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Abstract—Intruder tracking and herding problems
are crucial in several applications. In this paper a
game theoretic coordination protocol for multi-mobile
robot systems is proposed to tackle both problems
simultaneously. Defender robots move according to
computed Nash equilibria to herd the intruder into
a safe area while preventing its access to one or more
protected areas. The concept of a virtual barrier is
presented to induce defenders to automatically and
uniformly deploy along the barrier in order to drive
intruder away from the protected areas and toward
the safe one. Simulation results are reported to vali-
date the proposed approach.

I. INTRODUCTION
Interaction of autonomous agents has attracted much

interest from different disciplines and has been tack-
led with different approaches based on the particular
goal of the agents. For example, the collective motion
can be based on pure coordinated interactions, [1], [2],
[3], [4] or on conflicting interactions as in case of the
pursuit–evasion problem [5], [6], [7], [8], [9]. Differently,
the proposed approach falls into the category of agents
with conflicting interactions but focuses on a different
aspect that is the defense from intrusion, i.e. a de-
fense–intrusion interaction, see e.g. [10], [11], [12]. This
kind of interaction is ubiquitous and fascinating both in
the natural world (see, e.g., Figure 1) and the artificial
one (e.g., a guarded vessel tries to protect an island
by preventing approach of opposed vessels). Compared
with conflicting interactions, in defense-intrusion inter-
actions, intruders not merely escape from defenders but
also try to approach a protected region. On the other
hand, defenders not merely pursue the intruder but also
aim at expelling it away from the protected area. The
biological world provides a rich source of inspiration
for this type of problems, see for example the hunting
strategies adopted by dolphins [13]. With respect to
defense–intrusion interaction, this work couples it with
the intruder herding problem [14], [15]. In other words,
we are interested in defining a coordination protocol for
mobile robots that provides them the ability to track
an intruder and to escort it to a predetermined safe
area while keeping it far from a protected area even in
presence of unknown and possibly moving obstacles in
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the environment. A schematic description of the scenario
is reported in Figure 2.

Fig. 1: Tracking and herding example in natural scenario.
Image from Wikimedia Commons

Based on a distributed game theoretic approach [16],
this work proposes a novel framework able to solve the
problem of defense-intrusion interaction and intruder
herding, in case of multiple autonomous defenders. The
proposed framework has been chosen since it allows
the coordination protocol to be applied also in sce-
narios where communication is forbidden, for example
for security reasons or due to degraded communication
channels, as in underwater environments. Indeed, the
proposed approach differs from the one proposed in [2],
[17] because it does not need any direct communication
between defenders. Hence, each agent in the environment
takes part to the game and takes autonomous decisions
based on the system state information locally available.
Finally, the coordination protocol has been designed to
be independent from the robot kinematics and to be self
adaptive to the variability of the environment.

Given a scenario with obstacles, protected and safe
areas, approaches as those proposed in [18], [19] provide

Fig. 2: Protected (yellow) and Safe (green) areas are char-
acterized by their central position and shape. Intruder
(red triangle) is located in the area and when detected
by defenders (blue triangles) the herding game begins.
Thanks to the proposed solution, obstacles (grey circles)
do not compromise the success of the mission



an initial defenders deployment to detect an intruder.
On the other hand, an intruder may have interest in
accessing more than one protected area. Hence, once
the intruder is detected, the herein proposed coordi-
nation protocol is not just used by defenders to track
the intruder (see Section III) but also to identify its
objectives in presence of more than one protected area
(see Section III-C).

To summarize, this work proposes a game theoretic
solution to the herding and tracking problem for a coordi-
nated team of robots without the need of communication
exchange. The proposed approach will be shown to work
without a prior knowledge of the environment and on
the area that will be attacked in case of more than one
protected area. Based on local information the defenders
will position themselves in order to prevent the intruder
entering a protected area and to force the intruder toward
a safe area while avoiding collisions with other robots and
obstacles. The proposed coordination algorithm has been
validated with numerical simulations following a Monte
Carlo approach with different scenarios and different
initial positions of the intruder and the defenders. The
entire code is available to interested researchers1.

II. PROBLEM FORMULATION
In this section, we briefly introduce, for reader con-

venience, the notation and the formalism used to define
the coordination protocol designed for the tracking and
herding problem. For the sake of simplicity we consider
a 2D environment, however the protocol can be directly
extended to 3D scenarios as in underwater or aerial
applications.

Let N be the number of defender robots in a scenario
in which a single intruder can enter. The configuration
of every defenders, at time t, is:

Di(t) = [xi, yi, θi] for i = 1, 2, . . . , N.

Where xi, yi are the coordinates of the i–th defender ex-
pressed in a fixed reference system and θi represents the
orientation of the i–th defender. Similarly the position
and the orientation of the intruder are denoted with:

I(t) = [xI , yI , θI ].

As mentioned, the proposed coordination method is inde-
pendent on the particular robot kinematics. We consider
M , possibly moving, obstacles that have to be avoided
by all the robots, defenders and intruder. Each obstacle’s
shape and dimension is supposed to be known when
robots are sufficiently close. For simplicity, obstacles can
be represented as discs and characterized by the center’s
position (xO, yO) and the radius rO:

Oi = [xOi , yOi , rOi ] for i = 1, 2, . . . ,M.

Finally there are P protected areas represented by a
known bounding box: for simplicity the area is considered

1Code available at https://github.com/SimoneNardi/
game-theoretic-coordination-protocol

as a square i defined by its center position and sides’
length Pi = [xPi , yPi , bPi ]. Similarly, there is a single safe
area, represented with its bounding box: S = [xS , yS , bS ].
The robots are supposed to be equipped with two

types of sensors able to provide the position and the
orientation of the other robots, of the intruder and of
the obstacles. These sensors are considered ideal (noise-
free) but with limited range. The first type of sensors
allows the estimation of other defenders position and
orientation and the obstacles detection and localization.
The sensors footprint is supposed to be a disc of radius
rc, called coordination disc. The second type of sensors
allows the identification of non-cooperating robots (e.g.,
the intruder) when they enter the identification disc of
radius rid. Normally rid ≤ rc because it is easier to
estimate states of a cooperating robots (e.g., [20]) rather
than those of uncooperative ones (e.g., [21]). In the same
way the intruder is supposed to be equipped with sensors
able to estimate the position and the orientation of the
defenders and with the same footprint. The description
of the sensory systems to detect robots and obstacles are
out of the scope for this work (for a brief introduction to
technology refer to [20], [21]).
The goal of the intruder is to enter in one of the P

protected areas while the goal of the defenders is to
avoid that and to force the intruder entering in the safe
area S. All robots must avoid also collisions with the
M obstacles, the defender must avoid collisions between
each other. Robots are supposed to take decisions on the
action to be performed based on the following informa-
tion. Each defender is able to reconstruct information
(e.g. dimension, position) on:
• other defenders in its coordination disc,
• obstacles in its coordination disc,
• intruder when it enters its identification disc,
• safe and protected areas.

The intruder is able to reconstruct information on:
• obstacles in its coordination disc,
• each defender in its identification disc,
• protected areas.

The intruder ignores the position of the safe area.
A. Notation
In the rest of the paper we use the term robot when

we speak indifferently about a defender or the intruder;
while we use the specific name when it is necessary to
differentiate them.
• dijr : distance between defender i–th and robot j–th,
j ∈ {1, . . . , N, I},

• diko : distance between robot i–th and obstacle k–th,
i ∈ {1, . . . , N, I}

• dP : distance between intruder and protected area P,
• Oi = {Ok|diko ≤ rc}: the set of obstacles detected

by robot i ∈ {1, . . . , N, I},
• N i = {j|dijr ≤ rc, j ∈ {1, . . . , N} or dijr ≤
rid for j = I}: the set of indexes of robots in the
sensor footprint of defender i ∈ {1, . . . , N},
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• N I = {j|djIr ≤ rid, j ∈ {1, . . . , N}}: the set of
indexes of defenders in the sensor footprint of the
intruder.

The linear velocity of each defender is supposed to
depend on the intruder estimated position and speed,
while the direction of motion is the outcome of the
coordination protocol as described next. The idea is to
set the defender velocity to move at maximum speed
when the intruder is identified and thus reducing it
linearly until the intruder velocity is reached. Such choice
works under the typical assumption of a defender speed
greater than the intruder one. The speed Vi of defender
i is hence set equal to:

Vi =
{
vmax−vI

rid
diIr + vI , if diIr ≤ rid

0, otherwise,
(1)

where vI is the intruder linear velocity and vmax is the
maximum velocity of the defender.

B. Game theoretic framework
In this paper we proposed to adopt a game theory

based approach. Relevant concepts are briefly reported
for reader convenience, for further details refer to [22].

A basic concept of the game theory used in this work
is the strategic game, defined as follows:
Definition 1: A strategic game consists of
• a set of players
• each player has a set of actions
• each player has a preference over the set of avail-

able actions.
For the considered problem each robot (defender or
intruder) is a player and the available actions to each
player are chosen from the following set:

Ai =
{

(θi, vi) : θi ∈ Θ, vi =
{
Vi, for defender
vI , for intruder

}
(2)

where, Θ is the set of admissible steering angles that
depends on the robot kinematics. For example, in the
performed simulations a finite set of three values have
been chosen as Θ, due to computational limitation of
the chosen platform (see Section IV). The linear velocity
of each defender is derived in a deterministic manner,
following equation (1) while the intruder velocity is
estimated with on board sensors, e.g. using lightweight
radar [21]. Hence, the role of the game in the control loop
consists in choosing the appropriate steering angle θi.

The last element to define a strategic game are the
functions that define the player’s preferences over the
actions profile, in this case expressed as cost functions.
The cost function Ci of the i–th defender has the follow-
ing structure: Ci(Ai) = fi(Ai,Oi,P1, . . . ,PP ,S), where
Ai = {aj |j ∈ N i} is the set of actions of intruder
and defenders detected by defender i, i.e. in its sensor
footprint. The intruder’s decision (aI) is considered in
the computation of the game equilibrium, but that does
not mean that the intruder actually will implement such

action. This will depend on the model of the intruder
behaviour. For the considered problem, the cost function
Ci of the i–th defender is:

Ci(Ai) = K1

min
j∈N i,k∈Oi

(dijr , diko )
+K2d

i
b (3)

The proposed cost function has been chosen in order
to penalize small distances between robots (or between
robots and obstacles) and large distances, dib, from the
current configuration toward a possible defender target
configuration. The target configuration can be defined in
several ways, the one used to handle both the tracking
and herding problem is defined in next section. K1 and
K2 are gains used to tune the relevance of the two
addends as shown in Section IV.

Assuming that the goal of the intruder is to reach the
specific protected area P among those in the environ-
ment, the intruder cost function is modeled as follow:

CI(AI) = K1

min
i∈NI , k∈OI

(diIr , dIko ) +K2dP (4)

where AI = {aj |j ∈ N I} is the set of intruder actions,
and dP is the distance between the intruder and the
protected area P, that is the intruder objective.

The action performed by the team of defenders and the
one performed by the intruder are chosen based on Nash
equilibria [23]. It is worth noting that an equilibrium
corresponds to a local minimum of the players’ cost
functions. Moreover, among others, the Nash equilibrium
is considered in this paper because its computation does
not require communication between players. For the
sake of clarity, in the reported definition we choose to
consider an action set containing the actions of all robots
neglecting the actual dependency from distances.
Definition 2: A decision set (a∗1, a∗2, . . . , a∗N ) is a Nash

equilibrium if it satisfies the following inequalities for i =
1, . . . , N :

CI(a∗I , a∗1, . . . , a∗N ) ≤ CI(aI , a∗1, . . . , a∗N )
Ci(a∗I , a∗1, . . . , a∗i , . . . , a∗N ) ≤ Ci(a∗I , a∗1, . . . , ai, . . . , a∗N )
At each iteration each agent computes the set of

Nash equilibria (a∗I , a∗1, a∗2, . . . , a∗N ). Since it has to be
guaranteed that a solution is found, the problem is solved
by finding the Nash equilibrium in mixed strategies.
The mixed Nash equilibrium is an optimal probability
distribution over the action space. However, in real ap-
plications only pure actions can be performed and not
mixed ones, therefore it has been chosen a pure action
with maximal probability distribution. In case of more
than one Nash equilibrium, available equilibria are sorted
based on efficiency (in terms of the cost function) and the
least expensive one is implemented. With this approach,
even in case of no communication, each defender chooses
to implement the action leading to the same equilibrium.



III. INTRUDER TRACKING AND HERDING
PROBLEM

The Nash Equilibrium of the strategic game described
above contains the action that will be performed by
robots and strongly depends on the cost functions. The
adaptation of the cost functions in equation (3) to the
particular case of the tracking and herding problem is the
focus of this Section. Indeed, the objective of the defend-
ers is not only to defend the protected areas, but also, at
the same time, to herd the intruder into the safe one that
is unknown to the intruder. The introduction of multiple
objectives for both the intruder and the defenders is one
of the main differences between our approach and the one
proposed by Alexopoulous et al. in [5]. For this purpose
the defenders can move close to the intruder forcing it
toward the safe area and this will be pursued assigning a
target configuration to the defenders in (3). A virtual tar-
get set is hence proposed to deploy the defenders. Each
target is characterized by a position and an orientation
close to the intruder so that a barrier is created with the
effect to push it toward a desired direction (see Figure 3).
The barrier region is computed by each defender only
based on intruder’s position information and safe and
protected areas. Since those are information available
to all defenders with the intruder in their footprint,
the same barrier region is obtained by each defender.
The proposed solution is based on control radius system
proposed in [24] for non–cooperative agents. When sensor
measurement noise results in variation of the computed
barrier region among defenders the proposed solution can
be also applied. Indeed, the solution needs to impose
some limitation in the sensor measurement errors to be
effective. However, no positions within the virtual barrier
are pre–assigned to defenders: each defender must obtain
a place within it, based on the cost function previously
defined, see equation (3). Each defenders will arrange
themselves along the barrier avoiding collisions. In case
the virtual barrier overlaps an obstacle, the defenders
are re-arranged along the collision free portion of the
barrier so that obstacles are exploited to ensure a higher
intruder reward toward the safe area. Hence, the herding
is ensured also in presence of obstacles.

A. Virtual barrier construction and orientation
The virtual barrier has the scope to force the intruder

moving toward the safe area while staying far from
the protected ones. Hence, the virtual barrier is built
based on following unit vectors (see Figure 3 for graphic
representation):
• P̄ is a unit vector, applied on the intruder position,

that lies along the line between the intruder and the
associated protected area (P) with direction toward
the area itself.

• S̄ is a unit vector, applied on the intruder position,
that lies along the line between the intruder and the
safe area (S) in direction opposite to the area itself.

Fig. 3: Vectors and parameters to identify the barrier

• B̄ is a unit vector, applied to the intruder position,
that lays between S̄ and P̄ directed toward the
barrier. This vector is the one characterizing the
center of the barrier and will be chosen as a convex
combination of P̄ and S̄.

It is worth noting that the distances between the robot
and the closest point to the area can be used instead of
the one toward its center.

More formally, B̄ .= S̄w + P̄(1− w), where parameter
w ∈ [0, 1] determines the orientation of the barrier versor
B̄. Distances from areas can be taken into account in
the orientation of the barrier choosing, for example:
w

.= dP
(dS +dP ) , where dP and dS represent the distance

between the intruder and the associated protected area
and the distance between the intruder and the safe area
respectively. If w = 1 then B̄ = S̄, while if w = 0
then B̄ = P̄ . The behaviour of the barrier can be easily
summarized as follows: when the intruder is very close
to the protected area, regardless of the distance from
the safe one, the barrier will be oriented to defend the
protected area by positioning the defenders between the
area and the intruder, (B̄ ≈ P̄). On the other hand,
when the intruder is close to the safe area, regardless
of the distance from the protected one, the barrier will
be oriented so that defenders are deployed guaranteeing
the intruder between themselves and the safe area, (B̄ ≈
S̄). In all other cases, the barrier will be oriented in
intermediate positions depending on the distance of the
intruder from the protected and the safe areas.

In order to increase the efficiency of the defenders
pressure over the intruder, an additional term is added
to the defenders cost function, w.r.t. (3), as follows:

Ci(Ai) = K1

min
j∈N i,k∈Oi

(dijr , diko )
+K2d

i
b +K3γi, (5)

the idea is to use dib (the distance between the current
position of the i–th defender and the nearest point on
the barrier) to push the defender to position itself on
the barrier, while γi is used to push it moving toward
the central position of the barrier. γi ∈ [0, 1] is given
by γi = |β−yi|

β for yi ∈ [0, 2β], where, referring to
Figure 4, β is the barrier half-extension angle and yi
is the angle of the i-th defender position projected on



Fig. 4: Defender position on the barrier for associated
cost computation

the barrier. With this choice, the cost is minimized for
γi = 0 corresponding to yi = β, in other words when
the defender is on the central position of the barrier, i.e.
when the pushing effect of the barrier is maximized.

It is worth noting that, the position of each defender
over the barrier autonomously varies based on the num-
ber of robots participating in the pursuit. Indeed, each
defender tries to reach a position on the barrier (second
addendum of the cost function (5)), to reach the central
position on the barrier (third addendum) while avoiding
collisions with other defenders (first addendum).

B. Coordination algorithm
The problem of team coordination for intruder track-

ing and herding reveals possible conflicting defender’s
objectives between area protection, intruder herding and
collision avoidance with other defenders. The proposed
barrier based approach requires each defender to com-
pute its own cost function based on local sensory in-
formation: defenders, obstacles and intruder’s positions.
Intruder can be detected based on a monitoring al-
gorithm such as those proposed in [18], [19] and re-
ferred here as SearchIntruder procedure. Whenever a
defender detects the intruder in the identification disc
(UpdateIntruder), it estimates its neighbouring defenders
configurations in the coordination disc (FindNeighbours),
builds the virtual barrier, as described in Section III-A,
(CompBarrier) to identify its target region, computes
Nash equilibria of the game with the other players,
i.e., the robots in its coordination disc (CompNashEq),
and selects the most efficient action (SetSpeed). Thus,
sensory information is updated (UpdateIntruder) and the
procedure repeated. The Mission Control procedure of
each defender, reported in Algorithm 1, monitors the
tracking and herding mission success and it is based on
the Action Selection procedure, reported in Algorithm 2.
Procedures use the following notation:
• IDc and Dc: initial and current defender position

and orientation in the Cartesian space,
• Protect: protected area shape and center position,
• Safe: safe area shape and center position,
• Ic: intruder position and orientation,
• Dsc: set of the other defenders’ configurations.
The procedure in Algorithm 2 is used by the defenders

to select the next action to be performed. In case of

Algorithm 1: Mission Control
Data: IDc, P rotect, Safe
Result: Mission success

1 Dc ← IDc, Ic ← Undefined;
2 while Ic /∈ {Safe} do
3 Ic ← UpdateIntruder(Dc);
4 if Ic 6= Undefined then
5 if Ic ∈ {P rotect} then
6 return false;
7 Dc ← ActionSelection(Dc, P rotect, Safe, Ic);
8 else
9 Dc ← SearchIntruder(Dc);

10 return true;

Algorithm 2: Action Selection
Data: Dc, P rotect, Safe, Ic

Result: Update defender configuration Dc

1 Dsc ← F indNeighbours(Dc);
2 Barrier ← CompBarrier(Ic, Dsc, Dc, P rotect, Safe);
3 Move← CompNashEq(Ic, Dsc, Barrier, Dc);
4 Dc ← SetSpeed(Dc, Move, Barrier);

unicycle-like kinematics this is the turn angle Ri. Once
action has been selected, the state update equation of
i–th defender, with discretization time ∆t, is:

Di(t+ ∆t) =

xi(t)yi(t)
θi(t)

 +

cos(θi(t) +Ri)
sin(θi(t) +Ri)

0

Vi∆t+

 0
0
Ri


C. Intruder objectives identification
The proposed virtual barrier has been designed to

defend only one protected area. In order to manage
multiple protected areas, each defender, during the in-
trusion tracking phase, must be able to deduce intruder’s
intention, i.e. the protected area the intruder is trying
to reach, so that the proposed virtual barrier method
can still be used. This is possible since the computed
Nash equilibrium strategy contains information about
the best action of each player, intruder included. Hence,
each defender can compare the action performed by the
intruder with the computed equilibrium deducing the
intruder objective. This is possible under the assumption
that the intruder is optimizing a cost function that
minimizes the distance toward the desired protected area
and maximizes the distance from defenders as considered
in equation (4). In our solution, defenders solve a game
for each protected areas with the same set of players. The
intruder interest on an area is evaluated based on its last
k actions (with k = 10 in our simulations). Intruder’s
performed k actions are compared by the defender with
the actions computed for each performed game in each
of the k time steps. The area with maximum actions
correspondence is the one chosen, by the defender, to
be protected. The limited number of evaluated actions k



Fig. 5: Number of Nash equilibria on 500 simulations for
different numbers of players

is motivated by a possibly limited memory and by the
fact that, a priori, the intruder may prefer to change the
area to reach as in our experiments when the intruder is
guided by humans.

Based on simulation results reported in Figure 5, the
number of Nash equilibria is low and it tends to increase
with the number of players. In this set of Monte Carlo
simulations, 500 defender initial positions are randomly
selected for each configuration with assigned number of
players N ∈ {2, . . . , 10}. The environment considered is
a free square discretized in 1000×1000 pixels. Simulation
results show that the intruder objective is correctly
estimated after few iterations, 2 or 3 iterations.
Managing multiple protected areas has higher compu-

tational cost than the single protected area case. Indeed,
each defender has to compute the Nash equilibrium of
one game for each protected area. The problem hence
requires an appropriated approach in case of large num-
bers of protected areas and this is out of the scope of this
paper. Simulation results in case of few protected areas
are reported in next section.

An example of the evolution of the system with two
defenders and two protected areas is reported in Figure 6.
The intruder starts moving toward the blue area, once it
enters the identification disc of a defender (defender 2) it
tries to identify the intruder’s objective. Once identified
the desired protected area, the defenders successfully
herd the intruder toward the safe area.

IV. Simulation Results
The robustness of the algorithm has been verified with

the use of Monte Carlo simulations. A square environ-
ment is chosen, discretized with 1000×1000 pixels. Each
pixels with no obstacles, represents an available position
for the robots. The scenario on which the approach is
validated is composed by two protected areas (the blue
and violet squares respectively of Figure 7 and a single
safe area (the green square). In a first set of simulation
defenders knows the area in which the intruder will try to
enter while in the second set the desired area is unknown
a priori. Simulations have been performed with different
defenders initial positions.

Fig. 6: Trajectories performed by defenders (blue and
black) and intruder (red), when the intruder objective
is the protected area number one

Nash equilibria are computed with the tool Gam-
bit [25]: a multi-platform and open-source software.
Gambit is a set of software tools for computation of
finite, non-cooperative games. The solver receives input
from defenders and intruder, processes the players payoff
according to the surrounding environment information,
and computes Nash equilibria of the game.

Fig. 7: Multiple protected areas environment

Each simulation returns: success when the intruder
enters the safe area without touching the protected one,
failure when the intruder enters the protected area and
deadlock when the simulation exceeds 1000 iterations.
In the following simulations each robot (defenders and
intruder) can choose action in the set A = {±45◦, 0◦}.
Moreover, in order to prevent possible collisions each
agent can limit its own set of actions removing those
that lead to a conflict.

The performance of the approach depends on the Nash
equilibrium solver. Computational cost increases expo-
nentially with the size of the game (number of defenders,
available actions and number of protected areas). For this
reason, software optimization and high computational
power are necessary in order to execute the proposed
solution in a more realistic scenarios. However, the nu-
merical simulations performed on a single core system,
show the applicability of the proposed solution to very
crowded environments with the use of a team of 10
defenders. Indeed, only the defenders sufficiently close to



the intruder are involved in the game and, in most cases,
only three defenders have been proved to be sufficient
to herd the intruder keeping the other out of the game.
Simulations in more complex scenarios and with a large
number of defenders are reported in the video attached
to the paper.2

Fig. 8: Mission outcomes for different values of K1

Fig. 9: Performance in case of multiple protected areas

A. Parameters tuning
Given the selected scenario, the parameters gain of

the cost function defined in equation (5) has been tuned
based on the motion ability of the intruder and on the
considered scenario. The simulation results of the perfor-
mance variation (in terms of successful simulations) with
respect to the collision avoidance gain K1 is reported
in Figure 8 for 30 different missions for each value of
parameterK1. Low values of parameterK1 correspond to
a low influence of the collision between players (between
defenders and between a defender and the intruder) in
the cost function. Hence the intruder may have higher
payoff moving toward the protected area also in case of
a nearby defender, leading to a failure in the proposed
coordination protocol. On the other hand, for higher val-
ues of parameter K1, coordination algorithm success rate
increases. However, if too large values of parameter K1
are chosen the number of deadlock situations increases
(yellow column) while the number of success decreases.

2https://youtu.be/eS_HjBaNxCQ

Indeed, a high weight of the collision avoidance may
lead to defenders keeping a higher distance between each
other and from the intruder, preventing the defender
to reach the virtual barrier and failing in forcing the
intruder toward the safe area. Concluding, tuning of the
cost function gains has been achieved experimentally
through a series of simulations varying the parameters
K1, K2 and K3 following procedure described in [16].

B. Results
To test and validate the proposed tracking and herding

solution, different intruder behaviours may be consid-
ered. For space limitations we report simulation results
of the most challenging scenario that is the case of an
intelligent intruder that moves according to the Nash
Equilibrium of the game against the defender.

Fig. 10: Number of iteration for the success of the
tracking and herding mission for different number of
defenders

Figure 10 highlights the number of iterations necessary
for herding success in case of different number of defend-
ers, when the parameter K1 is set to 3000, as suggested
by results reported in Figure 8. It is worth noting that
the number of iterations decreases when the number of
defenders is larger than 1. This fact responds to the
conviction that a coordinated team is able to complete a
mission better than a single defender.

A second set of simulations has been conducted to
evaluate the performance of the intruder objective identi-
fication approach in case of multiple protected areas and
a priori unknown intruder objective. In this case, each of
the two defenders is equipped with the same sensors as in
the previous simulations set. A set of 100 different initial
position of each defender is considered. Comparisons be-
tween the performance of the coordination protocol with
or without the intruder objective identification procedure
is shown in Figure 9. When the identification algorithm
is not used each defender is responsible of one protected
area and creates a different virtual barrier, based on the
protected area assigned to it. In this case, in more than
10% of simulated missions the defenders fails in herding
the intruder. On the other hand, when identification

https://youtu.be/eS_HjBaNxCQ


algorithm is used, defenders are able to correctly identify
the intruder objective and then they cooperate to push
intruder towards the safe area. Indeed performance result
increases up to the 100% of success.

The proposed coordination protocol, involving two
defenders, has been finally validated against an intruder
piloted by a human operator. The human intruder be-
haviour is modeled as a smart intruder where gains of
cost function are tuned as in previous set of simulations.
Experiment results show that every human operators
have not been able to avoid to be herd towards the safe
area (whose position is unknown to them) in the 100%
of the missions. Note that in this case when the intruder
collides with a defender the herding mission is considered
a successful mission.

V. Conclusions
In this paper a game theoretic coordination algorithm

for a multi–robot system is presented. The purpose of
the team coordination is to defend one or more protected
areas from an intruder and then herd it to a predefined
safe area. A game theoretic approach has been chosen to
solve the considered problem. The proposed framework
is independent from the robot kinematics and can be
used in environments with obstacles. The coordination
between the members of the team of defenders occurs
without any direct communication, thanks to the intro-
duced concept of virtual barriers. In case of multiple
protected area and unknown intruder objective a modi-
fied protocol is proposed. The protocols have been tested
and validated with Monte Carlo simulations for different
intruder’s behaviour.

As future developments, it would be helpful to deter-
mine the minimum number of defenders necessary to suc-
cessfully herd the intruder. Finally, the short prediction
horizon used in the proposed game theoretic protocol
could be relaxed to possibly improve performance.

References
[1] I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin,

“Effective leadership and decision-making in animal groups on
the move,” Nature, vol. 433, no. 7025, pp. 513–516, 2005.

[2] K. D. Do, “Output-feedback formation tracking control of
unicycle-type mobile robots with limited sensing ranges,”
Robotics and Autonomous Systems, vol. 57, no. 1, pp. 34–47,
2009.

[3] X. Liang and Y. Xiao, “Studying bio-inspired coalition for-
mation of robots for detecting intrusions using game theory,”
IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), vol. 40, no. 3, pp. 683–693, 2010.

[4] M. Innocenti, L. Pollini, G. Franzini, and A. Salvetti, “Swarm
obstacle and collision avoidance using descriptor functions,”
in Control Applications (CCA), 2016 IEEE Conference on.
IEEE, 2016, pp. 487–492.

[5] A. Alexopoulos, T. Schmidt, and E. Badreddin, “Coopera-
tive pursue in pursuit-evasion games with unmanned aerial
vehicles,” in Intelligent Robots and Systems (IROS), 2015
IEEE/RSJ International Conference on. IEEE, 2015, pp.
4538–4543.

[6] R. Escobedo, C. Muro, L. Spector, and R. Coppinger, “Group
size, individual role differentiation and effectiveness of coop-
eration in a homogeneous group of hunters,” Journal of the
Royal Society Interface, vol. 11, no. 95, p. 20140204, 2014.

[7] S. Keshmiri and S. Payandeh, “On confinement of the initial
location of an intruder in a multi-robot pursuit game,” Journal
of Intelligent & Robotic Systems, pp. 1–29, 2013.

[8] M. Haque, A. Rahmani, and M. Egerstedt, “A hybrid, multi-
agent model of foraging bottlenose dolphins,” IFAC Proceed-
ings Volumes, vol. 42, no. 17, pp. 262–267, 2009.

[9] C. Undeger and F. Polat, “Multi-agent real-time pursuit,”
Autonomous Agents and Multi-Agent Systems, vol. 21, no. 1,
pp. 69–107, 2010.

[10] J. Wang andW. Li, “Motion patterns and phase-transition of a
defender–intruder problem and optimal interception strategy
of the defender,” Communications in Nonlinear Science and
Numerical Simulation, vol. 27, no. 1, pp. 294–301, 2015.

[11] G. E. Mullins and S. K. Gupta, “Adversarial blocking tech-
niques for autonomous surface vehicles using model-predictive
motion goal computation,” in Intelligent Robots and Sys-
tems (IROS), 2015 IEEE/RSJ International Conference on.
IEEE, 2015, pp. 2272–2278.

[12] H. Huang, J. Ding, W. Zhang, and C. J. Tomlin, “Automation-
assisted capture-the-flag: A differential game approach,” IEEE
Transactions on Control Systems Technology, vol. 23, no. 3,
pp. 1014–1028, 2015.

[13] B. L. Sargeant, J. Mann, P. Berggren, and M. Krützen,
“Specialization and development of beach hunting, a rare
foraging behavior, by wild bottlenose dolphins (tursiops sp.),”
Canadian Journal of Zoology, vol. 83, no. 11, pp. 1400–1410,
2005.

[14] A. D. Khalafi and M. Toroghi, “Capture zone in the herding
pursuit evasion games,” Applied Mathematical Sciences, vol. 5,
no. 39, pp. 1935–1945, 2011.

[15] S. Gade, A. A. Paranjape, and S.-J. Chung, “Robotic herd-
ing using wavefront algorithm: Performance and stability,” in
AIAA Guidance, Navigation, and Control Conference, 2016,
p. 1378.

[16] I. Harmati and K. Skrzypczyk, “Robot team coordination for
target tracking using fuzzy logic controller in game theoretic
framework,” Robotics and Autonomous Systems, vol. 57, no. 1,
pp. 75–86, 2009.

[17] O. Purwin, R. D’Andrea, and J.-W. Lee, “Theory and imple-
mentation of path planning by negotiation for decentralized
agents,” Robotics and Autonomous Systems, vol. 56, no. 5, pp.
422–436, 2008.

[18] S. Nardi, C. Della Santina, D. Meucci, and L. Pallottino,
“Coordination of unmanned marine vehicles for asymmetric
threats protection,” in OCEANS 2015-Genova. IEEE, 2015,
pp. 1–7.

[19] S. Nardi, T. Fabbri, A. Caiti, and L. Pallottino, “A game
theoretic approach for antagonistic-task coordination of un-
derwater autonomous robots in asymmetric threats scenarios,”
in OCEANS 2016-Monterey. IEEE, 2016.

[20] H. Li, C. Hua, C. Chen, and X. Guan, “Ads-b aided robust
relay selection for cooperative communications in aircraft ap-
proach,” International Journal of Communication Systems,
vol. 29, no. 1, pp. 113–129, 2016.

[21] L. Yang, S. Zhou, L. Zhao, and G. Bi, “A data-driven approach
for monitoring forward velocity for small and lightweight
drone,” in Aerospace Electronics and Remote Sensing Tech-
nology (ICARES), 2015 IEEE International Conference on.
IEEE, 2015, pp. 1–6.

[22] M. J. Osborne and A. Rubinstein, A course in game theory.
MIT press, 1994.

[23] Y. Shoham and K. Leyton-Brown, Multiagent systems: Algo-
rithmic, game-theoretic, and logical foundations. Cambridge
University Press, 2008.

[24] A. Pierson and M. Schwager, “Bio-inspired non-cooperative
multi-robot herding,” in Robotics and Automation (ICRA),
2015 IEEE International Conference on. IEEE, 2015, pp.
1843–1849.

[25] McKelvey, D. Richard, McLennan, M. Andrew, Turocy,
and L. Theodore. (2014) Gambit: Software tools for game
theory, version 16.0.0. [Online]. Available: http://www.
gambit-project.org.

http://www.gambit-project.org.
http://www.gambit-project.org.

	INTRODUCTION
	PROBLEM FORMULATION
	Notation
	Game theoretic framework

	INTRUDER TRACKING AND HERDING PROBLEM
	Virtual barrier construction and orientation
	Coordination algorithm
	Intruder objectives identification

	Simulation Results
	Parameters tuning
	Results

	Conclusions
	References

