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Abstract—In this paper we propose a new approach to motion where y represents the desired configuration (or its approx-
planning, based on the introduction of a lattice structure in the jmation on the lattice), and € Z™ represents the number
workspace of the robot, leading to efficient computations of plans of times certain control words, i.e. sequences of control

for rather complex vehicles, and allowing for the implementation ¢ to b d. This i tandard bl in I
of optimization procedures in a rather straightforward way. The quanta, are to be used. IS IS a standard probiem in linear

basic idea is the purposeful restriction of the set of possible integer programming, which can be solved very efficiently in
input functions to the vehicle to a finite set of symbols, or polynomial time, by e.g. using the Hermite normal form of
control quantg which, under suitable conditions, generate a fF H = [B 0] U, where B € Q"*" is a nonnegative, lower
regular lattice of reachable points. Once the lattice is generated triangular, nonsingular matrix, arid c@Q""™ is unimodular

and a convenient description computed, standard techniques in . . . . .
integer linear programming can be used to find a plan very (i.e., obtained from the identity matrix through elementary

efficiently. We also provide a correct and complete algorithm to  COlumn operations).
the problem of finding an optimized plan (with respect e.g. to Clearly, once the generating matrik and its Hermite

length minimization) consisting in a sequence of graph searches. normal form have been computed (which can be done in
polynomial time [3], [4], and off-line), all possible plans to
reach any desired configuratignare obtained at once as

B_1 m—n
|. INTRODUCTION A=yt [ . Y ]  Ypezm™,

In this paper, the problem of steering complex systems
(such as wheeled vehicles with an arbitrary number of trailer8) lattice structure hence allows to solve different planning
among obstacles, is approached. The basic idea is to introdinstances in free space in practically negligible time. It also
in the robot’s workspace a particular structure, consisting offgioves very useful in planning amid obstacles, and in comput-
lattice, on which computations can be very efficient. This cdng shortest paths, as it will be discussed in this paper.
be obtained in some cases by suitably discretizing the space dfVith such motivations, questions are in order as to which
acceptable commands to the robot, thus reducing it to a finfgstems can be planned on lattices, and by which means.
set of control quantaassociated to symbols of an alphabe®lthough a general answer to this question is not known at
and describing robot motions through the generated languageesent, the theory of quantized control systems (QCS), a topic
The use of symbolic languages to plan complex motions of recent research, can provide very useful results. It is known,
large systems capable of complex behaviours, and to hierdr-particular, that the reachable set of nonholonomic systems
chically abstract levels of decision, planning and supervisioi, chained form ([5]) with piecewise constant controls taking
is an approach that has been recently advocated. A framewwdkues in a discrete set, is a lattice ([6]). It is also true that,
for describing these systems, Motion Description Languagé, suitably choosing the control set, the lattice mesh can be
has been introduced?], [?], [?]), while extensions to systemsmade arbitrarily fine.
with symmetries have been presented in [1]. Our ideas carln this paper we exploit these results and ideas to propose
be traced back to [2], although the technique there differ@dplanner for then-trailer vehicle model, which is known to
substantially from what presented here. be feedback-equivalent to chained form ([7]).
A lattice A is an additive group which can be generated by
integer combinations of a finite number pf Iinearl_y inde_pende;&t_ Method outline
vectors. If them generatorsh; are rationaln-dimensional . .
vectors (which will always be the case for us), and are arrangedThe basic step_s of the proposed method can be summarized
as the columns of a matrigl € Q"*™, then the generated @S follows (see fig. 1):
group is always a lattice, denoted As= {HA\|\ € Z™}. 1) write the kinematics of the-trailer system in the usual
The crucial observation from which our proposed method ~ coordinates and with velocity inputs gs= T'(g)v(t),
departs from is that, under suitable conditions, the set of ¢ € R**", v(-): Ry — R® (see (11));
reachable configurations of a mobile robot under sequenceg) use a continuous feedbaek:) = f(q(-),u), and a
of control quanta, is a lattice. The planning problem is in this ~ coordinate change: = ®(g), as specified in [7], to

case reduced to solving the linear integer equation obtain an equivalent system= C(z)u(t) in chained-
form (see (2));
y=H\ Q) 3) restrict the new input(¢) to piecewise constant func-

tions over a sampling tim&, and compute the exact
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values within a state-independent set of input symlid|s
which is symmetric (i.e., ifu € U, then alsou = —u €

U). The setQ) of admissible control words (i.e. strings of
T(q) v 4

F In this paper we assume that inputs= (uy,us) can take
W

[T

R
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admissible input symbols) is endowed with a composition law
given by concatenation of strings. Because of the symmetry
of U, every elementy € Q has an inverse—! € Q, simply
defined agu us - - - Up) ™t = —Up, - - - —ug—uy, Fu; € U,Vi.

In the state manifold of chained-form systems (2-3) it
Fig. 1. Symbolic inputs are encoded by feedback into piecewise const@gtcustomary to distinguish hase subsystem, consisting of
functins, which make the reachable set a lattice. the first two state variableér:,z,), and afiber subsystem

with coordinates(zs,...,z,). Observe that the restriction
of chained-form systems to the base variables is linear, and

5) compute the reachable lattice for this system. If th@deed trivial to control. On the other hand, the difficulty

reachable lattice mesh is too rough, change or ag¢l controlling fiber variables increases with the dimension

b

ub}u:I

elements inU/, and recompute; . ~ of the state space. A typical example of such situation is
6) solve the (optimal) planning problem in terms of a finitein parking maneuvers of tractor-trailer systems, where base
length sequence of discrete inputs; variables are associated with the steering tractor, and fiber

7) apply the computed sequence as a piecewise consigdables correspond to the configurations of the trailers (see
input u(t) to the chained form system, and extrackection V).
the corresponding pati(¢) in the original coordinates,  accordingly, the reachability problem for discrete-time
and the piecewise continuos inputt) that solve the cnained-form systems can be decoupled in the analysis of

steering problem. reachability of the base space, and of the fiber spate’R
associated with a reachable base pdint, 7o). On the base
Il. REACHABLE LATTICES space system (3) has the simple form
In this section we briefly report, for reader convenience,
some basic definitions and ideas on lattices that will be zt=z+4+u, zeR*ucl. (4)
necessary in the rest of the paper. Details can be found in
[6]. For such linear driftless systems, the analysis of the reachable

In solving the steering problem, a particular class of nonlirset has been characterized as follows ([6]):
ear systems, specifically, chained-form systems is consideredTheorem 1:For the set?(0,%/) of configurations reachable
Such form has been introduced by Sastry and Murray from the origin the following holds:
[5] as a canonical form for some continuous-time, driftless
nonholonomic systems and can be described by ordinary
differential equations:

i) A necessary condition for the reachable set from the
origin R(0,U) to be dense in R is that U contains
n + 1 controls of whichn are linearly independent;

£ = wuq, iy If U ={v1,...,0041}, Whereofvy,..., v, are linearly

Lo = ug, independent, and; are the components af,; w.r.t.

T3 = xquq, @) the otherv;'s, then R(0,U) is dense if and only if
. w; is negative for alli and 1,w;,...,w, are linearly

independent ove®, that isag + ajwi + - -+ + apw, =

Tn = Tnoati 0,a; €@, if and only if a; = 0 for all i;
While many steering methods for chained-form systems havg) If w,,...,u, € U are linearly independent and there
been provided in literature, optimal control for these systems  existn irrational negative numbers,, . . ., a,, such that
is still an open problem. v; = qu; € U for everyi = 1,...,n then R(0,U) is

Consider the case where system inputs, rather than being dense;
allowed to change continuously in time, are bound to switchiy) If there existsm < n vectorsy; such thatvu € U, there
among a finite set of different levels at given switching times, exists m integers, ..., a,, such thatu = a;v;, then
which are multiples of a given time interval. Assuming such R(0,U) is discrete. In particular, it is a lattice.
sampling interval to be of unit length, a discrete time model opserve that the reachable $&t from a generic point: is
of chained-form systems can be easily obtained from (2) Btained by translation oR,. Therefore, if the control set’
Integration as is quantized, symmetric and rational (as it almost always is in

= 2+, cases of interest, and as we assume in the rest of this paper),
i =y +uo, the reachable set is a lattice.
3 = T34 xoup + %uwQ, 3 Fixed a base pointz,, 75 ), consider the subgroup c  of
. control words that take the base variables back to their initial
-= ; configuration.
zf = o+ Z?;f wnfj% + uTQuQﬁ. The effect of such subgroup on the fiber subsystem can be



described by [6] whereb; are thegeneratorsand can be written ds = &;o0; !
with @ € £ and where the control sequencés are called
transits

whereU = {Af(w),w € Q} and whereA/(w) denotes the  For example, on a two dimensional lattice, the transitnd
(n—2)-dimensional projection ah on the fiber space. Clearly, the wordw = vu —v —u € L (figure 2, left) give the generator
U is itself symmetric: indeed ifo € Q then alsow™! € Q@ wvu—v—u—u represented in figure 2 (right). With respect to
and Af(w~!) = —Af(w). The action of the subgrouf on cyclic generators (elements 6%, transits cause a translation
the fiber is additive (namelyd(oy, A(02, 7)) = A(@1,z) + on the lattice structure of cyclic generators (see figure 2).
A(&9, ), V1,09 € ), and the structure of the reachable set
in the fiber is the same over every (reachable) base point.

For the selU of all control inputs that can be applied to the
fiber dynamics (5), corresponding to the set of input words
Q) that drive base variables back to their initial values, the
following result holds ([8]):

Theorem 2:Let the control set/ be quantized, symmetric
and rational. Then, all elements/ (&) € U can be written as
integer combinations of a finite set of generatm;% uniquely
determined froml/. Each generator is a rational vector in Fig: 2. Left: representation 0§ = vu —v —u € £}, it takes back the base

n—2 . _ ~ .. variables (form a cycle on the base lattice), right: an example of composition
Q" 7, corresponding to a control wotd; € €2 in the original 4 ., with transituw, it is a non minimal cycle.
alphabetl.

As a consequence, with reference to system (4), we canwhile the control sequences ¢ £ are obtained at lower
conclude that if the controls sktis rational and quantized, thecost by construction, for the transits it is necessary the follow-
reachability structure of a chained-form discrete-time systeify optimization algorithm (in this formulation the problem is

is completely described by a lattice in the state space (t§6lved in minimal time but more general weights-problems
cartesian product of the base and fiber lattices). Such lattiggn be solved equivalently).

structure can be described completely by a finite number of\we consider a functiow : 2 — @ defined as
generators, whose evaluation can be done in polynomial time c
with respect to the state space dimension and the number of o(w) = Zaiui,l
control symbols inU ([6]). i=1
. In relation with .the optimgl steering problem in ”Ethse(fWhereai €@ andu, ; is the first component of a the control
tion the computation of optimal generators for the lattice i, < ;7. Since the generators are rational and a finite set, it is
described in details. possible to define a functiok from the control sequence3
to Z such that g(w) = 2k(w), wherek provides the integer
A. Generators and transits part of the valuer(w).

In order to compute generators we need several definitionsSuppose thathe G.C.D. between at least two first compo-
and lemmas that can be found in details in [6]. First of aljents of symbols it/ is one This condition is strictly related
let consider a functiort defined on the set of input wordsto the existence ab; such thatt(w;) = 1, and it is sufficient
Q and that counts the number of symbol that appear int@a allow correctness of the following algorithm:
word taking into account signs, for each positive symbol in Step i:fori from1ton —3

Z+:Z+U7Z:(I’3,I4,"',$n)6Rn_27U€U (5)

the control set/ € Q". SinceU is symmetric its cardinality Solve .

is even, for exampl€c, then the function: takes value in min  X(w)

Z°. Furthermore, lefVy, be an integer value matrix such that s t { k(w) = i (6)
W Ny = 0 and such that G.C.D. of element of each column o w € Q

is 1, for each column.
_ Let c be the number of positive symbol @i, the subgroup
Q can be described also throughand Ny, as follow:

where the function®(w) : © — N counts the number of
symbols in the wordv without taking into account signs. Let
w; be the optimal solution founded at stép
Q={weQS(w)=(Nwa),a e (NU{0})2} Since the optimization problems (6) are linear and
. , have infinite dimension, they ar&”P-complete. TheN P-
Furthermore, if we define completeness can be solved rewriting the problem 6 as follow:

L ={w e QE(w) = £(Nw);,w of minimal lengtf},

min ||z
where (Ny); is the j-th column of Ny, we have that the set st { Fo = i )
C ={waw ™ weQ o e L}is a set of generators fdr z; € N
but it is not finite. 1x2m

By theorems in [8], we have that it is possible to computve\zlhere |[.]| m and the matrixr” € Q 5 composed
-2 of the first component of each control input ih and the
a finite set of generators of the form :
componentz; of the vectorz counts how many times the

Bpase= {bi € QIAS (b)) € B}, control to which F; belongs is considered in the solution.



Such optimization problems can be easly solved by an intederund to the actual cost of the corresponding control. Indeed,
optimization commercial package such as CPLEX [9]. cancellations of one or more trailing symbolsdn with an

As we have explained at the beginning of this section, tlegual number of symbols leading @y is possible. We will
transits are employed to construct cyclic generators in relatidenote byC/(&;, ;) the actual cost of the word paii;, ;).
to the dimension of the configuration space but it is important For example, ifo; = wjususzus and @; = —ugus —
to underline that the choice of the transitis independent of , — v, in a minimum time problem we hav€; = 4 and
the construction of the increment matel (w) of the steering C; = 4. However, the concatenation af; with @; leads,
problem. Indeed, in order to determine the control generatdsg cancellations, to the control woreh usuzus — us — ug,

we use only the fact that a transit verifies the condifién) = so that C'(&;,&;) = 6 < 8. Obviously, cancellations are
i, for particulars, without using an explicit word, [8]. crucial in minimizing unnecessary maneuvers in the steering
problem, and motivate the following reformulation of the
IIl. STEERING ON LATTICES THE OPTIMAL optimal control problem.
CONTROL PROBLEM Consider an oriented grapfi, = (N, Ag) with a setNj

. . . . of [ +2 nodes|] of which are associated with the contributions
Consider the system (3) with a quantized, rational ang(%) on the fiber given by generatobs — @;, and where a

symmetric control setV. Let H eQ”‘“l denote the matrix . .
whose columns are thiegenerators contribution on the fiber>tart nodeS' and a goal nodé” are add_ltlonally considered.
In the arc set4, of G, all arcs connecting the start and goal

A = A(@;),i = 1,---,1. Without loss of generality, up to . . :
v D ) ! nodes S, F' with all other nodes are included, i.€S,:) €
I he fi tak ! ’ -
rescaling the fiber state space, we may tak& be an integer Aovi=1,....land(i, F) € Ag,i = 1.....1. An arc (i.j) is

matrix. Thesteering problenon the fiber without obstacles is; . 0 - )
the problem of finding a control sequence that takes the systg1 luded mAQ O?Iy I]f w; anda, are not the rllnverse'of gach
(3) from an initial g4, 10 a desiredyy.q;. Hence, it consists other. n particular, for every nodes# S, F, the arc(i,i) is
in solving a linear system of the form: included in A,. o . N

~To the arc(i,j) € Ao we associate the cost;; =

Hz = (qgoat — dstart)- (8) C(@,@;) — C(@;) > 0 of the control sequencés;,w;) (o
: ! : , L that the cost of patlS, i), (4, j) on the graph isC(w;, @;)),
Integer solutionsz € Z of this equation exist if an only (ayjng into account all possible cancellations. Notice that in
if the initial and goal points differ by a vector belonging togeneraléi +is not equal toC ; (in the example above, for
the fiber lattice, which we will assume henceforth (in othef,ciance & - — 6 — 4 — 2 while ¢\ — 4 — 4 — 0). In
cases, integer truncations of a real solutiorwill provide fi T Jv :

. . S s 8ure 3 an example of graph is represented. A refinement
approximated steering to the goal, within a tolerance dictate

by the lattice mesh). e o_

Any solutionz = (xzy,---,2;) € Z' of system (8) gives ///’/75\\ TN N
a sequence of cyclic control inputs that includgsinstances PAOANED o IS, v N
of the wordsw;. There are of course infinitely many possible ,~ C/.,,——@ _________ G*\g\ N
solutionsz, each corresponding to a combinatoric number of ;T ™\ \\\\\\ ~ =i TN
different possible sequences of control woigs @ GJ.II \'6. \\A\\\C\Ik ! \l

Optimal steering strategies among solutions of (8) will b A 4 ’AJ Ck\l\\\\\\ L |
considered introducing a cogt associated to the control \\ e} ) ______m\\\:\ A /
symbol u; € U. The corresponding cost for a word = AN T’A: T LT < ///
(ur, sz, un),u; € U is defined ag’(w) = || Pz, where S N P
x; stands for the number of appearances of the symbah \\N_Z:>-<:\___,,ﬁ;

w (with negative sign if—u; appears), and® = diag(p;).
A constrained minimization problem can be considered Bp. 3. Graph associated with generators of the fiber displacements.
this point, i.e.
step is necessary to finalize the graph construction for pairs
e e g ) (@i, @;) where the number of cancellations is larger th_an the
s. t. { goal T start half-length of the shortest of the two words. Indeed, in this
TEZ case it may happen that the cost of a triplet,w;, @) is
leading to a linear integer program if a one-norm is consideradhderestimated b@fréjk. For example, ifo; = uv —uvu,
while using a two-norm would result in an integer quadrativ; = —u —vuv andw, = —v —u —u, we haveo;w; = uvv
program. Efficient algorithms do exist for both these problem&;; = 3 -5 = —2) andw;&p = —u —v —u (Cj, =3 —4 =
however, unfortunately, such formulation does not reflect thel) while the triplet isw;w;w; = uv —u —u whose cost is
reality of our optimal control problem. 4—5 = —1 whereas on the graph the path ), (¢, ), (j, k)
Indeed, in combining control words by concatenation camould cost5 —2—1 = 2. To avoid this problem, we remove in
cellations of symbols may occur. To obtain the sum of twihe graph the ar¢i, j) corresponding to such pairs, and add a
control actionsA(w;), A(@;) on the fiber, corresponding tonew node associated t(w;) + A(w;) with costC;;. These
control words @;,w; whose costs arel; = C(w;) and new nodes are connected to all other nodes by arcs whose cost
C; = C(w;), respectively, the surd’; + C; is only an upper is evaluated as usual, with the exception of arcs corresponding

min, || Pzl



again to cancellations of more than the half-length of eitheonstraints given in (8) wher®l ¢ R"~2*! and the column
words, which are not considered in the new graph. Flj is associated to the afic= (i, k) and represent the “token”
On the graphG), all possible combinations of the generatpayed at node: that is A(b;) (where by is the generator
ing control wordsy; are represented by connected paths froassociated with nodé). The vectorD represent the total
S to F'. The optimal control problem on the fiber space cadisplacement we intend to achieve on the fiber.
hence be formulated as follows: A branch-and-bound algorithm is applied to search mini-
Given the oriented grapliy, determine the minimum-costmum cost, token-constrained paths@n Within such branch-
path from S to F' with the constraint that the sum of al\; and-bound subprocedure, the token constraint is relaxed, hence
of visited nodes equals the desired fiber displacemgnt — a number of classical minimum cost path search problems are
Zstart- obtained (solvable by the Dijkstra algorithm [10]) in each of
Thus, the optimal control problem can be regarded aswdich an arc is forced to ber{ = 1) or not (x; = 0) in the
minimum-cost path search on a graph, with a constraint eptimal solution. If the forced conditiom; = 1 or 2; = 0
the sum of “tokens” collected at each visited node. Notiderings to a shortest path of cost larger thathen the relative
that G contains cyclic arcs of typéi, ), allowing to collect branch is cut and not further explored. Otherwise, another arc
an arbitrary integer number of the corresponding tok€w,). is forced to be or not in the optimal solution. If all branch
The search problem is/& P-complete linear integer program-are cut then no solution with cost less thidrhas been found.
ming problem ([3],[4]), and differs substantially from standar@®therwise, an optimal solution is found with cdst < U.
shortest path searches on a graph because of the constraintTdris solution is the shortest path from nodeto F' but in
of the presence of cycles (cyclic paths are obviously neverder to be an admissible solution of problem (10) it has to
considered in unconstrained path searches). The followingrify the token constraint. In this case the upper bolindn
section proposes a correct and complete algorithm to solve optimal cost is updated] = U;.

this optimal control problem. At the ¢ + 1-th step of the algorithm, a grapf;; ;1 =
(N;11, Aiy1) is built such thatV, 1 = N; + No\ {S, F'}, and
IV. A SOLUTION ALGORITHM A;1 contains all connecting arcs between different nodes in

The non-standard nature of the optimization problem déV;11 (without cyclic arcs). In other words, each noglevith
scribed above is such that even rather general solution teelsycle arc is split into two nodes (see figure 4) so that at step
niques, as e.g. branch and bound, and commercial softwar@ath withi cycles can be considered. A branch-and-bound
tools for integer programming, cannot be used directly to sol@gorithm is used again to find the constrained minimum cost
the problem. We propose a procedure for the solution of this+1, and the upper bound is updated’if;; < U and if the
problem which basically consists of solving a sequence &lution verifies the token constraint.

problems of increasing complexity. Ca
Consider first that an upper limlf on the optimal control ,/C‘“\\

cost can be easily obtained by evaluating the égsbf any N @ EE— 0 ’

solution of the integer linear system (8) — for instance, a -

solution to problem (9), in the following will be referred to as Ca

starting solution

At the first stage of the proposed algorithm, a new grapty. 4. The node with a cycle arc is split into two nodes and two arcs.
G, = (N1, Ay) is built by settingN; = Ny and by removing
all cyclic arcs fromAg, namely A; = Ap \ {(4,7),Vi}. Let A stopping condition for the procedure can be provided as
now formalize the optimization problem obtained with théollows. A lower bound on the optimal control cost solution
formulation given in previous section. Consider the incidende is initially set equal to the cheapest cdsg = C; of arcs
matrix £ € R**" associated with the grap&;: given an of type (S,) in the G, graph, since the cost of af¢, F) is
order to the elements of set; (cardinalityt) and of set/V;  zero. At each step, the lower bound is updated as L;, ; =
(cardinality s), the element;; = —1 if the : —th node is the L;+C., whereC, denotes the minimum cost of a closed cycle
first node of arcj, E;; = 1 if the i — th node is the second in the graphG;. The value ofC. is determined once and for
node of arcj, E;; = 0 otherwise. Letr € R be the vector all at the beginning of the procedure, by solving a standard
variables taking values if0, 1}* and representing the orderedunconstrained) minimum-cost path problem @p.
arcs of the graph. Ley € R® such thatgs = —1, gpr = 1 The overall procedure is stopped wheneter U.
andg; = 0 for i # S, F. Finally, let CT € R' be the vector  Theorem 3:The solution algorithm is correct and complete.
in which the cost of the arcs are reported, the optimization Proof: Because initial and goal configurations are as-
problem is then sumed to belong to the lattice, the optimum exists. Also,
because the action on the fiber of the whole grdupof

in C i : .
i xEx —q control inputs that correspond to the desired final value of
st Hr—d (10) the base variables, is generated by the finite set of gener-
o - e{_() % ators A(&;),i = 1,...,m, and this set is (implicitly, but

. completely) searched by the branch-and-bound algorithm at
where the set of constraintdx = d (in the following will successive stages of the algorithm, the algorithm is correct. On
be referred to as set doken constrainfs represents the the other hand, the two sequendds;};>o and {U;};>o are



strictly uniformly increasing and non-increasing, respectivelget. Solving the linear system (8), a solution to the steering

and at any stage it holds; < U,. Hence the algorithm stopsproblem in an unconstrained environment is computed. In

in a finite number of stages, all of which consist of an impliciparticular, from a solution of (8), a controls collecti¢m; };c s,

search on a finite graph, i.e. of a finite number of operationsith J C N,|J| < oo, is provided to solve the specific
W steering task in polynomial time.

The proposed algorithm has exponentially increasing com-By conversion, this control sequence yields a sequence of
plexity with the number of generators, as it uses a number giEce-wise continuous controls for the original system (11).
instances of a branch and bound procedure: this is hardly a
surprise, as we are after all dealing with a nontrivia_l optima|  qllision free trajectory planning fon-trailers
control problem. However, performance can be improved

by providing good initial estimates of the upper boufig. Once controls are obtained as solution of the steering

Some preprocessing of generators to facilitate the algorittfiPPIem (8) the continuous time trajectory of system (11) is

convergence can also help, and work is currently ongoing ffMPuted through the integration of such controls. Let con-
this direction. The next section will provide some numeric&ld€" @n environment with obstacles that can be approximated

examples of application of the proposed algorithm. with polyhedralO; of the form

V. n-TRAILER STEERING WITH OBSTACLES . . . .
A Collision Test functiorran be introduced, as a function from

As mentioned in the introduction, among the nonlineghe configuration spac to binary valueg0, 1}, as following
systems which can be converted in chained-form (2), wheeled

vehicles represent a particularly interesting class. CT : X —{0,1}

The kinematic model of a tractor with trailers is given by whereCT (z) = 0 if no collision is detected and7 (z) = 1

& = cosb,vu, otherwise. In checking collisions, a security distamcéom
y = sinf,v, the side of the polyhedral obstacles and a security radfos
0, = di sin(fn_1 — 0p)vn_1 the vehicles to steer are considered.

A conflict free trajectory can be easily and quickly com-
(11) puted as follows. Given initial and final configurations (named

0; = d%sin(ﬁi_l —0i)vicy i=1,...,n ¢; and ¢y respectively) a solution of the steering problem
is obtained by solving the linear system (8). Each solution

. 1. provide the number of time:; each generatow; must be

00 = g;sin(fo—01)vo applied in order to reach the desired configuration. The order

bo = w of application of control words is arbitrary. Let choose a

where (z,y) is the absolute position of the center of the axi&@duence(wi}i=1, .. of generator such that each generator
between the two wheels of the rear-most traily;is the @i @Ppears exactly; times in the sequences, whene =
orientation angle of trailef with respect to ther-axis, with 2_i—1 i 'epresents the total number of times generators are
i € {1,...,n}; 6, is the orientation angle of the tractor axl¢2PPlied. The chosen control sequence is then integrated and
with respect to thes-axis; d; is the distance from the centerthe collision test is applied to the obtained continuous time
of trailer i to the center of trailei — 1, i € {2,...,n}; d; is trajectory. If a.c.oII|S|on is detected, the contralj which

the the distance from the wheels of trailer 1 to the wheels 68Uses the collision can be computed and then removed from
the tractor. The two inputs of the systems ageand w, the the solution control sequend@; }i=1, ... Let now consider

tangential velocity of the car and the angular velocity of th@hother order of the cutted sequer@g};—;, ... so that the

is given by is detected.

Planning, trajectory integration and collisions checking are
repeated until a free control sequence is obtained as solu-
tion of the steering problem. Assume that after a sequence
{t;}i=1,... k-1 the state?; is reached and no conflict free con-
where: € {1,...,n}. Incidentally, this model is identical to trol sequences can be found by permutation§@f;—x. .. ..
the model of a four-wheeled car pulling-1 trailers, provided In this case also the contral;,_; is removed by the control
6y — 61 denotes the angle of the front wheels relative to treequence and the procedure continues as described above.
orientationd; of the rear axle of the four-wheeled car. If during the described procedure, it is necessary to remove

Sgrdalen in [7] has shown, by a constructive method, thait controls from the initially computed sequences the algo-
system (11) can be converted in chained-form. We considé&hm is stopped and it is not enable to provide a solution.
here the application of the lattices steering algorithms to ti@herwise, a collision free path has been obtained through a
general steering problem with obstacles and to the optim@érmutation of the sequende; };=1,.. .
steering problem for wheeled vehicles with trailers. In figure 5 a trajectory computed with the described pro-

This implies introducing time and control quantizations imedure is reported for a car-like system with a polyhedral
(11) that by conversion and feedback has a lattice as reachaiiietacle, the trajectory cost is equal to 12.

v = cos(@i,l - 97;)’01',1 = H COS(9j71 — 9]‘)?)(],
Jj=1



Fig. 7. Optimal trajectory of cost 8 for the car-like system with polyhedral
obstacle.
Fig. 5. Trajectory of cost 12 for the car-like system with polyhedral obstacle.

algorithm described in section IV is not collision free. The
optimal collision free trajectory tested with the collision test
function has always cost 8 and is reported in figure 7.

VI. CONCLUSIONS

In this paper, the steering problem with obstacles for
wheeled vehicles with trailers, has been studied by introducing
inputs quantization and converting the continuous-time kine-
matic model of these systems in chained-form.

This systems class, that represents a so called “canonical
form” for a wide range of mechanic systems, has the important
property to have a lattice as reachable set under quantized
rational inputs. This structure plays a central role in solving the
steering problem for this systems class, for which a polynomial

Fig. 6. Optimal trajectory of cost 8 for the car-like system in an environmer"lj‘tIgorlthm has been developed. .

with no obstacle. The lattice structure can be used to solve the optimal
steering problem. In particular the optimal control problem
on reachable lattices is formalized as an integer linear pro-

B. Optimal collision free trajectory planning fat-trailers gramming problem that cannot be solved directly by standard

Let now consider the problem of optimally steering INt€ger prograr_nming tgchniques and therefore a correct and
trailers in an environment with polyhedral obstacles. First, tf@Mmplete solution algorithm has been proposed. _
system (11) is converted in chained-form, and the algorithm With relation to wheeled vehicles with trailers, by inputs
described in section IIl and IV is applied. The collision tesju@ntization and conversion in chained-form, the steering
function has been integrated in the algorithm as follows. Problem has been solved on lattices and our optimization

At each step of the algorithm a solution is provided, thiglgorlthr_n yields sup-opumal solutions for_the optimal control.
solution consists in a sequence of control that steer the systerftPPlying the previous results, the steering problem has been
as desired and has a minimum cost for the current step. T§fived also in presence of obstacles with a minimal compu-
continuous time trajectory is then computed and tested fgtional additional cost and the experiments give satisfactory
collisions through the collision functiod7. If collisions are esults. _
detected the solution is not admissible and the optimal solution>iNce in this paper the steering problem has been con-
of the algorithm it is not updated. Notice that the collision te§tdered, open—loop controls are computed. Our future work
does not modify neither the structure of the algorithm report&@nSists in solving the optimal control in close-loop, applying
in IV and nor its completeness and correctness properties.the Ia_tt|ce structure of thg reachable s_ets and classical control

In figure 6 an optimal trajectory, computed with the algol€chnics such us Dynamic Programming.
rithm described in section IV is reported for a car-like system,
the trajectory cost is equal to 8. REFERENCES

Referring to figure 7 the same problem reported in figure @] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning
is exploited, in particular same initial and final configurations fordag"etal:tgno?“ous Vehic("eé"'hizxc- A'f'z“ogouida“iexlTaVigation,
are considered. Let consider an obstacle in front of the cafs a Marigo and A. Bieohi, “Steering driftiess nonholonomic

’ " X ) i ; A. Marigo and A. Bicchi, “Steering driftless nonholonomic systems by
like vehicle, the optimal conflict trajectory computed with the ~ control quanta,” ifProc. IEEE Int. Conf. on Decision and Contydl998.



[3] A. Schrijver, Theory of Linear and Integer Programming Wiley
Interscience Publ., 1986.

[4] L. A. Wolsey, Integer Programming Wiley Interscience Publ., 1998.

[5] S.S.S.R. M. Murray, “Nonholonomic motion planning: Steering using
sinusoids,”IEEE Trans. on Automatic Controlol. 38, pp. 700-716,
1993.

[6] A. Bicchi, A. Marigo, and B. Piccoli, “On the recahability of quantized
control systems,JEEE Trans. on Automatic ContrdWiay 2002, in press.

[7] O. Sordalen, “Conversion of the kinematics of a car witlrailers into
a chained form,” inProc. IEEE Int. Conf. on Robotics and Automation
1993, pp. 382-387.

[8] A. Marigo, B. Piccoli, and A. Bicchi, “Reachability analysis for a class
of quantized control systems,” IProc. IEEE Int. Conf. on Decision and
Control, 2000, pp. 3963-3968.

[9] “llog cplex user-s guide,” Tech. Rep., 1999.

[10] E. V. Denardo, Dynamic Programming: Models and Applications
Prentice-Hall, Inc., Englewood Cliffs, New Jersey,, 1982.



