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Abstract— In this paper we investigate how to resolve con-
flicting motions for mixed robot–robot and human–robot mul-
tiagent systems. This work is motivated by atypical driving
conditions, such as parking lots, where driving rules are
not as strictly enforced as on standard roads. As a result,
navigation algorithms should take into account the human
drivers’ behaviors, especially if they prove to be in conflict
with the common rules of the road. In this work we make use
of safety barrier certificates with a direction bias to deconflict
agents’ behaviour in a near-to-collision scenario, in compliance
with local traffic rules. We also propose a tool to identify the
driving direction bias—both for human and autonomous agents.

I. INTRODUCTION

Autonomous and guidance navigation algorithms for au-
tonomous vehicles, such as self-driving cars, are designed in
compliance with the “traffic rules” that apply to the particular
scenario they are developed for. In fact, traffic rules are
not the same worldwide, with the most notable example
in the existing difference in left- and right-hand driving.
These dissimilarities in driving rules are reflected in human
behavioral studies that suggest that it is unclear whether
humans have a natural predisposition for one side of the road
or the other [1], [2]. Despite differences in the standards,
and possibly even personal preferences, certainly roads are
governed by a strict set of rules. Nonetheless, there exist
environments where rules are not as firm and they may even
be broken in order to improve the overall driving experience.
As is often seen in parking lots, it is largely acceptable for a
driver to overtake on the wrong side, or to resolve a head-on
scenario by steering to the left, or to the right, regardless of
what the local rules would require.

Self-driving vehicles have been incrementally deployed in
controlled environments, such as autonomous airport shuttles
and trains. Recently, self-driving technology has been applied
to more complex scenarios, with self-driving cars operating
on regular roads, corresponding to a SAE (Society of Au-
tomotive Engineers) Level 3, or even 4, of Autonomy [3].
As increasingly complex environments are being populated
by autonomous vehicles, the roads must be shared, at an
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increasing rate, by a mixture of autonomous vehicles (AV)
and human–driven vehicles (HV).

In this paper, we consider this issue of mixed autonomous
and human-driven vehicles explicitly in environments where
the rules of the road are less strictly enforced. What this
means is that the autonomous vehicle must be able to
infer something about the human intent in order to operate
effectively, safely, and in a manner that is transparent to
the human. In the context of navigation of multiple agents,
the problem of coordination and intention awareness ([4])
has been studied in the past, refer e.g., to the surveys [5],
[6] and references there in. The question of multiagent
systems with AV-HV interaction including safety and traffic
rules notions has been considered in the context of hybrid
systems theory [7], fuzzy logic-based decision making [8],
and, more recently, with reinforcement learning [9]. The
approach proposed in this paper is based on Control Barrier
Functions (to ensure safety, i.e. collision avoidance) [10] and
takes advantage of the particular geometry of the problem
to break symmetries (path deconfliction with traffic-inspired
rules).

One factor of success for a technology whose final goal is
to be adopted among non-expert users is to build the users’
trust [11]. Potential users will build a personal opinion based
on their interaction experience with other AVs, therefore it is
important to build tools that allow AVs to be provably safe
for the user while feeling safe and familiar to an external
HV’s driver that interacts with it. It is in this context of
unstructured environments that navigation algorithms must
be more flexible when rules are less strict and the behaviour
of outside agents may prove to be in contrast with the traffic
rules.

As a case scenario, picture two cars driving in opposite
directions down a narrow corridor, as usually seen in parking
lots and garages. When the road is clear, both drivers may
tend to stay closer to the center of the roadway; consider
the road to be wide enough to allow both cars to pass at the
same time. When the two cars are facing close enough, they
will start moving away from the center of the road in order
to keep heading towards their respective goal; we will refer
to this scenario as the head-on scenario.

The head-on scenario is illustrated in more detail in Figure
1, where two vehicles are operating in a right-hand driving
environment. In the first example, Fig. 1a, the two agents
are driving far enough from the center of the road, allowing
both cars to pass; since no conflict is taking place, no further
action needs to be taken. In Figs. 1b and 1c, the two cars
are heading misaligned, therefore should avoid collision by



(a) Four different head-on scenarios (right-hand driving). From a) to c) the cars
overtake as the road rules impose; in d) the misalignment is strong enough for
them to overtake regardless of the rules.

(b) Snapshot of two different head-on alignments for hardware
experiments in the Robotarium.

Fig. 1: Head-on scenarios, defined as two agents driving in opposite directions down a narrow corridor.

steering to the right, in compliance with local traffic rules.
Finally, in Fig. 1d, the two agents are, again, far enough
from the center of the road, yet they are on the wrong side
of the road, respectively. However, it is inefficient to force
both cars to steer right, as road rules would require, since
no conflicting motion is taking place.

Now, consider the scenario of Fig. 1b, showing a hardware
implementation with two GRITSbots, the first utilizing an au-
tonomous driving algorithm (AV) and the second controlled
remotely via a joystick by a human (HV): a further design
goal is to make the AV aware of the HV driving direction
bias, e.g., if HV steers to the left, so should AV, even if in
contrast to local traffic rules.

In this work we discuss a novel strategy of embedding
traffic rules in navigation algorithms by i) making use of
Barrier Functions to ensure collision avoidance, expanding
the work in [12], and ii) by relaxing the rules, allowing
agents to break them, under defined circumstances, in order
to improve the system’s performance and human user’s
experience.

II. BACKGROUND

A. Notation

Throughout, R, R+
0 denote the set of real and non–

negative real numbers, respectively. Int(C ) and ∂C denote
the interior and boundary of set C , respectively. The open
ball in Rn with radius ε ∈ R+ and center at x0 is denoted by
Bε(x0) = {x ∈ Rn | ‖x− x0‖ < ε}. A continuous function
α : [0, a) → [0,∞) for some a > 0 is said to be a class-
K function if it is strictly increasing and α(0) = 0. A
continuous function β : (−b, a) → R for some a, b > 0
is said to be an extended class-K function if it is strictly
increasing and β(0) = 0. Given two vectors xi, xj ∈ Rn,
we define the difference ∆xij as ∆xij = xi − xj . Given
f(x), g(x) sufficiently smooth in a domain D ⊂ Rn, we
indicate the Lie Derivative as Lfg(x) = ∂g

∂xf(x).

B. Barrier Functions

A first step towards achieving the goal of securely de-
conflicting motion paths of vehicles, is to ensure that every
action that the autonomous agents take is provably safe under

appropriate assumptions, i.e., that agent-to-agent collisions
will be avoided. To this end, we are going to use Safety
Barrier Certificates (SBC) [12], based on Zeroing Control
Barrier Functions (ZCBF) [10]. As the explicit purpose of
this paper is to understand deconfliction in a formal manner,
we are here focusing our attention on an idealized situation
from an information-exchange vantage point. Throughout the
paper, we thus make the assumption that relevant information
about nearby agents are made available, such as each agent’s
control input and goal position. Note that these types of
information can be obtained through other means, e.g.,
through sensory data. For the sake of clarity, we omit this
aspect and instead focus directly on the motion deconfliction
problem.

Here, the fundamentals of ZCBF are briefly recalled:
consider a dynamical system in control affine form,

ẋ = f(x) + g(x)u, (1)

where the state x ∈ Rn and control u ∈ U ⊂ Rn, f and g
are locally Lipschitz continuous, and the system is forward
complete, i.e., x(t) is defined for all t ≥ 0. By defining a set
of conditions on the states of a system, for example imposing
a minimal distance between agents, SBC ensure that the time
evolution of the system is such that the states always satisfy
the original conditions. In this application, the system’s states
will be the position and velocity of each agent. Therefore, a
safe state will be a combination of position and velocity that
will not result in a collision, given an acceleration command
as input u.

Now, let C ⊂ Rn be the safe set, i.e., the states from which
it is possible to avoid collisions. In order to guarantee that a
controller u is safe, we need to prove that such a controller
renders x forward invariant, i.e., if x(0) ∈ C , then x(t) ∈ C
for all t ≥ 0. We can encode C through the super-level set of
a ZCBF candidate function h : D → R, with C ⊆ D ⊂ Rn

C = {x ∈ Rn : h(x) ≥ 0}, (2)

which means that h(x), a function of the states in (1), is
non-negative if the state x is safe, and negative otherwise.

By differentiating h(x) with respect to time t (note that



the state x is time-dependent, however, to simplify notation
we denote x(t) simply as x) and substituting it in (1), we
gather

dh(x)

dt
= Lfh(x) + Lgh(x)u. (3)

The function h(x) is said to be a ZCBF if there exists an
extended class-K function κ such that

sup
u∈U
{Lfh(x) + Lgh(x)u+ κ(h(x))} ≥ 0 (4)

for all x ∈ D . Given a ZCBF, we can define the admissible
control space, as a function of the states, as

S(x) = {u ∈ U | Lfh(x) + Lgh(x)u+ κ(h(x)) ≥ 0}, (5)

with x ∈ D . We now have all the necessary ingredients to
state the following key results, e.g. found in [13].

Theorem 1: Given a set C ⊂ Rn defined by (2) and a
ZCBF h defined on D , with C ⊆ D ⊂ Rn, any Lipschitz
continuous controller u : D → R such that u ∈ S(x) for
the system in (1) renders the set C forward invariant. C is
asymptotically stable in D .

In this work, consistent with [12], the particular choice
of κ(h(x)) = γh3(x), with γ > 0, will be adopted, which
means that the controller needs to satisfy

Lfh(x) + Lgh(x)u+ γh3(x) ≥ 0 (6)

to render the set C forward invariant. Controlling the system
in (1) with a controller u ∈ S(x) and defining conditions on
what renders a state x safe, encoded in C , we can ensure
that, indeed, if x(0) ∈ C , then x(t) ∈ C , for all t > 0.

C. System Model

Now that we have a general formulation of the Barrier
Certificates, we can formulate them in the particular context
of autonomous driving. For this purpose, consider N mobile
agents moving on the plane, where each agent is indexed
by N = {i | i = 1, 2, ..., N}. We model the agents’
dynamics as double integrators, as acceleration limitations
play a significant role when avoiding collisions[ṗi

v̇i

]
=
[
02×2 I2×2
02×2 02×2

] [pi
vi

]
+
[
02×2
I2×2

]
ui, (7)

where pi = (xi, yi) ∈ R2, vi ∈ R2, and ui ∈ R2 represent
the positions, velocities, and inputs (acceleration commands)
for agent i. Velocity and acceleration of the agent are limited
by ‖vi‖∞ ≤ βi and ‖ui‖∞ ≤ αi, with αi, βi ∈ R+.

The aggregate state of all N agent’s positions and ve-
locities will be denoted as (pT , vT )T ∈ R4N . Since the
ZCBF h(x) in (2) is a function of the aggregate states, we
want to express it as a function of each agents’ position and
velocity for the system in (7), i.e., hij(p, v). Considering the
interaction between two agents, i and j, we can define the
pairwise set Cij as

Cij = {(pi, vi) ∈ R4 | hij(∆pij ,∆vij) ≥ 0}, ∀j ∈ Ni.
(8)

As shown in [12], it is possible to express the safety barrier
constraint for system (7) as a linear constraint in ui, which

can be represented as

Aijui ≤ bij . (9)

In particular, given the safety distance DS ∈ R+, the safety
barrier constraint satisfying (6) is, as proven in [12],

−∆pTij∆uij ≤ γh3ij
∥∥∆pij

∥∥− (∆vTij∆pij)2∥∥∆p2
ij

∥∥ +

+ ‖∆vij‖2 +
(αi + αj)∆vTij∆pij√

2(αi + αj)(
∥∥∆pij

∥∥−Ds)
,

(10)

for all i 6= j. We can write Aijui ≤ bij as

Aij = [0, ...,−∆pTij , ...,∆pTij , ..., 0] (11)

and

bij = γh3ij
∥∥∆pij

∥∥− (∆vTij∆pij)2∥∥∆p2
ij

∥∥ + ‖∆vij‖2 +

+
(αi + αj)∆vTij∆pij√

2(αi + αj)(
∥∥∆pij

∥∥−Ds)
,

(12)

where Aij ∈ RN−1×2, and bij ∈ R. Therefore, for any ui
satisfying the inequality in (9), we ensure that the control
input is safe, that is, the acceleration inputs will keep the
state of the system in (1) such that the relative velocity and
position of any two agents will not result in a collision.

In the following, we will refer to ûi as the nominal
controller, i.e. how we would like to control our system (or
agent i). With u∗i we will indicate an input to the system
that is safe, i.e. that will not result in a collision. Given a
nominal controller ûi for the system in (1), if the condition in
(9) holds for ûi, the nominal control input is safe, therefore
making u∗i = ûi will pose no harm to the system. In the
following section we are going to provide a tool to keep
the control u∗i safe when the linear inequality in (9) is not
satisfied by the nominal controller ûi.

D. Decentralized Safety Barrier Certificates

The time evolution of the system in (1) will be regulated
by the nominal controller û = (ûT1 , ..., û

T
N )T ; as collisions

approach, we wish for the actual control input u∗i to be safe
by respecting the inequality Aiju∗i ≤ bij for all j 6= i,
while staying as close as possible to ûi. Since we are able
to express the safety constraint as a linear formulation of ui,
we can add a quadratic cost that penalizes deviations from
the nominal controller, while ensuring safety, resulting in
a Quadratic Programming problem (QP). The decentralized
version of the QP-based controller, as suggested in [12], is,
for all i ∈ N ,

u∗i = argmin
ui∈R2

‖ui − ûi‖2

subject to Āijui ≤ b̄ij , ∀j ∈ Ni

‖ui‖∞ ≤ αi

(13)

where Āij = −∆pTij and b̄ij = αi

αi+αj
bij .



Ni is the neighboring set of agent i, defined as

Ni = {j ∈ N |
∥∥∆pij

∥∥ ≤ Di
N , j 6= i}, (14)

and where

Di
N = Ds + 1

2(αi+αmin)

(
3

√
2(αi+αmax)

γ + βi + βmax

)2

(15)
is the size of the radius of the neighbors associated with
Ni, where αmin = min

j∈N
{αj}, αmax = max

j∈N
{αj} and

βmax = max
j∈N
{βj} are the lower and upper bounds of all

agents’ acceleration limits and the upper bound of all agents’
velocity limits, respectively. Using a controller u∗i as the one
defined in (13) and u∗ = (u∗1

T , ...,u∗N
T )T , ensures safety of

the system since collisions are always avoided.

E. Deadlock Detection

The QP problem in (13) ensures safety of the system in (1)
regardless of the control input ûi generated by the nominal
high-level controller. Although safety is guaranteed, there
are situations where the constraints imposed on the control
input by (9) are such that the solution to (13) drives the
acceleration and velocity of an agent to zero. This prevents
the fulfillment of the original goal, if ûi 6= 0, and it depends
on the geometry of the solution space and of the cost vector
of (13).

Consider the admissible control space Pi for agent i

Pi = {ui ∈ R2 | Āijui ≤ b̄ij , ∀j ∈ Ni}. (16)

It is possible to evaluate the size of the feasible control space
Pi, termed width of the feasible set [14], with a Linear
Program (LP)

min
ui∈R2,δi∈R

[01×2 1]
[
uTi δi

]T
subject to [Āij −1]

[
uTi δi

]T ≤ b̄ij , ∀j ∈ Ni

‖ui‖∞ ≤ αi.

(17)

The solution of the LP characterizes how much control
margin is left for the strictest safety barrier constraint, i.e, if
δi ≤ 0 then Pi is not empty. In other words, a negative δi
indicates how much the bij of the strictest constraint can be
translated before having Pi = ∅.

Definition 2.1: An agent i is said to be in deadlock if it
does not move, that is, if the solution to (13) is u∗i = 0
and the speed is zero (vi = 0), while the nominal control
command is ‖ûi‖ 6= 0.
We identify three different deadlock scenarios, based on the
geometry of the QP problem in (13) (see Fig. 2)

1) Type 1 deadlock: δi ≤ 0, ui ∈ vertex(Pi);
2) Type 2 deadlock: δi ≤ 0, ui ∈ edge(Pi);
3) Type 3 deadlock: δi > 0.
In the following, we are going to build on the results

in [12] by expanding the definition of deadlock, allowing
agents to take deconflicting actions earlier in time, resulting
in a faster responding disengagement. Moreover, given the
particular case of interest seen in Fig. 1, we are going

Fig. 2: Graphical representations of the QP problem in (13),
with a Type 1 deadlock (left) and Type 2 deadlock (right).

to provide formal and statistical results to show how this
proposed method ensures collision avoidance in a pattern
that matches the problem statement.

III. ROBOT–ROBOT INTERACTION

As a first step towards understanding the general motion
deconfliction problem, we consider a two-agent system,
N = 2, where the robots are forced to interact in a pattern
relatable to Fig. 1. With this assumption of N = 2, Ni =
{j}, i 6= j and i, j = 1, 2 if

∥∥∆pij
∥∥ ≤ Di

N ; Ni = {∅},
otherwise. This allows us to limit the deadlock types as seen
in Definition 2.1: since we will never have more than one
inequality constraint in the admissible control space in Ni,
for all i ∈ N the feasible set will never be empty. For this
reason, for any solution, it holds that u∗i ∈ edge(Pi) and
hence Type 1 and Type 3 deadlock cannot occur.

Definition 3.1: Given α, β ∈ R+ as the acceleration and
velocity thresholds, respectively, and ε ∈ R+ as the control
threshold, an agent i is said to be in a quasi-deadlock if
‖ui‖ ≤ α, ‖vi‖ ≤ β, and the nominal control ‖ûi‖ > ε.

By introducing a lower bound on the acceleration and
velocity, we wish to identify those agents that are slowing
down, while the difference between the nominal and the
actual controller, ε, ensures that this slowing evolution is
due to the safety constraints introduced in (9) and not by
the actual control goal, and hence a risk of collision is
approaching.

A. Quasi-deadlock Resolution

If an agent enters a deadlock it stops; [12] presents a
deadlock resolution tool, but this requires the agent to have
both speed and acceleration equal to zero. This results in
a slow-reacting system as, before taking any deconfliciting
motion, any agent must come to a complete stop. The quasi-
deadlock aims at detecting when an agent is about to enter a
deadlock, allowing the controller to take preventive actions
without the need for either robot agent to come to a complete
halt.

The conflict resolution tool proposed in the present paper
as an improvement over [12] can be summarized as follows:
given the nominal control ûi, if agent i finds itself to be in
quasi-deadlock, perturb ûi such that the new nominal control



Fig. 3: Graphical representation of Pi, (Ni = 5) with quasi-
deadlock resolution. On the left, û is projected, resulting in
Γû; consequently the optimal solution u∗ changes. On the
right, kγ can be computed precisely as long as the optimal
solution to Γû is ∈ edge(Pi ∩Qi).

is Γiûi where Γi = I + kγi

[
0 −1
1 0

]
and kγi ∈ R for all

i ∈ N . This resolution tool is graphically explained in Fig.
3. Γûi is a nominal perturbation to the left, or to the right,
of ûi, depending on the sign of kγi.

This translates into kγi encoding the concept of left-hand
and right-hand driving, based on its sign. In fact, if kγi > 0
(kγi < 0) the control input is perturbed to the left (right):
when an agent i slows down due to the constraint imposed
by the presence of another agent j, agent i will reshape its
control input, steering slightly to the left (or right), based
on sign{kγi}. Moreover, according to the module of kγi, the
perturbation will be more or less aggressive, that is,

k
(1)
γi > k

(2)
γi →

∥∥∥ûi − Γ
(1)
i ûi

∥∥∥ ≥ ∥∥∥ûi − Γ
(2)
i ûi

∥∥∥ . (18)

For this reason, we will also refer to kγi as agent i’s direction
bias. The quasi-deadlock resolution is summarized in Algo-
rithm 1, where the subroutine Decentralized LP computes
the width of the feasible set as in (17) and Decentralized QP
computes the optimal safe controller as in (13).

Algorithm 1 Quasi-deadlock resolution

input ui, ûi, vi
δ ← Decentralized LP
if ‖ui‖ ≤ α & ‖vi‖ ≤ β & ‖ûi‖ > ε & δ ≤ 0 then

ûi ← Γiûi
u∗i ← Decentralized QP (ûi)
return u∗i

B. Direction Bias Estimation

Assume that every agent’s goal is shared on the network,
therefore ûj is known by every agent i, while kγj is not. We
also assume that the final optimal control u∗j is known by
every agent. As a first approach, we are going to ignore limits
on the acceleration input, i.e. αi = +∞. The problem to be
faced is, can agent i learn kγj from observing j’s behavior?

Proposition 1: Consider the QP problem in (13), where
αi = +∞, ∀j ∈ N , with the quasi-deadlock resolution
defined in Algorithm 1. If the nominal controller ûj , and
the solution to the QP problem u∗j are known for all j ∈ Ni,
then agent i can compute kγj .

Proof: Let us again consider the simple scenario of two
agents driving toward each other (position swapping) as
described in the previous sections. Since we are solving the
problem in (13), a QP problem in R2, we know that the
solution u∗j will solve all inequality constraints and at least
one of the inequalities will actually be solved as an equality
[15]. Using the assumption that only two agents are present
in the network, we can conclude that the matrix Aji will
always have one row, and therefore the solution will always
be along the line Ājiu∗j = b̄j , where Āji ∈ R1×2 and b̄j ∈ R.
We can express the cost function in (13) as

‖u− Γû‖2 = uTu + ûTΓTΓû− 2uTΓû, (19)

where, to ease up notation, we define ûj = û = [ûx, ûy]T

and uj = u = [ux, uy]T . Using the Lagrangian multiplier
λ ∈ R, we can express the equality

H = uTu + ûTΓTΓû− 2uTΓû + λ(Au− b) (20)

and, differentiating H along u we get

∂H

∂u
= 2u− 2Γû + λAT = 0. (21)

Defining Āji = A = [a1, a2] and b̄j = b, and recalling
that Au = b, we obtain u = Γû− 1

2λA
T from the previous

equation and we get

λ = 2(AAT )−1(AΓû− b). (22)

Finally, given that u = Γû− 1
2λA

T we conclude that

u = Γû− (AAT )−1(AΓû− b)AT (23)

which is linear with respect to the free parameter Γ. We
define (AAT )−1 = γ and note that γ ∈ R, ∀A ∈ R1×N

and AAT 6= 0, since A 6= 0 being it a distance (see (11));
moreover ‖ûi‖ > 0 from the definition of quasi-deadlock
(Def. 3.1). Equation (23) is a two-equation system with one
unknown parameter, kγ ; solving for ux, we obtain:

kest
γ =

ûx − ux − γa1(a1ûx + a2ûy − b)
ûy + γa1(a2ûx − a1ûy)

(24)

What this means is that, for a two-agent system, if we know
the objective controller û and the optimal safe controller u∗
for every agent, it is possible to obtain kγ of the agents once
they enter a quasi-deadlock scenario, i.e., Γ 6= 1, since if
Γ = 1→ kγ = 0→ ‖u− Γû‖2 = ‖u− û‖2. �

In Proposition 1 we did not take into consideration an
important constraint of the QP problem in (13): the acceler-
ation limits ‖uj‖∞ ≤ αj . These limits introduce a saturation
in the system in the form of inequality constraints, limiting
the admissible control space Pj ∩Qi, where Qi = {ui ∈
R2 | ‖ui‖∞ ≤ αi}. This limits the kγj estimation tool we
developed.

Proposition 2: Consider the QP problem in (13), with



Fig. 4: Experimental results for different head on resolutions. Figs. (c)–(e), and (d)–(f) show the same experiments,
respectively, proposed as a series of consecutive snapshots from the Robotarium. In (g) the arrival time comparison (original
formulation - quasi-deadlock resolution) of two agents heading towards each other, with a simulation time limit of 60 seconds
is shown. The initial displacement between the two agents is randomly selected, for a total of 500 simulations.

the quasi-deadlock resolution defined in Algorithm 1. If the
nominal controller ûj , and the solution to the QP problem
u∗j are known for all j ∈ Ni, then agent i can compute a
lower bound on kγj , where the solution to (24) is such that∥∥kest

γj

∥∥ ≤ ‖kγj‖.
Proof: As described in Fig. 3b, if the projection Γûj falls

along the half-line on the right of Γûj , the new optimal
solution u∗j will fall on the vertex of Pj ∩ Qi, regardless
of the actual kγj . However, the sign of kγj will still be
computed correctly and the resulting |kγj |, although wrong,
will provide a lower bound on the actual value of kγj . The
existence of u∗j is guaranteed by the definition of Type 2
quasi-deadlock. �

In this Section we propose a simple mathematical model
to encode rule–based quasi-deadlock resolution, thanks to the
direction bias kγ : left vs right handed, sign{kγ}, smoother
vs rougher, abs{kγ}. We then provide a way, for each agent
i to compute the driving direction bias kj for j ∈ Ni: this
allows each agent to gain knowledge of the driving behavior
of the other nearby.

C. Experimental Results

The Decentralized SBC with quasi-deadlock detection and
resolution is here implemented and tested on the Robotarium
at the Georgia Institute of Technology [16], a remotely
accessible swarm-robotics testbed. In particular, two AVs are
controlled with the goal of swapping positions on the plane;
four series of experiments are proposed, in close relation to
the problem statement of Fig. 1. The results are shown in
Fig. 4.

In Figs. 4a and 4b the two agents are perfectly aligned,
both implementing, respectively, right (kγ < 0) and left
(kγ > 0) handed driving bias. In Fig. 4c, the two agents
are slightly misaligned to their left on the vertical axis (both
agents have kγ < 0); however, since the misalignment is
not significant, both agents steer to the right, as the rules
of the road require. In the experiment of Fig. 4d, instead,

the misalignment is significant, as in Fig. 1d, resulting in
both agents holding their side of the road. Figs. 4e and 4f
present these two experiments as a series of snapshots, to
better visualize the agents’ behaviour.

As a further performance test, simulations are performed
in order to compare the behaviour of the Decentralized
SBC with quasi-deadlock resolution (QD), as presented in
this paper, with their original formulation, as presented in
[17] (NQD). In Fig. 4g the results are shown for dif-
ferent misalignment conditions (ordinate); the simulations
are performed with the same starting conditions with both
formulations and the difference (NQDtime−QDtime) in the
time arrival of the agents is shown (abscissa). Positive values
of the time difference indicate a faster goal achievement for
the QD resolution; a limit on the simulation time is fixed
at 60 seconds. As the results suggest, the QD resolution
outperforms the NQD around the point of interest (perfect
alignment). We observe that there is an area where the NQD
is faster; however, we argue that overall this new resolution
is faster and it never encounters a new deadlock (in the case
of QD, all goals are met before the time limit).

A video of the experiments is available online at
https://goo.gl/ctzmM3.

IV. HUMAN–ROBOT INTERACTION

Consider now the case of a mixed two-agent network,
where the first agent is autonomous and implements Decen-
tralized SBC with quasi-deadlock resolution as described in
Section III, and the second agent is remotely controlled by
a human driver. The human driver controls the robot agent
via a joystick or keyboard and is able to set the acceleration
input at any instant; the human is asked to drive the robot as
straight as possible to a specific goal point in the xy–plane,
resulting in a head-on scenario like the one described in Fig.
1b. We make the assumption that the human driver is not
ill-intentioned, i.e., he or she will not try to deliberately hurt
the system, for example by avoiding to take any deconflicting



action when a collision is imminent. Instead, the focus is on
establishing driving biases as a way of deconlicting motions
under relatively benign driving conditions.

We note that a human operator will not necessarily drive
enforcing the notion of SBC as discussed in the previous
sections of this paper. Safety of the systems in (13) can be
guaranteed only when all agents respect the conditions of
the problem. In the experiments presented in this section,
we will assume that the human drives without the intent of
harming the system, avoiding collision by steering (changing
direction) when she or he considers it to be necessary. Even
though we have no reason to assume that human drivers
employ SBC, the autonomous vehicle will act as if the human
was actually using SBC. As will be seen in the subsequent
section, this assumption does indeed provide insight into a
human driver’s behavior when related to her or his driving
direction bias.

Assume that the AV has perfect knowledge of the HV
input controller and of the HV control goal, e.g., a position
in the xy-plane. Let ui be the control input for HV, i.e. the
control signal imposed from the joystick. HV implements
a modified version of SBC, i.e., it computes the inequality
constraints for the problem in (13) as if in the autonomous
case, without however applying the computed optimal con-
trol, since it is directly imposed by the outside user. The AV
can observe the behavior of HV and has all the necessary
tools to mimic its QP problem, as seen in Section III for the
fully autonomous case.

Let u0i(t) be the control input expected from agent i at
any instant t and, dropping the notion of time for ease of
notation, let u⊥0i and u⊥i be the projection of u0i and ui,
respectively, on the equality constraint Aijui = bi, where
Aij ∈ R1×2 and b ∈ R. Let Bε(u⊥0i) be the ball of radius ε
centered at u⊥0i and let Li = {ui | u⊥i ∈ Bε(u⊥0i)}. This is
exlained graphically in Fig. 5.

Definition 4.1: A user’s control input ui is said to be goal
compatible with the control goal u0i if ui ∈ Li.

If the autonomous agent finds that HV is driving with
goal compatible inputs, no further actions will be taken, as
AV considers that the human driver is trying to achieve her
or his original goal, i.e., it is accelerating or decelerating in
the direction of the goal. On the other hand, if ui /∈ Li,
AV considers HV to be perturbing its control away from the
original goal, e.g., to avoid a collision, as seen in Fig. 5.

With this new tool we can construct the human–robot
interaction problem as the robot–robot problem of Section
III, where u⊥0 = u∗ and u⊥ = u∗Q, where u∗Q is the optimal
solution associated to Γû of Algorithm 1.

A. Experimental Results

A limited number of experiments is performed (more than
10) to validate the illustrated results. In particular, the same
human subject is presented with various head on scenarios,
each time with a different initial value of the autonomous
agent kγ ; the human subject was asked to deconflict the
agent according to personal preference and the reaction of
the autonomous agent and the kγH estimation was analyzed.

Fig. 5: Graphical representation of Pi of HV as seen from
AV in a simple two agents network. In this example, u /∈
Li, therefore the control u is considered to be not goal
compatible, revealing a right-hand biased for HV.

No significant difference in the behaviour of the autonomous
agent was observed.

Experimental results for one of such experiments are
shown here in Fig. 6. In particular, the AV agent is pro-
grammed with kγA > 0 (left-hand driving) and the HV is
allowed to steer to the left or to the right, as controlled
by a human driver via a joystick. The autonomous agent
ignores whether the upcoming agent is autonomous (and
using SCB) or is controlled by a human. Despite the lack
of this information, given the generality of the approach, the
AV is able to estimate the driving direction bias and can
update its internal value of kγH accordingly.

In the experiment of Fig. 6, the autonomous agent knows
that the HV needs to reach a point in the plane along its
current trajectory of motion; any acceleration input along
that direction will not influence the computation of kγH . In
Fig. 6a the evolution of one particular experiment performed
on a pair of GRITSbots is shown and in Fig. 6b the kγH
estimation performed by the AV is plotted against time. At
about 1 second from the start of this experiment (iteration
38) a goal compatible acceleration input is given: the user
commands the agent to accelerate forward, towards the goal.
Later in the experiment, just after the 4-second mark (itera-
tion 125) the user starts steering the robot agent significantly,
resulting in a well-defined sign of kγH , suggesting that the
HV is, indeed, steering to the negative values of kγ , i.e. to
the right of the goal.

V. CONCLUSIONS

A tool to solve conflicting motion paths for networks
of multiagent robots was presented. Focusing on the inter-
action of two robot vehicles heading towards a collision,
we provided a tool to deconflict the agents’ motion, while
ensuring safety with the notion of traffic rules. Based on
the agents’ relative position and velocity, the agents will
act according to road rules, or decide to break them if



(a) Snapshot evolution of head-on interaction between HV (left) and
AV (right).

(b) kγ of HV, estimated by AV. The shaded area highlights the actions that are
considered goal compatible and, therefore, ignored.

Fig. 6: Head-on scenario with mixed human-robot interaction. The AV starts with a left driving bias, but updates it based
on HV’s behavior.

particular conditions are present. We introduced the notion
of driving direction bias, as the direction (left or right)
that will preferably be used by the autonomous agent to
deconflict its motion, together with a tool to estimate other
agents’ direction bias. Finally, we investigated a strategy to
adapt the model, presented for the autonomous vehicles, to a
mixed human and robot interaction, where the robot vehicle
morphs its driving direction bias based on the observed
human behavior.

Even though there is no reason to believe that human
drivers employ barrier certificates, the construction in this
paper suggests that this assumption still allows for an effec-
tive deconfliction strategy between human and autonomous
drivers. Moreover, we believe that these results can be further
generalized, removing the need to share the agents’ state
on the network and exploiting tools already present in the
literature to estimate the local agents’ states from sensor data
[18]. Indeed, the performed experiments in the Human-Robot
interaction scenario are limited to just one human subject.
Further work is required to present a statistically significant
set of experiments that should aim at benchmarking the be-
haviour of this resolution tool with different human subjects
and, therefore, driving behaviours.
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