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Abstract—Autonomous robots will soon enter our everyday
life as self-driving cars. These vehicles are designed to behave
according to certain sets of cooperative rules, such as traffic
ones, and to respond to events that might be unpredictable
in their occurrence but predictable in their nature, such as
a pedestrian suddenly crossing a street, or another car losing
control. As civilian autonomous cars will cross the road, racing
autonomous cars are under development, which will require
superior Artificial Intelligence Drivers to perform in structured
but uncertain conditions. We describe some preliminary results
obtained during the development of a planning and control
system as key elements of an Artificial Intelligence driver for
the competition scenario.

Index Terms—Autonomous robots, self-driving vehicles, racing,
robotics challenge.

I. INTRODUCTION

Challenges are one of the main drives of robotics devel-
opment, that call for integration of recent research results in
real world applications. A notable example is the field of self-
driving vehicles, where the DARPA Grand Challenge [1] and
Urban Challenge [2] have pushed the robotics community to
build autonomous cars for unstructured or urban scenarios.
Following these challenges, interest in the development of
hardware and software technologies for self-driving cars has
increased, and are likely to be the first widely adopted Artifi-
cial Intelligence (AI) robots to appear in everyday life, but to
date there is still uncertainty on how to guarantee operational
safety for these robots. There is still debate on which should
be the way to develop safe autonomous driving software as
widely adopted deep learning algorithms are unpredictable
in their nature and each AI driver might react differently in
emergency situations [3]. From deploying single vehicles to
the consumer market to fleets of shared vehicles to be used
as a service, there is a strong interest in the development of
safe level 4 and 5 autonomous behavior [4] for these vehicles.
Technical realization of such complex systems poses some
questions that might find an answer in dedicated scenarios.
In this work we consider a the racing track environment,
as new competitions exist or are being developed where full
scale (Roborace 1) or small scale (F1tenth 2) self-driving cars
compete in a controlled, structured but uncertain scenario, with
little or no risk for human drivers or pedestrians.

This work reports preliminary results on the development
of an AI driver, for full scale electric autonomous vehicles

1https://roborace.com/
2http://f1tenth.org/

Fig. 1. Roborace DevBot - an electric self-driving racing car that can be
driven by a human or fully autonomously

within the Roborace championship, some of which have been
obtained using a Roborace DevBot (Figure 1). An optimal
trajectory planning strategy is described for maximizing the
vehicle’s average travelling speed along the track. The result-
ing optimal paths can be improved when taking into account
car conditions that change during the race, due e.g. to tyre
consumption. A more complete description of the vehicle
dynamics may be adopted considering different optimization
schemes, as the one presented in [5] for motorcycles.

II. RACING TRACK CHARACTERISTICS

A discussion is due to highlight the differences and possible
benefits of developing an AI driver for a racing track scenario.

Obviously, during car race tests or events there are no
people inside or outside the vehicle, hence the focus can be
reduced to the third law of Asimov (self preservation of the
robot). The road conditions are ideal, e.g. regular road surface,
good visibility. The track can be delimited by walls, grass,
cobble, all these characteristics being detectable with LIDAR
or camera sensors. The track is not completely closed but may
present safety or alternative path ways that have to be taken
into account in the mapping and trajectory planning phase, see
Figure 2 for an example3.

III. RACING CAR FUNCTIONALITIES

The input-output mapping for a self-driving vehicle control
system has the typical structure of Figure 3. An autonomous
car is equipped with both proprioceptive sensors, such as GPS,
IMU, wheel encoders, optical speed sensor; and exteroceptive
sensors, such as LIDAR, computer vision cameras, radars. The
outputs are given as a steering command δ ∈ [−1, 1] rad
and a throttle command Ft ∈ [−1, 1] N. In this way, the car
dynamics and low level controls are exposed to the controller

3http://www.autodromoimola.it/
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Fig. 2. Example of alternative pathways that can be found in a racing track.
Courtesy of Autodromo Internazionale di Imola Enzo e Dino Ferrari.
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Fig. 3. AI driver input-output scheme

as a black box, replicating the way a human driver interacts
with the vehicle. It is important to point out that very limited
information about the vehicle dynamics can be used to drive
the car at very high accelerations in a racing scenario, as will
be explained later.

The AI driver has then to be able to perform a certain
set of operations, such as mapping, localization, racing line
optimization, path following, lap time minimization, obstacle
avoidance, and some of these are covered in the next sections.

A. Mapping

Knowledge of the environment is fundamental to plan an
optimal, collision free trajectory. The pose of several track
features, such as fixed obstacles (walls, barriers, cones...)
which can be measured by LIDARs or camera sensors, can be
retrieved both offline or online, with the car manually driven or
in autonomous exploration mode. The simplest approach that
can be followed is to gather data while the robot is manually
driven offline, then post-process the data to generate an occu-
pancy grid map. Typical mapping algorithms require odometry
(from wheel encoders or GPS receiver), vision (LIDARs and
cameras), IMUs. Several software solutions can be used for
this task, such as Google Cartographer [6], RGBDSLAMv2
[7] just to cite a few. These software solutions were designed
to work both indoor and outdoor, hence they are robust w.r.t.
GPS signal losses.

Fig. 4. Map estimation of a test track. Red: estimated pose of the car; Orange:
current LIDAR scans; White: Points from the LIDAR scan that matched a
submap.

B. Localization
Once a known map of the environment is available, the

next step is to localize the car in such map and/or with
respect to a planned trajectory. Localization, intended as an
estimation of the car’s pose ξ = (x, y, φ), with φ = yaw angle,
can be split in two phases: first, a scan matching or feature
matching algorithm uses camera LIDAR data to provide a first
rough estimate of the vehicle position within the map, Fig.4.
The robot pose is updated roughly by using odometry and
IMU data, and can be further improved by using models of
vehicle kinematics or dynamics, e.g. by means of an extended
Kalman filter (EKF), to provide an accurate pose estimation
of the vehicle. Other useful inputs for the EKF are speed and
accelerations in vehicle frame, as measured by proprioceptive
sensors.

C. Trajectory planning
The goal of the trajectory planning phase is to determine the

way by which the vehicle should travel along a given track,
in order to minimize the required lap time. A first step is
to perform path length minimization [8] or traveling speed
maximization [9]. The general consideration to bear in mind
is that the maximum speed that a vehicle can sustain without
slipping is strictly related to the instantaneous curvature σ of
the path it is following. This is expressed by a relation of the
form

mV 2
max =

Fc,max
σ

, (1)

being m the mass of the vehicle and Fc,max the maximum
lateral force tires can sustain, which intuitively shows that
a smaller path curvature allows a higher maximum speed.
Therefore, the above mentioned two strategies are in conflict
since, to minimize the path length, it is necessary to have high
curvature. An optimal trade-off between these two strategies
[10] can indeed be obtained by considering a trajectory F
satisfying the convex combination

F 2 = (1− ε) · Γ2 + ε · Λ2 , (2)

where Λ and Γ are the solutions of the length and the path
curvature minimization, respectively, while ε is a vector of



Fig. 5. Admissible positions space

weights. Since the requested solution needs to be constrained
inside the track, the trajectory planner has to solve a con-
strained minimization. Given the left and right side track
bound based reference frames

Fl =

{
Ol =

(
xl
yl

)
; îl =

(
cθ
sθ

)
; ĵl =

(
−sθ
cθ

)}
,

Fr =

{
Or =

(
xr
yr

)
; îr =

(
cθ
sθ

)
; ĵr =

(
−sθ
cθ

)}
,

the space of admissible positions is

PG =

(
x
y

)
=

(
xr
yr

)
+ α

(
xl − xr
yl − yr

)
, (3)

being α ∈ [0, 1] a scalar parameter. Therefore, a sub-optimal
solution to the path length minimization problem can be
calculated by approximating the total trajectory length as the
sum of n line segments, yielding the cost function

Λ2 =

n∑
i=1

λ2
i , (4)

in which λi the i-th segment length, that can be easily
expressed as the Euclidean distance between PG,i and PG,i+1.
Having denoted with Px,i and Py,i the component of PG,i
along the x and y axes, the i-th segment length is

λi =

√
(∆Px,i)

2
+ (∆Py,i)

2
, (5)

in which, having defined ∆xi = xl,i − xr,i and ∆yi = yl,i −
yr,i,

∆Px,i =
(
∆xi+1 −∆xi

)(αi+1

αi

)
+ const ,

∆Py,i =
(
∆yi+1 −∆yi

)(αi+1

αi

)
+ const .

(6)

Moreover, the path length cost function in (4) can be expressed
in a quadratic form. More precisely, eq. (5) can be rewritten
as

Λ2 =

n∑
i=1

∆PTx,i∆Px,i + ∆PTy,i∆Py,i . (7)

Substituting eq. (6) in the previous equation, defining the
vector

ᾱi =

(
αi+1

αi

)
, (8)

and HΛ, BΛ two suitable constant matrices, the quadratic cost
function is completely described as

Λ2 =

n∑
i=1

ᾱTi HΛ,iᾱi +BΛ,iᾱi + const . (9)

The curvature σ(s) of a given function parametrized by the
distance traveled along the track s is defined as the rate change
of the angle of the tangent to the function

tan(θ) =
dy

dx
, (10)

σ(s) =
dθ

ds
=
ÿẋ− ẍẏ
ẋ2 + ẏ2

. (11)

Since the track has been discretized into line segment, the total
curvature cost function is

Γ2 =

n∑
i=1

σi , (12)

being σi the curvature of the path evaluated at the i-th point.
Therefore, the derivatives in eq. (11) have to be computed
numerically. A convenient way to calculate these derivatives
is to use a Taylor expansion series, defining ẋi and ẍi as

ẋi =
1

∆i−1,i + ∆i,i+1

[
∆i,i+1

∆x
i−1,i

∆i−1,i
+ ∆i−1,i

∆x
i.i+1

∆i,i+1

]
,

ẍi =
2

∆i−1,i + ∆i,i+1

[
∆x
i,i+1

∆i,i+1
−

∆x
i−1,i

∆i−1,i

]
,

(13)

in which ∆x
i,i+1 = xi+1 − xi and (∆i,i+1)2 = (∆x

i,i+1)2 +
(∆y

i,i+1)2. Similar relations can be obtained for ẏ and ÿ.
Substituting eq. (13) in (11), the total curvature cost function
is obtained

Γ2 =

n∑
i=1

[
yi+1 − 2yi + yi−1

∆2

] [
xi−1 − xi−1

2∆

]
+

−
[
xi+1 − 2xi + xi−1

∆2

] [
yi−1 − yi−1

2∆

]
.

(14)

In order to find the minimum of both the cost function the
Optimization toolbox of MATLAB has been used. Moreover,
to achieve the minimum lap time, it’s required to find an
optimal speed profile. As seen in eq. (1) the maximum speed
allowed is proportional to 1

σ . Therefore, considering both the
mass of the vehicle and the maximum centripetal force the
tyres can perform at a constant k, and by the knowledge of
the curvatures σi of the already computed trajectory Γ, an
initial guess of the desired speed at i-th point is

vi =

√
k

σi
. (15)

According to eq. (2) the weight vector ε has to be chosen
so that it weights more the minimum path length whenever



the maximum speed achievable by the vehicle is lower than
the desired one and the minimum curvature path otherwise. In
conclusion, an optimal speed profile can be computed using
the curvature of the already calculated optimal trajectory F .

D. Model Predictive Control

In the following, the design of a model based control is
reported. We refer to Figures 6 and 7 for the map (global) and
vehicle (local) frame quantities, respectively.

imap

jmap pref (τ)

xcar(t)

ycar(t)
ψ(t)

pcar(t)

xref (τ̂)

yref (τ̂)

pref (τ̂)

Fig. 6. Map frame
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Fig. 7. Vehicle frame

The racing line reference trajectory in the map frame is
pref (τ) ∈ R2, with

pref (τ) =

{
xref (τ)
yref (τ)

(16)

The vehicle state x(t) can be expressed as

x(t) =


pcar(t) =

{
xcar(t) x-position of vehicle in map frame
ycar(t) y-position of vehicle in map frame

ψ(t) heading angle in map frame
u(t) longitudinal velocity in vehicle frame
v(t) lateral velocity in vehicle frame
r(t) heading angular rate in vehicle frame

(17)

and the control input vector is

u(t) =

{
δ(t) wheel steering angle
Ft(t) traction force.

(18)

The nonlinear vehicle dynamics, considering a single track
model [11], can be expressed as an autonomous system

ẋ(τ) = f(x(τ),u(τ)) (19)

We call Reference Horizon Generator (RHG), see Figure 8,
the method by which we extract the portion of the racing line
to be considered in the given prediction horizon Thor given the
current pose estimate of the vehicle in map frame pcar(t). The
beginning of the portion of the racing line to be considered is
simply given by

τ0 = arg min
τ

∥∥pref (τ)− pcar(t)
∥∥

2
(20)

while the endpoint is given by

τend = τ0 + Thor. (21)

Hence, the portion of the trajectory to be considered in the
current time frame is

phor(τ̂) = pref (τ − τ0),
τ ∈ [τ0, τend]
τ̂ ∈ [0, Thor]

(22)

Eastmap

Northmap

pref (τ0)

pref (τend)

pref (τ)

pcar(t)

Fig. 8. Reference Horizon Generator

The state vector trajectory in the prediction horizon at
instant t, assuming initial model state is the current measured
state x̂(0) = x(t) and applying an input sequence û(τ̂), is

x̂(τ̂) = x̂(0) +

∫ τ̂

0

f(x̂(τ), û(τ)) dτ, τ̂ ∈ [0, Thor]. (23)

The controller aims at finding the optimum input sequence
u∗(τ̂) such that the following cost function is minimized:

J =

∫ Thor

0

‖phor(τ̂)− p̂car(τ̂)‖2 dτ̂ (24)

u∗(τ̂) = arg min
u(τ̂)

J (25)
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Fig. 9. Controller structure

E. Pure Steering Control

A different approach can be considered by decoupling the
velocity and steering control, where the first can be obtained
by means of a simple PID controller, whilst several approaches
have been proposed in the literature for pure steeering control.
In this section we design a feedforward-feedback steering
control architecture with the objective to minimize deviation
from a desired path, based on the concept of center of
percussion first introduced by Kritayakirana and Gerdes [12]
for racing car control.

We consider the linearized single track model, whose dy-
namics is given by

β̇
ṙ
ė

∆Ψ̇

 =


Fyf + Fyr

mu
− r

aFyf − bFyr
Iz

u(β + ∆Ψ)
r − ṡk

 , (26)

where m and Iz are the vehicle mass and moment of inertia,
and s is the distance along the reference path. The error that
was considered is the lookahead error, a weighted combination
of the lateral error e and the heading error ∆Ψ, given by

ep = e+ xp∆Ψ . (27)

The lookahead error can be considered as a linear approx-
imation of the lateral error projection, at distance xp, in
front of the vehicle. Since e and ∆Ψ are state variables, the
feedback steering control law can be expressed as a linear state
feedback:

δFB = −kpep
= −kp(e+ xp∆Ψ),

(28)

where kp is a proportional gain.
The feedforward steering was introduced to minimize the

level of compensation required by the steering feedback. The
objective in designing a feedforward steering is to estimate
the steering angle required to traverse a path with a known
curvature and velocity profile. Let us consider the second time
derivative of ep:

ëp =
Fyf + Fyr

m
−ukṡ+xp

aFyf − bFyf
Iz

−xp(ks̈−ṡk̇) (29)

Eliminating ëp is a necessary condition for the vehicle to
traverse a path with curvature k. Since it not possible to act
directly on the rear lateral tyre force commanding the front
steering angle, the terms xp has be to chosen to eliminate

Feedforward 

steering

Feedback

steering

Vehicle

u

k

δ

x

+

+

Fig. 10. Feedforward/feedback steering control

the dependence on ëp from Fyr. To this purpose, we use the
center of percussion as a convenient projection point, which
is defined as

xcop =
Iz
bm

. (30)

In fact, substituting xp = xcop it is possible to eliminate ëp
with the only front lateral tyre force

Fyf =
mb

L
(uk + xcop(ks̈+ k̇ṡ)). (31)

Assuming steady-state conditions and small angles, simplified
expressions of the lateral tyre forces that guarantees the vehicle
to travel along a path of curvature k with a longitudinal
velocity u are:

F ssyf =
mb

L
u2k , (32)

F ssyr =
ma

L
u2k . (33)

Assuming small tyre slip angles αf and αr, the rear and lateral
tyre forces can be expressed by the linear relations:

Fyf = Cfαf , (34)

Fyr = Crαr (35)

where Cr and Cf are the tyre cornering stiffness. From
kinematic consideration, the feedforward steering able to keep
the vehicle in a path of curvature k is equal to

δFFW = Lk − αFFWf + αFFWr . (36)

To obtain an expression of the feedforward steering dependent
from k and u, the lateral tyre forces were used to substitute
αf and αr to eq.(36). The resulting feedforward steering is

δFFW = Lk +
Kug

g
u2k . (37)

where Kug is the understeer gradient, equal to

Kug =
Fzr
Cr
− Fzf
Cf

. (38)

The terms Fzf and Fzr are respectively the front and rear
vertical loads of the vehicle.
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Fig. 12. Offtrack over two laps.

The resulting steering control can be computed as

δ = δFB + δFFW (39)

=
[
0 0 −kp −kpxp

]
x +

(
L+

Kugu
2

g

)
k , (40)

being x the state vector

x =
[
β r e ∆Ψ

]T
. (41)

IV. EXPERIMENTAL RESULTS

Once the map of the track has been obtained and a racing
line with an optimal speed profile has been generated, the
DevBot has been driven in autonomous mode to track such
racing line, in the track shown in Figure 4. In Figure 11
tracking results over two laps are reported, with the lateral
tracking error (offtrack) shown in Figure 12. A sensor fusion
algorithm has been developed to provide accurate vehicle state
as an input to the nonlinear MPC controller.

V. CONCLUSIONS AND FUTURE WORK

In this work we have presented a racing scenario for fully-
autonomous vehicles. We have shown how the problem can be

approached and several solutions have been proposed based
on control methods and vehicle dynamics results. Future AI
racing drivers would have to rely more on artificial intelligence
algorithms, that can be trained and evolve autonomously based
on experience. The question remains on how to develop
personalities for such drivers, e.g. how to tune the choice
between aggressive or more gentle maneuvers, and achieve
formal guarantees for safe behavior. Both these questions are
well suited to be developed and tested in a racing scenario.
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