the role of trading off different constraints. For
example, as we have shown in our previous paper [20] for
static gait, trajectory tracking performance will be sacrificed
to prevent slipping if torque commands for trajectory tracking
generate contact forces beyond the friction cones. Here we
demonstrate that our proposed controller can satisfy friction
cone constraints for dynamic gaits as well. Figure 9 shows
the controller can keep the contact forces within the friction
cone after reducing the friction coefficient to match the actual
friction coefficient of the terrain. The smallest friction coef-
ficient we achieved in simulation for trotting in spot on flat
terrain is 0.07. However it is difficult to trot on such slippery
terrain because the trajectory tracking is quite poor in this
situation.

E. Transition from trotting to pacing

Pacing gait is a more dynamic gait compared to trotting
since the CoM is always off the supporting line. The difference
between trotting and pacing in terms of the MPC formulation
is that there will be a constant offset ry between pyi and
pyi−1

(see Fig. 10) in the cost function Eq. (9) in order to
avoid conflicts of the right and left feet. In our experiment,
we specified a transition motion of shifting the base to a side
to start pacing. We can also remove this transition motion by
reducing the gait period or reducing the distance between left
and right feet. The gait period in this experiment was 0.44 s
with ry = 0.08 m. On the controller side, we used the same
Q and R for trotting and pacing.

F. Outdoor test with adaptive feet

In this subsection, we test the versatility of our approach
with adaptive feet SoftFoot-Q [21] in outdoor environments.
Figure 11 shows a typical case of the adaptive feature.

Fig. 9. The friction cone constraints are satisfied by the controller. The blue
arrows represent the actual contact forces while the green cones denote the
friction cones.

Fig. 10. A base shifting motion is needed to transit from trotting to pacing.

Compared to the traditional sphere feet, the adaptive feet
have larger contact surface. Those features will benefit the
traversability of rough terrains with rocks, loose gravel and
rubble by enlarging the contact surfaces with ground. We per-
formed experiments in trotting locomotion on rough terrains
outside our lab as shown in Fig. 12. It should be noted that
our controller did not take the two DOF (one DOF less than
the case with a spherical foot) passive ankle into account.
The model errors caused by the adaptive feet were treated as
disturbances by the controller, where the success of the tests
shows the robustness of our controller.

V. CONCLUSIONS

This paper presents a full control framework for dynamic
gaits where all the modules are running with the same fre-
quency. The robustness of the dynamic walking is improved
significantly by two factors. The first factor is the MPC plan-
ner, which mostly contributes to rejecting large disturbances,
such as kicking the robot, because the MPC uses footsteps
to regulate the state of the robot. The second factor is the
LQR controller for balancing control, which also undertakes
the duty of trajectory tracking. The method is general and
shown to able to work both with spherical and adaptive
feet. The latter were seen to reduce the slipping chance
on rough terrains. The outdoor experiments demonstrate the
robustness of locomotion after adopting the proposed methods
and assembling the adaptive feet.

Future work will focus on adapting the current planner to
consider terrain information to handle large slopes and stairs.
Also, the new feet can be used to measure the local inclination
of the ground which can improve the accuracy of the terrain
information, similar to [30].

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.



Fig. 11. The SoftFoot-Q, an adaptive foot for quadrupeds. θ1 and θ2 indicate
the passive joints of the ankle.

Fig. 12. Trotting out of the lab with adaptive feet on rubble terrain.

ACKNOWLEDGMENT

The authors would like to thank Dr. Quentin Rouxel and Dr.
Carlos Mastalli for introduction on using the Pinocchio rigid
body dynamics library. The authors also would like to thank
the editor and reviewers for their useful comments.

REFERENCES

[1] A. W. Winkler, F. Farshidian, D. Pardo, M. Neunert, and J. Buchli,
“Fast trajectory optimization for legged robots using vertex-based zmp
constraints,” IEEE Robot. Autom. Lett., vol. 2, no. 4, pp. 2201–2208,
2017.

[2] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and
trajectory optimization for legged systems through phase-based end-
effector parameterization,” IEEE Robot. Autom. Lett., vol. 3, no. 3, pp.
1560–1567, 2018.

[3] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic
locomotion in the mit cheetah 3 through convex model-predictive
control,” in Proc. IEEE Int. Conf. Intell. Robots Syst., 2018, pp. 1–9.

[4] D. Kim, J. Di Carlo, B. Katz, G. Bledt, and S. Kim, “Highly dynamic
quadruped locomotion via whole-body impulse control and model
predictive control,” arXiv preprint arXiv:1909.06586, 2019.

[5] O. Cebe, C. Tiseo, G. Xin, H.-c. Lin, J. Smith, and M. Mistry, “Online
dynamic trajectory optimization and control for a quadrupedrobot,”
arXiv preprint arXiv:2008.12687, 2020.

[6] J. Koenemann, A. Del Prete, Y. Tassa, E. Todorov, O. Stasse, M. Ben-
newitz, and N. Mansard, “Whole-body model-predictive control applied
to the hrp-2 humanoid,” in Proc. IEEE Int. Conf. Intell. Robots Syst.,
2015, pp. 3346–3351.

[7] M. Bjelonic, R. Grandia, O. Harley, C. Galliard, S. Zimmermann, and
M. Hutter, “Whole-body mpc and online gait sequence generation for
wheeled-legged robots,” arXiv preprint arXiv:2010.06322, 2020.

[8] C. Mastalli, R. Budhiraja, W. Merkt, G. Saurel, B. Hammoud,
M. Naveau, J. Carpentier, L. Righetti, S. Vijayakumar, and N. Mansard,
“Crocoddyl: An efficient and versatile framework for multi-contact
optimal control,” in Proc. IEEE Int. Conf. Robot. Autom., 2020, pp.
2536–2542.

[9] R. Grandia, F. Farshidian, R. Ranftl, and M. Hutter, “Feedback mpc for
torque-controlled legged robots,” in Proc. IEEE Int. Conf. Intell. Robots
Syst., 2019, pp. 4730–4737.

[10] S. Faraji, S. Pouya, C. G. Atkeson, and A. J. Ijspeert, “Versatile and
robust 3d walking with a simulated humanoid robot (atlas): A model
predictive control approach,” in Proc. IEEE Int. Conf. Robot. Autom.,
2014, pp. 1943–1950.

[11] S. Feng, X. Xinjilefu, C. G. Atkeson, and J. Kim, “Robust dynamic
walking using online foot step optimization,” in Proc. IEEE Int. Conf.
Intell. Robots Syst., 2016, pp. 5373–5378.

[12] S. Xin, R. Orsolino, and N. G. Tsagarakis, “Online relative footstep
optimization for legged robots dynamic walking using discrete-time
model predictive control.” in Proc. IEEE Int. Conf. Intell. Robots Syst.,
2019, pp. 513–520.

[13] L. Saab, O. E. Ramos, F. Keith, N. Mansard, P. Soueres, and J. Y.
Fourquet, “Dynamic whole-body motion generation under rigid contacts
and other unilateral constraints,” IEEE Trans. Robot., vol. 29, no. 2, pp.
346–362, 2013.

[14] A. Del Prete, F. Nori, G. Metta, and L. Natale, “Prioritized motion–
force control of constrained fully-actuated robots:“task space inverse
dynamics”,” Robotics and Autonomous Systems, vol. 63, pp. 150–157,
2015.

[15] A. Herzog, N. Rotella, S. Mason, F. Grimminger, S. Schaal, and
L. Righetti, “Momentum control with hierarchical inverse dynamics on
a torque-controlled humanoid,” Autonomous Robots, vol. 40, no. 3, pp.
473–491, 2016.

[16] P. Reist and R. Tedrake, “Simulation-based lqr-trees with input and state
constraints,” in Proc. IEEE Int. Conf. Robot. Autom., 2010, pp. 5504–
5510.

[17] S. Mason, L. Righetti, and S. Schaal, “Full dynamics lqr control of a
humanoid robot: An experimental study on balancing and squatting,” in
Proc. IEEE Int. Conf. Humanoid Robots, 2014, pp. 374–379.

[18] S. Mason, N. Rotella, S. Schaal, and L. Righetti, “Balancing and walking
using full dynamics lqr control with contact constraints,” in Proc. IEEE
Int. Conf. Humanoid Robots, 2016, pp. 63–68.

[19] G. Xin, H.-C. Lin, J. Smith, O. Cebe, and M. Mistry, “A model-
based hierarchical controller for legged systems subject to external
disturbances,” in Proc. IEEE Int. Conf. Robot. Autom., 2018, pp. 4375–
4382.

[20] G. Xin, W. Wolfslag, H.-C. Lin, C. Tiseo, and M. Mistry, “An
optimization-based locomotion controller for quadruped robots leverag-
ing cartesian impedance control,” Frontiers in Robotics and AI, vol. 7,
p. 48, 2020.

[21] M. G. Catalano, M. J. Pollayil, G. Grioli, G. Valsecchi, H. Kolvenbach,
M. Hutter, A. Bicchi, and M. Garabini, “Adaptive Feet for Quadrupedal
Walkers,” IEEE Trans. Robot., 2020, [Under Review]. [Online].
Available: https://www.dropbox.com/s/84ry3we72c7kt6s/adaptive feet
preprint.pdf

[22] F. Aghili, “A unified approach for inverse and direct dynamics of
constrained multibody systems based on linear projection operator:
Applications to control and simulation,” IEEE Trans. Robot., vol. 21,
no. 5, pp. 834–849, 2005.

[23] M. Mistry and L. Righetti, “Operational space control of constrained and
underactuated systems,” Robotics: Science and systems VII, pp. 225–232,
2012.

[24] M. Giftthaler, M. Neunert, M. Stäuble, and J. Buchli, “The control
toolbox — an open-source c++ library for robotics, optimal and model
predictive control,” 2018 IEEE SIMPAR, pp. 123–129, 2018.

[25] B. Henze, M. A. Roa, and C. Ott, “Passivity-based whole-body balancing
for torque-controlled humanoid robots in multi-contact scenarios,” Int.
J. Robotics Res., vol. 35, no. 12, pp. 1522–1543, 2016.

[26] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux,
O. Stasse, and N. Mansard, “The pinocchio c++ library – a fast and
flexible implementation of rigid body dynamics algorithms and their
analytical derivatives,” in IEEE International Symposium on System
Integrations (SII), 2019.

[27] M. Chignoli and P. M. Wensing, “Variational-based optimal control of
underactuated balancing for dynamic quadrupeds,” IEEE Access, vol. 8,
pp. 49 785–49 797, 2020.

[28] C. Gonzalez, V. Barasuol, M. Frigerio, R. Featherstone, D. G. Caldwell,
and C. Semini, “Line walking and balancing for legged robots with point
feet,” arXiv preprint arXiv:2007.01087, 2020.

[29] C. Gehring, S. Coros, M. Hutter, M. Bloesch, M. A. Hoepflinger, and
R. Siegwart, “Control of dynamic gaits for a quadrupedal robot,” in
Proc. IEEE Int. Conf. Robot. Autom., 2013, pp. 3287–3292.

[30] G. Valsecchi, R. Grandia, and M. Hutter, “Quadrupedal locomotion on
uneven terrain with sensorized feet,” IEEE Robot. Autom. Lett., vol. 5,
no. 2, pp. 1548–1555, 2020.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

https://www.dropbox.com/s/84ry3we72c7kt6s/adaptive_feet_preprint.pdf
https://www.dropbox.com/s/84ry3we72c7kt6s/adaptive_feet_preprint.pdf

	I INTRODUCTION
	I-A Related planning methods
	I-B Related control methods
	I-C Contributions
	I-D Paper organization

	II Motion generation
	II-A MPC formulation
	II-B Reference trajectories of trotting gait

	III LQR for base control
	III-A Linearization in Cartesian space
	III-B LQR controller

	IV Validations
	IV-A Trotting speed
	IV-B Push recovery
	IV-C Balance control
	IV-D Trotting on slippery terrains
	IV-E Transition from trotting to pacing
	IV-F Outdoor test with adaptive feet

	V CONCLUSIONS
	References

