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Feedback Encoding for Efficient
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Abstract— The problem of efficiently steering dynamical sys-
tems by generating input plans is considered. Plans are con-
sidered which consist of finite–length words constructed on an
alphabet of input symbols, which could be e.g. transmitted
through a limited capacity channel to a remote system, where
they can be decoded in suitable control actions. Efficiency is
considered in terms of the computational complexity of plans,
and in terms of their description length (in number of bits).

We show that, by suitable choice of the control encoding,
finite plans can be efficiently built for a wide class of dynamical
systems, computing arbitrarily close approximations of a desired
equilibrium in polynomial time. The paper also investigates how
the efficiency of planning is affected by the choice of inputs,
and provides some results as to optimal performance in terms of
accuracy and range.

Index Terms— Symbolic control, Specification complexity, Hy-
brid Logic-Dynamical Systems.

I. I NTRODUCTION

I N this paper we consider the problem of planning inputs
to steer a controllable dynamical system of the type

ẋ = f(x, u), x ∈ X ⊆ IRn, u ∈ U ⊂ IRr (1)

between neighborhoods of given initial and final states. As a
solution, we seek afinite plan, i.e. an input function which
admits a finite description. We are interested in plans with
short description length (measured in bits) and low computa-
tional complexity. Particular attention is given to plans among
equilibrium states, regarded as nominal functional conditions.

Motivations to study this problem come from a growing
number of applications requiring to steer physical plants,con-
sisting of dynamical systems capable of complex behaviours,
by hierarchically abstracted levels of decision, planningand
supervision, i.e. by logic control. In the control literature,
methods for generation of reference trajectories have been
often considered as feedforward components in a two degree
of freedom controller design ( [1]). In this spirit, several
authors have addressed the problem of reducing the trajectory
generation problem for complex systems by planning for
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simpler, lower dimensional ones, by e.g. kinematic reductions
[2], group symmetries [3], [4], flatness-theory tools [1], or
hierarchical system abstractions [5].

With respect to that framework, an additional concern about
the complexity of describing plans is introduced whenever
communication or storage limitations are in place. Particularly
fitting to this perspective are examples from robotics, where
input symbols may represent commands (akabehaviors, or
modes.) For instance, for autonomous mobile rovers, high level
plans may be comprised of sequences of motion primitives
such aswander, look for, avoid wall, etc.; in the
control of humanoids (see e.g. [6]), symbols are encountered
such aswalk, run, stop, squat, etc.. An operational
specification for such systems is naturally given in terms
of the language built on symbols. The capability of such
languages to encode the richest variety of tasks by words
of the shortest length, is a crucial aspect when dealing with
realistic conditions. Consider for instance the case wherethe
robotic agent receives its reference plans from a remote high-
level control center through a finite capacity communication
channel, or plans are exchanged in a networked system of
a large number of simple semi-autonomous agents. In gen-
eral, it can be assumed that robots are capable of accepting
finitely-described reference signals, and can implement a finite
number of possible different feedback strategies via the use of
embedded controllers, according to the received messages.

Several important contributions have appeared in recent
years addressing different instances of such symbolic con-
trol problem, e.g. [4], [7], [8]. A general framework for
such systems and problems can be traced back to ideas on
Motion Description Languages in [9]. The line of research
addressing finite hyerarchic abstractions of continous systems
via bisimulations ( [5], [10], [11]) has several contact points
with the one presented in this paper, although the type of
methods and results are thus far quite distinct. Of direct
relevance to work presented here is the quantitative analysis
of the specification complexity of input sequences for a class
of automata, presented in [12]. The key result there is that
feedback can substantially reduce the specification complexity
(i.e., the description length of the shortest admissible plan) to
reach a certain goal state.

In this paper, we address similar questions as in [12] for con-
tinuous dynamical systems. The problem is tougher than for
automata, in that continuous systems are not finitely describ-
able themselves, and exact plans have in general the cardinality
of the continuum. Considering straightforward quantizations
of the inputs, on the other hand, does not help much, as
the reachable set may result in a mere collection of scattered
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points ( [13]–[15]), thus making planning computations very
complex. The main contribution of this paper is to show that,
again by suitable use of feedback, finite plans can be efficiently
found for a wide class of systems.

More precisely, we show that by introducingcontrol encod-
ing of a symbolic input language, we can compute in polyno-
mial time plans whose specification complexity is logarithmic
in the size of the region to be covered. In our context, we
postulate that control decoders are available and embedded
on the remotely controlled plant. Decoders receive symbols
from the planner, and translate them in suitable control actions,
possibly based on locally available state information.

Whenever the proposed method of symbolic encoding ap-
plies, a control languageis obtained whose action on the
system has the desirable properties of additive groups, i.e.
the actions of control words are invertible and commute.
Furthermore, under the action of words in this language, the
reachable set becomes a lattice. Finite–length plans to achieve
arbitrarily close approximations of a given equilibrium can
thus be computed in polynomial time. Under this point of view,
the contribution of this paper can be regarded as an extension
of planning techniques in [15] (only applicable so far to
driftless nonlinear systems in so-called “chained-form”), to a
much wider class of systems, most notably systems with drift.
This objective is achieved by three main novel ideas which
are developed in this paper: i) the introduction of feedback
encoding, which affords the wealthy of feedback-equivalence
results in the nonlinear systems literature; ii) the study on the
minimal specification complexity for interval-filling controls,
derived from concurrent work of number-theoretic nature, and
iii) the concept and technique of periodic steering for systems
with drift.

By virtue of feedback encoding, complex nonlinear systems
— indeed, the same class of differentially flat systems [16]
considered in [1] — can be abstracted (at least locally) to a
linear system. Planning for flat systems can then be achievedin
a linear setting, hence projected back on the original systems
by feedback decoding. This process is thoroughly illustrated
in the paper by an example of a MIMO nonlinear model of
an underactuated mechanical system.

A. Problem Description

Consider again the control system in (1). We assume that
for inputs u in a rich enough class of functions (e.g., the
space of bounded functionsL∞), the system (1) is completely
controllable, i.e. for any given two pointsx0, xf , a plan (i.e.,
a finite-support input functionu : [t, T + t]) exists that steers
(1) from x0 to xf .

Such plan would generically require an infinite–length de-
scription. Because we are interested in finitely describable
plans, i.e. concatenations of only a finite number of elementary
control actions, only approximate steering can be achievedin
general. We therefore study the following question:

Problem Π: Given a compact subsetM ⊆ X and a
toleranceε, provide a specificationP of plans such
that, for any pair(x0, xf ) ∈ M2, a plan inP exists
such that system (1) is steered fromx0 to within an
ε-neighborhood ofxf .

We considerefficient a solution to this problem such that
plans in P have i) low computational complexity, in terms
of the number of elementary computations to be executed to
find P , and ii) low specification complexity, in terms of the
minimum number of bits necessary to representP (cf. [12]).

B. A simple example

To appreciate the difference between possible solutions to
problemΠ, consider a discrete-time linear controllable system
(the + superscript denoting the forward shift operator)

x+ = Ax + Bu, x ∈ IRn, u ∈ U,

with U = {u ∈ IRr : ‖u‖ ≤ rU} andM the hypercube of
half-sizeM in the r-dimensional equilibrium subspaceE of
X.

A direct approach might be the following: introduce a
finite point set Λ = {xi} ⊂ M of dispersion ρ =
maxx∈M mini ‖x − xi‖. For N sufficiently large, and every
pair (xi, xj), determine a control sequenceuij of length
N such that xj − ANxi − RNuij = 0, where RN =
[AN−1B| · · · |B]. Notice that, to coverM in the worst-case
direction, it is necessary thatσ(RN )rU ∼ M , whereσ(RN )
denotes the minimum singular value ofRN . This forces a
lower bound on the time horizonN . Usingβ ∼ log2 (2rU/µ)
bits to represent a real number, we get an approximate control
sequencêuij such that‖ûij −uij‖ ≤ µ. The desired tolerance
on planning is achieved if2ρ + µσ(RN ) ≤ ε, with σ(RN )
the maximum singular value ofRN . Fixing e.g.µσ(RN ) ∼
ρ ∼ ε/3, for large M/ε and N we get that the asymptotic
specification complexity ofP is given by

C(P ) ∼ αrN log2

(
M

ε
c(RN )

)
, (2)

with α =
(

2M
ε

)r
and c(RN ) = σ(RN )/σ(RN ) ≥ 1 the

condition number ofRN .
As a result of Theorem 15, the approach introduced in this

paper leads instead to a specification complexity for the same
problem of the order of

C(P ) ∼ αr log2

(
M

ε

)
. (3)

Plans provided by our method are developed over a time
horizonN ′ which is minimal for a givenrU , henceN ≥ N ′.
SettingN = N ′ it is then possible to compare the specification
complexities of the two methods, as illustrated in fig. 1.

II. SYMBOLIC CONTROL AND ENCODING

Symbolic control is inherently related to the definition of
elementary control events, or atoms, orquanta:

Definition 1: A control quantumis a couple(u, T ) where
u : X → L∞(IR+ × X,U) and T : X → IR+. The set of
control quanta is denoted bỹU .

A control quantum(u, T ) is naturally associated with a map
φ(u,T ) : X → X, such that, givenx0 ∈ X and denoting
ux0

= u(x0), φ(u,T )(x0) is the solution at timeT (x0) of the
Cauchy problem

{
ẋ = f(x, ux0

(t, x))
x(0) = x0.

(4)
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Fig. 1. a) Specification complexity in (2), as a function ofM/ε in the range
of 105. Each data point is obtained as an average over 50 systems (n = 30,
r = 1), generated randomly by the Matlab DRSS function and scaled to have
spectral radius as in the legend. b) Ratios between specification complexities
(3) and (2), for data generated as above.

Definition 2: A control quantizationconsists in assigning a
finite or countable setU ⊂ Ũ . A (symbolic) control encoding
on a control quantization is a mapE : Σ → U , whereΣ =
{σ1, σ2, . . .} is a finite set of symbols.

Given a control quantization and an encoder, we have the
diagram

Σ
E−→ U φ−→ D(X),

whereD(X) denotes the group of automorphisms onX. This
can be extended in an obvious way to

Σ∗ E∗

−→ U∗ φ∗

−→ D(X),

where Σ∗ is the set of words formed with letters from
the alphabetΣ, including the empty stringε. We assume
φ ◦ E(ε) = Id(X), i.e. the identity map inD(X). An action
of the monoidΣ∗ on X is thus defined. Given a quantization
U and an initial pointx0, R(U , x0) denotes the reachable set
from x0 underU , i.e. theΣ∗–orbit for the action defined via
φ∗ ◦ E∗.

In general, being the action ofΣ∗ just a monoid, the analysis
of its action on the state space can be quite hard, and the
structure of the reachable set under generic quantized controls
can be very intricated (even for linear systems: see e.g. [13]–
[15]). However, suitable choices of encoding of symbolic
control may simplify the analysis.

A. Additive Group Actions and Lattices

We focus our attention on designing encodings that achieve
simple composition rules for the action of words in a sublan-
guageΩ ⊂ Σ∗, such that

∀ω ∈ Ω,∃h(ω) ∈ IRn : ∀x ∈ X, (φ∗ ◦E∗(ω))(x) = x+h(ω),
(5)

and

∀ω1 ∈ Ω,∃ω̄1 ∈ Ω : (φ∗ ◦E∗(ω1)) ◦ (φ∗ ◦E∗(ω̄1)) = Id(X).
(6)

The additivity rule (5) implies that actions commute, i.e.
∀ω1, ω2 ∈ Ω, (φ∗ ◦E∗(ω1))◦(φ∗ ◦E∗(ω2)) = (φ∗ ◦E∗(ω2))◦
(φ∗◦E∗(ω1)): therefore, the global action is independent from
the order of application of control words inΩ. Rules (5) and
(6) amount to requiring that the sublanguageΩ acts on the
states as an additive group. As a consequence, the reachable

set from any point inX under the concatenation of words in
Ω is a setΛ generated by vectorsh(ω), ω ∈ Ω,

Λ = {h(ω1)λ1 + · · · + h(ωN )λN + |λi,∈ ZZ, N ∈ IN}.
WhenΛ can be generated by linearly independent vectors, it
is called alattice. This happens for instance whenh(ω) ∈ lQn,
∀ω ∈ Ω, or else when all words inΩ consist of concatenations
of only n words in Σ∗ which produce independent vectors
h(ω). Under rules (5), (6), a choice forΩ always exists such
that Λ is a lattice. In such hypotheses,Ω acts on IRn as ZZn,
hence, in suitable state and input coordinates, the system takes
on the form

z+ = z + H̄µ, H̄ ∈ IRn×n, µ ∈ ZZn. (7)

A further important concern is that system (1) under
symbolic control, maintains the possibility of approximating
arbitrarily well all reachable equilibria in its state space, for
suitable choices of symbols.

Definition 3: A control systemẋ = f(x, u) is additively
(or lattice) approachableif, for every ε > 0, there exist a
control quantizationUε and an encodingE∗ : Ω 7→ U∗

ε with
card(Uε) = q ∈ IN, such that: i) the action ofΩ obeys (5),
(6), and ii) for everyx0, xf ∈ X, there existsx in theΩ–orbit
of x0 with ‖x − xf‖ < ε.

Remark 1:The reachable set being a lattice under quanti-
zation does not imply additive approachability. For instance,
consider the example used in [17] to illustrate the so–called
kinodynamic planning method ( [18]–[20]). This consists of
a double integrator̈q = u with piecewise constant encoding
U = {u0 = 0, u1 = 1, u2 = −1} on intervals of fixed length
T = 1. The sampled system reads

[
q
q̇

]+

=

[
1 1
0 1

] [
q
q̇

]
+

[
1
2
1

]
u,

hence

q(N) = q(0) + Nq̇(0) +
∑N

i=1
2(N−i)+1

2 u(i)

q̇(N) = q̇(0) +
∑N

i=1 u(i).

The reachable set fromq(0) = q̇(0) = 0 is

R(U , 0) =

{[
q
q̇

]
=

[
1
2 0
0 1

]
λ, λ ∈ ZZ2

}
.

The quantization thus induces a lattice structure on the
reachable set. The lattice mesh can be reduced to any desired
ε resolution by scalingU or T . However, the actions of
control quanta do not compose according to rule (5): indeed,
φ∗(u1u2) 6= φ∗(u2u1) (for instance,φ∗(u1u2)(0, 0) = (1, 0),
while φ∗(u2u1)(0, 0) = (−1, 0)).

The following theorem motivates the interest in seeking
control encodings for additive approachability.

Theorem 1:For an additively approachable system, a spec-
ification P for problemΠ can be given in polynomial time.

Proof: Consider a feedback encoding ensuring additive
approachability. Arrange a sufficient numberq of action vec-
torsh(ωi), ωi ∈ Ω in the columns of a matrixH ∈ IRn×q. The
reachable set fromx0 is thus a lattice given byR(Ω, x0) =
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x0 + Λ, whereΛ = {Hλ|λ ∈ ZZq}. Additive approachability
guarantees that the dispersion ofΛ can be bounded by12ε,
hence,∀xf , ∃y ∈ Λ : ‖xf −x0−y‖ ≤ ε. Finding a plan toxf

is thus reduced to solving the system of diophantine equations

y = Hλ. (8)

Each lattice coordinateλi represent directly the number of
times the control wordωi, hence the corresponding sequence
of control quanta, is to be used to reach the goal. Due to
additivity of the action, the order of application of theωi

is ininfluent. The linear integer programming problem (8)
can be solved in polynomial time with respect to the state
space dimensionn andp. Indeed, writeH in Hermite normal
form, H = [L 0] U , where L ∈ IRn×n is a nonnegative,
lower triangular, nonsingular matrix, andU ∈ lQm×m is
unimodular (i.e., obtained from the identity matrix through
elementary column operations). Once the Hermite normal form
of H has been computed (which can be done off-line in
polynomial time [21], [22]), all possible plans to reach any
desired configurationy are easily obtained as

λ = U−1

[
L−1y

µ

]
, ∀µ ∈ ZZm−n.

B. Reducing the specification complexity

We now address the specification complexity for problem
Π for a system in form (7). Without loss of generality to the
purposes of this section, we can set the toleranceε = 1 and
assumeH̄ = Id, thus reducing to system

z+ = z + u. (9)

This system can be treated componentwise, hence it will be
sufficient to consider (9) withz ∈ IR.

We address the steering problemΠ taking the following
point of view: fixed the cardinality of the control set and the
time horizon, choose control values maximizing the size of
the region to be filled with reachable points. More precisely,
we formulate the following problem.

Problem 1: For fixed integersm > 0 andN > 0, find the
best choice of an integer control setW = {0,±v1, . . . ,±vm}
such that the reachable set from the origin inN steps contains
the maximum interval of integersI(M) = [−M,−M +
1, . . . ,M ] ⊂ ZZ.
Clearly, the cardinality2m + 1 of the control set and the
number N of steps determine the specification complexity,
while M describes the size of the region which can be reached.
Thus maximizingM is the same as maximizing the reachable
region for a fixed specification complexity.

Problem 1 is a number theoretical problem, related but
not equivalent to the well-known “Frobenius postage stamp
proble”. More precisely, the postage problem seeks to max-
imize the minimum postage fee not realizable using stamps
from a finite set ofm possible denominations. For the classical
postage problem, only results for small values ofm are known,
see [23]. The main difference with Problem 1 is the positivity
of stamp denominations, while control values fromW are also

N 1 2 3 4 5 6 7

v1 1 3 5 8 11 15 19
v2 2 4 7 10 14 18 23
v3 3 5 8 11 15 19 24
M 3 10 24 44 75 114 168

N 1 2 3 4 5 6 7

v1 1 3 7 13 19 29 41
v2 2 6 9 18 27 36 52
v3 3 7 11 20 29 39 55
v4 4 8 12 21 30 40 56
M 4 16 36 84 150 240 392

TABLE I

OPTIMAL INTERVAL -FILLING INPUT VALUES FOR SYSTEM(9) FOR m = 3

(ABOVE) AND m = 4 (BELOW).

negative. Although this difference has substantial technical
implications, the difficulty of the two problems is comparable.

Problem 1 was solved form = 2, 3, 4 and anyN in [24].
We report here the explicit formulae for the optimal choice of
controls form = 2, 3. For m = 2 we simply obtainv1 = N
andv2 = N + 1. For m = 3 we get:

v3 =

{
N2/4 + 3/2N + 5/4 if N is odd
N2/4 + 3/2N + 1 if N is even,

v2 = v3 − 1,

v1 =

{
v3 − N+1

2 − 1 if N is odd
v3 − N

2 − 2 if N is even.

Table I reports the maximum interval of the horizontal line
which can be covered with unit resolution and different word
lengthsN , along with the actual values of the different control
sets, form = 3 andm = 4. All values in table I, exceptN ,
should be scaled by the desired resolutionε.

For m = 2, 3, 4 and N >> m, for the largest value inW
it holds asymptotically

vm ∼ (

⌊
N

m − 1

⌋
+ 2)(m−1). (10)

Given2m+1 controls one can thus reach inN steps a region
of size

M ∼ Nm/mm. (11)

In [24], it is conjectured that (10), (11) hold for everym.
Let us now go back to ProblemΠ for system (9), and

compute the specification complexity for optimized control
values. To describe plans covering the region of sizeM , a
sequence of lengthN of symbols from an alphabet of size
2m + 1 should be given. This would result on a specification
complexity ofN dlog2(2m + 1)e.

A further reduction of specification complexity can be
obtained by using run–length encoding (RLE) for control
symbols. RLE consists in replacing repeated runs of a single
symbol in an input stream by a single instance of the symbol
and a run count. This compression method is particularly
well suited for our method, because of the commutativity of
symbols in control strings.
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The following proposition holds form ≤ 4, and is a
consequence of the conjecture in [24] for larger control sets:

Proposition 2: The specification complexity of ProblemΠ
for a system in the form (9) is given asymptotically byC ∼
log2(M/ε).

Proof: Consider the solutionW to Problem 1. By
commutativity of the action group, we can assign, for each
possible control valuevi ∈ W, an integer of size at mostN ,
specifying how many times the controlvi must be used. In this
way, the control sequence requires(2m+1)dlog2(N)e bits, or
rather, by exploiting the symmetry of the symbol set and using
sign-magnitude representation,(m + 1) (1 + dlog2(N + 1)e)
bits. From (11), we getm ∼ log2(M)/ log2(N). We conclude
reinserting the previously normalized toleranceε.

We finally remark that the solution of Problem 1 at the same
time minimizes the number of stepsN for given region size,
specification complexity, and tolerance. In particular, from (11)
we get

Proposition 3: For a fixed toleranceε and specification
complexity, with optimally chosen controls the numberN of
steps necessary to cover a region of sizeM is o(M). In other
terms, the sizeM of the reachable set increases faster than
the word lengthN .

III. F EEDBACK ENCODING

A few examples of possible control encoding schemes of
increasing generality are pictorially described in fig. 2.

In piecewise constant encoding, each input symbol inΣ is
associated with a control quantumqi = (ui, Ti) wherebyui

is constant for fixed timeTi (fig. 2-a). Input quantization, as
defined in most part of the literature, is an instance of this
scheme. The action of piecewise constant inputs on general
systems is typically unstructured [13]. However, the particular
class of chained-form driftless systems was shown in [15] tobe
additively approachable by rational piecewise-constant control
quanta.

Piecewise smooth encoding, whereTi is fixed, andui are
smooth functions of time not depending on the state (fig. 2-b),
may allow for more powerful planning. For instance, different
ui’s may represent pieces of extremal controls to be pasted
together in an approximate optimal control scheme (cf. e.g.
[25]). Development of reference trajectories on a functional
basis, as in e.g. [1], [26] can also be regarded as an instance
of this scheme.

Feedback encodingconsists in associating to each symbol
a control inputu that depends on the symbol itself, on the
current state of the system, and on its structure. The scheme
can be regarded as generated by defining a feedbacku =
f(x, r) embedded on system (4), and a piecewise constant
encoding on the referencer, and can be realized either directly
in continuous time (fig. 2-c), or indirectly through sampling
(fig. 2-d). If the encoding incorporates memory elements, e.g.
additional statesξ are used to defineu = f(x, ξ, r) with ξ̇ =
α(ξ, x, r), the feedback encoding is referred to as dynamic.

A. Planning by Feedback Encoding

The method of feedback encoding avails symbolic control
with powerful results from the literature on feedback equiva-

a)

b)

c)

d)

Fig. 2. Four examples of symbolic encoding of control. Symbols transmitted
through the finite-capacity channel are represented by letters in the leftmost
blocks. From the top: a) piecewise constant encoding; b) piecewise smooth
encoding; c) continuous-time feedback encoding; d) discrete-time feedback
encoding.

lence of dynamical systems. In this section we show how this
can be exploited to apply the planning method of theorem 1
to rather general classes of systems.

A first consequence that follows almost for free from
concepts introduced above concerns the kinematic model of a
car withn trailers ( [27], [28]). Indeed, by results of [29], we
know that then-trailer system is locally feedback equivalent
to chained form, hence additively approachable by feedback
encoding. By theorem 1, finite plans to arbitrary accuracy can
be found in polynomial time.

A similar result holds indeed for a much broader class of
nonlinear systems.

Theorem 4:Linear-in-control, driftless, controllable nonlin-
ear systems

ẋ =

p∑

i=1

gi(x)ui, x ∈ IRn

whose control Lie algebra is nilpotent, are locally additively
approachable by feedback encoding.

Proof: We start noting that, by defining feedback encod-
ing according to the local feedback equivalence result of [30],
we can reduce to the study of strictly triangular systems of
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Fig. 3. Nested discrete-time continuous-time feedback encoding.

the form

ẋ1 =
∑p

i=1 gi
1(x2, . . . , xp)ui

ẋ2 =
∑p

i=1 gi
2(x3, . . . , xp)ui

...
ẋp−1 =

∑p

i=1 gi
p−1(xp)ui

ẋp =
∑p

i=1 gi
pui

(12)

with x = [x1, x2, . . . , xp] ∈ IRn1+n2+···+np = IRn, u =
[u1, ..., up] ∈ IRnp , np = p, and the coefficientsgi

j(·) are
polynomials. A lemma proving that systems in the strictly
triangular form (12) are additively approachable is given in
the appendix.

Among controllable systems without drift, i.e. systems for
which any state is equilibrium with zero control, the problem
of finite planning by symbolic control remains open for non-
nilpotent systems.

We now turn our attention to systems with drift, i.e. sys-
tems which possess an autonomous dynamics independent of
applied inputs. More precisely, consider again system (1)

ẋ = f(x, u), x ∈ X ⊆ IRn, u ∈ U ⊂ IRr

and the associate equilibrium equationf(x, u) = 0. Let the
equilibrium set beE = {x ∈ X|∃u ∈ U, f(x, u) = 0}. We
say that system (1) has drift ifE has lower dimension thanX.

In the rest of this paper we will deal with the planning
problem for systems with drift, and in particular with gener-
ating trajectories to join different equilibrium configurations.
This focus is consistent with usual practice in control, where
equilibrium configurations typically correspond to nominal
working conditions for a system (possibly up to group sym-
metries, see e.g. [4]).

Among systems with drift, linear systems are the simplest,
yet their analysis encompasses the key features and difficulties
of planning. Indeed, our strategy to attack the general casecon-
sists of reducing to planning for linear systems via feedback
encoding. To achieve this, we introduce a further generalized
encoder (still encompassed by the above definition of control
quanta), i.e. thenested feedback encodingdescribed in fig. 3.
In this case, an inner continuous (possibly dynamic) feedback
loop and an outer discrete-time loop – both embedded on
the remote system – are used to achieve richer encoding of
transmitted symbols.

Additive approachability for linear systems, by discrete-time
feedback encoding (see fig. 3), is proved in theorem 9 below.
By using nested feedback encoding, all feedback linearizable
systems are hence additively approachable.

The most general theorem of this paper can be given
resorting to dynamic feedback encoding. Indeed, recalling
results from [16], [31], [32], we can state the following

Theorem 5:Every differentially flat system is locally addi-
tively approachable.

IV. L INEAR SYSTEMS

In this section we consider linear systems of type

ẋ = Fx + Gu (13)

with x ∈ IRn, u ∈ U = IRr and rankG = r. We start by some
preliminary results characterizing the equilibrium setE .

A. Preliminaries

Lemma 6:For a controllable linear system (13), dimE = r.
Proof: The equilibrium equation is written as

0 =
[

F G
] [

x
u

]
. (14)

By the PBH test, a pair(F,G) is controllable if and only if the
matrix [F −λIn | G] is full rank for all λ ∈ IR. Applying this
with λ = 0, we gather directly that dim ker

[
F G

]
= r.

Application to (13) of piecewise constant encoding of
symbolic inputs (schemea in fig.2) with durationsTi = T,
∀i, generates the discrete-time linear system

x+ = Ax + Bu, (15)

with

A = eFT , B =

(∫ T

0

e(T−s)F ds

)
G.

Lemma 7:The equilibrium manifold of a controllable linear
continuous-time system is invariant under discrete-time feed-
back encoding, for almost all sampling timesT .

Proof: Let E and E ′ denote the equilibrium manifold
of (13) and (15), respectively. It holdsE ⊆ E ′: indeed, all
equilibrium pairs(x̄, ū) for (13) are also such for (15). On the
other hand, the equilibrium equation for (15) can be written
as

0 =
[

I − A B
] [

x
u

]
. (16)

It is well known that, for almost all sampling timesT ,
controllability of the sampled system is conserved, hence we
have, again by application of the PBH lemma, that dimE ′ =
dim ker

[
I − A B

]
= r.

The equilibrium manifoldE ′′ for system (15) with a linear
feedbacku = Kx + w, coincides withE ′. Indeed, writing the
new equilibrium equation

[
I − A + BK B

] [
x
u

]
= 0, (17)

one has that,∀x = x̄ ∈ E ′, u = ū − Kx̄ solves (17), hence
E ′ ⊆ E ′′. As controllability is not altered by state feedback, a
PBH test argument as above concludes the proof.

A crucial observation concerning systems with drift is
contained in the following lemma.
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Lemma 8:For a linear system (13) withr = 1 andn > 1,
it is impossible to steer the state among points inE while
remaining inE .

Proof: Let all solutions to (14) be written as
[

x̄
ū

]
=

[
Nx

Nu

]
µ, µ ∈ IRr.

In order for the system’s trajectory to remain inE , it is
necessary that its velocity lies in the tangent space toE , hence
that,∀µ, ∃µ′ ∈ IRr, u ∈ IRr such that

ẋ = Nxµ′ = FNxµ + Gu.

Choosingu = Nuµ + u′, u′ ∈ IRr, one obtains the necessary
condition that∀µ′, ∃u′ such thatNxµ′ = Gu′, i.e. that the
range space ofG and ofNx must have nontrivial intersection.
This condition contradicts controllability: indeed, by multi-
plying both sides byF we get FNxµ′ = FGu′ and using
FNxµ′ = −GNuµ′, we get rank[G|FG] = 1.

The argument can be directly generalized to multi-input
systems by recurring to the Brunovsky form (see e.g. [33]).
Indeed, it is well known that, for a controllable system1

Dx = Fx + Gu, there exist a change of coordinatesS in the
state space andV in the input space, and a linear feedback
matrix K0 such thatS−1(F +GK0)S = F̃ andS−1GV = G̃,
with

F̃ =




Fκ1
0 · · · 0

0 Fκ2
· · · 0

...
...

. . .
...

0 0 · · · Fκr


 ,

G̃ =




gκ1
0 · · · 0

0 gκ2
· · · 0

...
...

. ..
...

0 0 · · · gκr


 ,

whereκi denotes thei–th Kronecker control-invariant index.
Accordingly, the stateξ = S−1x can be split inr subvectors
ξ = (ξ1, . . . , ξr) for which the dynamics are written as

ξ̇i = Fκi
ξi + gκi

v′
i, i = 1, . . . , r (18)

whereξi ∈ IRκi ,

Fκi
=




0 1 · · · 0 0
0 0 1 · · · 0
...

...
.. .

.. .
...

0 0 · · · 0 1
0 0 · · · 0 0



∈ IRκi×κi ,

gκi
=




0
...
0
1


 ∈ IRκi ,

v′
i ∈ IR and

∑r

i=1 κi = n.

1the result holds for both continuous- and discrete-time systems. Accord-
ingly, the operatorD should be read as either a total derivativeDy = d

dt
y

or a forward shiftDy(k) = y(k)+ = y(k + 1)

Assume that the state subvectors are ordered such that
κi > 1 for i = 1, . . . , r′ and κj = 1, j = r′ + 1, . . . , r.
Let Ē ⊂ E denote the subspace corresponding toξi = 0,
i = 1, . . . , r′. The dimension of̄E is hence equal to the number
of Kronecker indices equal to one. According to the above
discussion, steering a system with drift from an equilibrium
point ξ(t0) = ξ0 to ξ(t0 + τ) = ξ̄ ∈ E while remaining in
E for all t0 ≤ t ≤ t0 + τ , can only be achieved in the very
special case that̄ξ − ξ0 ∈ Ē .

This observation motivates consideration of policies for
periodic steering among equilibria, i.e. such thatξ(t) ∈ E ,
∀t = t0 + kT , T > 0, k = 0, 1, 2, . . ., while ξ(t) 6∈ E is
allowed∀t 6= t0 + kT .

B. Periodic Additive Approachability

The linear discrete time system (15) is not additively ap-
proachable withu ∈ U ⊂ lQr, a discrete rational set. Indeed,
if the system could be put in the form (7), theneFT should
be similar to the identity matrix, which cannot be the case for
a controllable system with drift. Nor would the applicationof
a simple (linear) feedback encoding such as that in schemec
in fig.2 help in this regard, as we would only get a system in
the form (15) withA = e(F+GK)T .

An encoding of symbolic inputs achieving periodic additive
approachability with period̀T , 1 < ` ∈ IN for linear systems
with drift can be conceived based on feedback encoding for
the discrete-time system (15).

Theorem 9:For a controllable linear discrete-time system
x+ = Ax + Bu, there exists an integer̀ > 1 and a linear
feedback encoding

E : Σ → U ,
σi 7→ Kx + wi

with constantK ∈ IRn×n andwi ∈ W, W ⊂ IRr a quantized
control set, such that, for all subsequences of period`T
extracted fromx(·), the reachable set is a lattice of arbitrarily
fine mesh. In other terms, forz(k) = x(τ + k`), τ, k ∈ IN, it
holds

z+ = z + H̄µ, H̄ ∈ IRn×n, µ ∈ ZZn

and∀ε there exists a choice of a finiteW such that‖H̄‖ < ε.
We recall preliminarily a result which can be derived

directly from [15].
Lemma 10:The reachable set of the scalar discrete time

linear systemξ+ = ξ + v, ξ ∈ IR, v ∈ W:=γW with γ > 0
and W = {0,±w1, . . . ,±wm}, wi ∈ IN with at least two
elementswi wj coprime, is a lattice of mesh sizeγ.

Proof: Theorem 9.
For the controllable pair(A,B), let S, V , andK0 be matrices
such that(S−1(A + BK0)S, S−1BV ) is in Brunovsky form
(see above). In the new coordinatesξ = S−1x we have

ξ+ = S−1(A + BK0)Sξ + S−1BV v′ = Ãξ + B̃v′.

Let v′ = K1ξ + v, where:
• v ∈ W = γ1

1W × · · · × γr
rW , with kW =

{0,±kw1, . . . ,±kwmk
}, kwj ∈ IN k = 1, . . . , r, j =

1, . . . ,mk, each kW including at least two coprime
elementskwi

kwj ;
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• K1 ∈ IRr×n such that itsi–th row (denotedK1i) contains
all zeroes except for the element in the(κi−1 + 1)–th
column which is equal to one (recall that by definition
κ0 = 0).

Using notation as in (18), it can be easily observed that(Aκi
+

Bκi
K1i)

κi = Iκi
, theκi×κi identity matrix. Hence, if we let

` = l.c.m. {κi : i = 1, ..., r},

we get
[
S−1((A + BK0)S + BV K1)

]`
= In.

Let ξi ∈ IRκi denote thei–th component of the state vector
relative to the pair(Aκi

, Bκi
). For anyτ ∈ IN we have

ξi(τ + κi) = ξi(τ) +




vi(τ)
...

vi(τ + κi − 1)


 (19)

On the longer period of̀T , we have

ξi(τ + `) = ξi(τ) +




∑ `
κi

−1

k=0 vi(τ + kκi)
...

∑ `
κi

−1

k=0 vi(τ + κi − 1 + kκi)




:= ξi(τ) + v̄i(τ),

hence

ξ(τ + `) = ξ(τ) +




v̄1

...
v̄r


 := ξ(τ) + v̄

or, in the initial coordinates,

x(τ + `) = x(τ) + Sv̄.

In conclusion, by the linear discrete–time feedback encoding

E : Σ → U ,
σi 7→ (K0 + V K1S

−1)x + V vi

with vi ∈ W, for all `-periodic subsequencesz(k) = x(τ +
k`), it holds

z+ = z + SΓµ, µ ∈ ZZn

with
Γ = diag(γ1Iκ1

, · · · , γrIκr
) .

It is also clear that, for anyε, it is possible to chooseΓ such
that z can be driven in a finite number of steps (multiple of
`) to within anε-neighborhood of any point in IRn.

It is interesting to note that, for single-input systems,
the encoding considered in theorem 9 is indeed optimal, in
terms of minimizing the periodicity by which the lattice is
achievable.

Proposition 11: Let the single-input discrete time linear
control system be described by a pair(A,B) in Brunovsky
form of dimensionn. Then for all j < n and Kk ∈ IRn,
k = 1, . . . , j,

∏j

k=1(A + BKk) 6= In. Moreover if j = n and∏n

k=1(A + BKk)n = In then necessarilyK1 = · · · = Kn =
[1 0 · · · 0].

Proof: Assume firstj < n, then the firstn−j rows of the
matrix

∏j

k=1(A+BKk) are given by the vectorsej+1, . . . , en.
Thus we deduce that the matrix

∏j

k=1(A + BKk) can not be
equal to the identity matrix for any choice of the feedback

matricesKk ’s.
For j = n, we have that the first row of the matrix

∏n

k=1(A+
BKk) is given byKn, which implies thatKn = e1. With this
choice of Kn the second row is given by the vectorKn−1

shifted by one position, i.e.

[(Kn−1)n (Kn−1)1 · · · (Kn−1)n−1] .

This implies thatKn−1 = e1. By recursion we obtain the
thesis.

However, for multi-input systems, the period of
(l.c.m.i κi)T used in theorem 9 can be reduced to a
minimal periodicity of(maxi κi)T . This can be achieved by
the planning algorithm described below in section IV-D.

C. Moving among equilibria

By the discrete-time feedback encoding scheme above dis-
cussed, any reachable state can be made an equilibrium state
for subsequences of period̀of the discretized system. As it
can be expected, however, in general the behaviour of the sys-
tem amid such periodic samples is not specified, and may turn
out to be unacceptable. Indeed, it can be easily observed that,
for eachκi–dimensional subsystem, the intersample dynamics
are written as

ξ+
i =

[
0 Iκi−1

1 0

]
ξi +

[
0
1

]
vi, i = 1, . . . , r (20)

hence, withiǹ steps, each state variable takes once the values
other states have at the first step. If a goal has to be reached,
which is far from the origin, the intersample behaviour may
have a large-span erratic behaviour.

However, recall that our main interest is to steer systems
among states of equilibrium. We will show in this section that
our feedback encoding scheme allows to solve this problem
while keeping the system’s evolution arbitrarily close to the
equilibrium manifold. The proof of this property is obtained
by comparing the length of the path produced by our method
with that of the geodesic line joining the same end points (such
shortest path not being attainable by any control law).

Notice that, in Brunovsky coordinates,E has a particularly
simple structure. Letting1κi

∈ IRκi denote a vector with all
components equal to1, we have that for eachκi-dimensional
subsystem in (20), equilibrium states areξ̄i = αi1κi

, αi ∈ IR,
hence

E =
{
ξ̄|ξ̄ = diag(α1Iκ1

, · · · , αrIκr
)1n

}

For simplicity, consider the (worst) case of a system con-
sisting of a single Brunovsky block, with initial stateξ(0) ∈ E ,
and apply a sequence of` = n controlsv(0), . . . , v(n − 1).
Let ξ(k) be the corresponding trajectory, and letP denote the
polygonal throughξ(k), k = 0, . . . n. To estimate the length
of P , consider itsl1 norm

l1(P ) =
n∑

k=1

‖ξ(k) − ξ(k − 1)‖1
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A direct computation gives

ξ(k) = ξ(k − 1) +




0
...
0

v(0)
v(1) − v(0)

...
v(k − 1) − v(k − 2)




.

We thus obtain

l1(P ) = |v(0)| + (|v(0)| + |v(1) − v(0)|) + · · ·
+(|v(0)| + |v(1) − v(0)| + · · · + |v(n − 1) − v(n − 2)|)
≤ ∑n−1

k=0

(
2n − 2k − 1

)
|v(k)| ≤ ∑n−1

k=0

(
2n − 1

)
|v(k)|,

hence we have

l(P ) ≤ l1(P ) ≤ (2n − 1)‖v‖1 ≤
√

n(2n − 1)‖v‖, (21)

where l(P ) denotes the Euclidean length ofP , and ‖v‖1,
‖v‖ (v = [v(0) · · · v(n − 1)]T ) denote the geodesic distance
between the initial and final points, in the 1-norm and in the
Euclidean norm, respectively.

Inequality (21) applies to any path starting fromE . If we
impose that the final point is also in the equilibrium manifold,
we have

ξ(`) =




v(0)
...

v(n − 1)


 = α1n

hence the condition

l(P ) = l1(P ) = ‖v‖1 = n|α| =
√

n‖v‖. (22)

We are thus ready to prove the following:
Theorem 12:For every controllable linear system andε >

0, there exists a control encoding such that the following holds.
For every couple of pointsx0, xf both on the equilibrium
manifold E there exists a pathx(·) connectingx0 to an ε
neighborhood ofxf such thatd(x(t), E) < ε for everyt, where
d(·, E) is the euclidean distance fromE .

Proof: First choose a control encoding as in Theorem 9
having as reachable set a lattice of mesh sizeε/

√
n.

Now, for every fixedx0, xf ∈ E choose intermediate points
x1, . . . , xN on E such that‖xi − xi−1‖ ≤ ε/

√
n for every

i = 1, . . . , N , and‖xf − xN‖ ≤ ε. By the above reasoning,
there exists a pathPi connectingxi−1 to xi, i = 1, . . . , N ,
such that the estimate (22) holds true. Then, we can conclude
that ‖y − xi‖ < ε for every y ∈ Pi and, sincexi ∈ E , the
theorem is proved patching together the pathsPi.

D. Planning algorithms and specification complexity

Based on the above results, a planning strategy for steering
among equilibria can be obtained at once, which consists in
using constant control values for a large enough number of
steps. Indeed we have

Proposition 13: The application of a constant control
vi(τ + k) = v̂i, i = 1, . . . , r, for 0 ≤ k ≤ ` − 1,
steers system (20) fromξ(τ) ∈ E to ξ(τ + `) = ξ(τ) +

diag
(
( `

κ1
v̂1)Iκ1

, · · · , ( `
κr

v̂r)Iκr

)
1n ∈ E .

Notice however that a planner based on the straightforward
application of this proposition could lead to an inefficient
solution, as the size of the mesh for theκi–dimensional
susbsystem would be increased by a factor`

κi
.

We now provide explicitly a more efficient method to steer
from an arbitrary statex ∈ IRn to within an ε-neighborhood
of a given goal statex + δ ∈ IRn (x and δ not necessarily in
E).

1) Compute the desired displacement in Brunovsky coor-
dinates∆ = S−1δ, and let∆i ∈ IRκi , i = 1, . . . , r
denote the desired displacement for thei–th subsystem;

2) Compute the lattice mesh size in Brunovsky coordinates
γi = 2ε

‖ζi‖
, where

[
ζ1 ζ2 · · · ζr

]
= S




1κ1
0 · · · 0

0 1κ2
· · · 0

· · · · · · · · · · · ·
0 0 · · · 1κr


 ;

3) Find∆̄i, the nearest point to∆i on the lattice generated
by γi

iW and centered atξi = (S−1x)i.
4) For eachi = 1, . . . , r, let the quantized control set be

iW = {0,±iw1, . . . ,±iwmi
}, iwj ∈ IN, and denote by

iU the vector[iw0
iw1 · · · iwmi

], whereiw0 = 0. Write

∆̄i = γi
iC iU (23)

where iC is a matrix in ZZκi×mi+1 with components
iCh,j+1 = ich,j , h = 1, . . . , κi, j = 0, . . . ,mi. Each
element ich,j of iC describes the number of times
that the controliwj has to be used to steer theh–th
component ofξi.

5) Find integersich,j , h = 1, . . . , κi, j = 1, . . . ,mi

solving the system of diophantine equations (23),
and find the smallest integersich,0 such that, ∀h,∑mi

j=0 |ich,j |:=Ni. Niκi is thus a number of steps suf-
ficient to steer thei–th subsystem;

6) (Optional) Among all solutions of (23), find the one
which minimizes maxκi

h=1

∑mi

j=1 | ich,j |:=N̂i. Notice
that N̂iκi is the minimum length of a string of symbols
in iW obtaining the goal. However, no polynomila-time
algorithm is known for such optimization;

7) Let N?
κ = maxi Niκi, and i? the corresponding index.

Then, for all i = 1, . . . , r i 6= i?, compute∆̃i =
(Ãi)

−ri(ξ + ∆̄i) − ξ with ri = N?
κ − Niκi. Repeat

steps 4) and 5) with the new̃∆i.

Remark 2:Notice that, since the matrix(Ãi)
−ri is ele-

mentary (a permutation of rows and columns of the identity
matrix), it has the only effect of exchanging the components
of (ξi + ∆̄i). Therefore,ξi + ∆̃i belongs to the same lattice,
and it can be reached inNiκi steps.

An upper bound on the specification complexity of a generic
plan is thus given byN?

κ r log2 (1 + 2
∑r

i=1 mi) when the
input setsiW are disjoint, orN?

κ r log2 (1 + 2m) if iW =
jW , i, j = 1, . . . , r. The choice of section II-B for all input
sets provides plans with lowN?

κ to join any two points in a
hypercube of sizeM , as required in problemΠ.

Encoding these plans by their run-length reduces their
specification complexity. Indeed we have
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Proposition 14: The specification complexity of a plan
from x to x + δ according to the above algorithm encoded
by run-length, is of order

C ∼ n(1 + m)max
i

(log2 Ni) . (24)

Proof: We use the notation established in (23),
whereby iU denotes an ordered set of(mi + 1) sym-
bols, and associate the run countiCh,j+1 to symbol iwj

if iCh,j+1 ≥ 0, or to symbol − iwj if iCh,j+1 < 0.
The plan is thus completely described by ther matri-
ces iC ∈ ZZκi×(mi+1). For specifying them, a total of∑r

i=1 κi(mi + 1) integers in [−Ni, Ni] is needed. This
amounts to

∑r

i=1(mi + 1)κi (1 + dlog2(Ni + 1)e) bits (in
sign-magnitude representation). If the same setU of symbols
is used for all inputs, we can bound the bit number by
n(m+1) (1 + dlog2(1 + maxi Ni)e), hence the statement.

This result can be further improved for plans among equi-
librium configurations using optimal input sets as described in
section II-B. The following claim holds form ≤ 4, and relies
on conjecture in [24] otherwise:

Theorem 15:The specification complexity of a solutionP
to problemΠ with M the hypercube of half-sizeM in the
r-dimensional equilibrium subspaceE of X, is of order

C(P ) ∼ αr log2

(
M

ε

)
,

with α =
(

2M
ε

)r
.

Proof: Observe that, when moving among equilibria, the
displacement also belongs toE , and is thus described by a
vector with equal components. Hence, each matrixiC has
identical rows, and can be specified by(m+1)(1+dlog2(Ni+
1)e) bits. Furthermore in this case, plan lengthsNi can be
equalized toN = maxi Ni by simply padding shorter control
sequences with zeroes. Recalling the estimate (11), ifε is the
mesh size of the reachable set andM is the maximum distance
reachable inN steps, we can write

m ∼ log2

(
M
ε

)

log2 N
.

Hence, beingP comprised ofα different point-to-point plans,
we have

C(P ) ∼ αr(m + 1)(1 + log2 N)

∼ αr

(
log2(M

ε )
log2 N

+ 1

)
(1 + log2 N)

∼ αr
(
log2

(
M
ε

)
+ log2 N

)

Having observed in section II-B thatN = o(M), we finally
have

C(P ) ∼ αr log2

(
M

ε

)
.

The explicit construction of a procedure to decode plan
specificationsiC into a string of control inputsiV for the
i–th channel is finally described in Matlab-like code:

C=iC ;
iV = [ ] ;
whi le (C ˜= 0)

f o r h =1:κi ,

j =1;
whi le C( h , j ) == 0 , j = j +1; end
iV = c a t ( iV , s ign (C( h , j ) )∗ iwj ) ;
C( h , j ) = C( h , j )− s ign (C( h , j ) ) ;

end
end

V. EXAMPLES

A. Example 1: Linear System

As a first example, consider the problem of planning rest-
to-rest motions of a cart, actuated by horizontal forces, with
an inverted pendulum attached, which should start and return
to the upright equilibrium. It is desired to plan motions to
reach all points in an interval±M of the horizontal line, with
resolutionε. Each plan should be comprised of sequences of
finite lengthN using2m + 1 different symbols.

Consider a linearized model of the system as

ẋ =




0 1 0 0
0 0 −mg

M
0

0 0 0 1

0 0 (M+m)g
lM

0


 x +




0
1
M

0
−1
lM


u, (25)

where x1, x2 is the cart position and velocity,x3, x4 the
pendulum angle and its rate, and the inputu is the horizontal
force applied to the cart. Numerical values will be used as
l = 1m for the pendulum’s length,g = 9.81 m/s2 for
gravity acceleration,M = 20Kg and m = 5Kg for cart and
pendulum masses, respectively. The equilibrium manifold is
E = {x ∈ IR4|x1 = α ∈ IR, x2 = x3 = x4 = 0}. Apply
the discrete-time feeedback encoding of fig. 3-d, with unit
sampling timeT = 1s. Accordingly, the sampled system is

x+ = Ax + Bu =

=




1 1 −3.12 −0.74
0 1 −11.60 −3.12
0 0 16.60 4.73
0 0 58.03 16.60


x +




0.03
0.08

−0.06
−0.23


u,

and reachability is preserved. LetS be a change of coordinates
such that(S−1AS, S−1B) is in control canonical form. In the
new coordinates, the equilibrium set isE = {β14, β ∈ IR}.
For corresponding equilibria in the two coordinate systemsit
holdsα = SF β, with scale factorSF = ‖S14‖ = 1.24.

To obtain the required resolution ofε, choose a mesh size
γ = 2ε

(SF ) in S coordinates. To this purpose,W can be chosen
to be any finite sets of integers, such that at least two of its
elements are coprime, and inputs scaled asv ∈ γW .

Consider for instance the use of a rather sparse control set
with m = 3 (cf. table I). Taking e.g.ε = 0.01m andM =
0.75m, one getsγ = 0.0161, henceM/γ ≈ 46.5. From table I
for m = 3, we getN = 5. Observe that the actual execution
of the plan takesn = 4 times N sampling instants, because
of the dimension of the state space.

If a rest-to-rest displacement of0.65m on the horizontal line
is specified, the closest point on the reachable lattice is given
by δ = (64ε, 0, 0, 0). In control canonical form we can write
32γ14 = γCU , whereU = (0, 11, 14, 15) andC is a matrix
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Fig. 4. Planned motions of the cart (above) and of the pendulum(below) in
example 1

in ZZ4×4 obtained by themin max problem in the algorithm
of section IV-D as

C =




0 −1 2 1
0 −1 2 1
0 −1 2 1
0 −1 2 1


 .

The motion of the cart and the pendulum corresponding to
such plan are shown in fig. 4.

B. Example 2: Nonlinear System

By using the nested feedback encoding of fig. 3, it is
possible to directly apply the proposed steering method to
the substantially wider class of systems which are dynamic
feedback–equivalent to linear systems. In this example, we
illustrate the power of the proposed method by solving the
steering problem for an example in the class of underactuated
mechanical systems, which have attracted wide attention in
the recent literature (see e.g. [34]).

In particular, we consider the class of underactuated mech-
anisms identified as “(n − 1)Xa − Ru planar robots”, i.e.
mechanisms havingn − 1 active joints of any type, and
a passive rotational joint. In order to simplify the model
analysis and control design, it is convenient to use a spe-
cific set of generalized coordinates. In particular, letq =

(q1, ..., qn−3, x, y, θ) = (qa, θ) where(x, y) are the cartesian
coordinates of the base of the last link. Assuming motion in
a horizontal plane (or zero gravity), the dynamic model takes
on the partitioned form



0(n−3)×1

Ba(qa) −mndnsθ

mndncθ

01×(n−3) −mndnsθ mndncθ In + mnd2
n







q̈a

θ̈


+

+




ca(q, q̇)

0


 =




Fa

0


 (26)

whereFa = (F1, ..., Fn−3, Fx, Fy) are the generalized forces
performing work on theqa coordinates,sθ = sin θ and cθ =
cos θ. For then–th link, In, mn and dn are the baricentral
inertia, the mass and the distance of the center of mass from
its base. We assume that the robot arm has at least two active
joints (n ≥ 3), so that forcesFx andFy can be independently
assigned. By the virtual work principle, we can recover the
original forcesτ̄ acting on the joints fromFa as

τ̄ =




τ̄1

...
τ̄n−1


 =




I(n−3)×(n−3)

02×(n−3)







F1

...
Fn−3


 +

+JT (q1, ..., qn−1)

[
Fx

Fy

]

where J is the Jacobian matrix2 × (n − 1) of the direct
kinematics functionk.

In order to make the analysis independent from the nature
of then−1 active joints, the relative dynamics in (26) can be
linearized via a globally defined partial static feedback, thus
reducing them to a chain of two integrators per actuated joint.
As in the computed torque method, such partially linearizing
static feedback isFa = B̂a(q)a + ca(q, q̇) where

B̂a(q) = Ba(qa)−

− m2
nd2

n

In + mnd2
n




0(n−3)×(n−3) 0(n−3)×2

02×(n−3)
s2

θ −sθcθ

−sθcθ c2
θ


 .

The closed loop system then becomesq̈1 = a1, ..., qn−3 =
an−3, ẍ = ax, ÿ = ay, θ̈ = 1

K
(sθax − cθay) whereKCP =

In+mnd2
n

mndn
is the distance of the center of percussion of the

last link from its base. Assuming uniform mass distributionwe
haveKCP = 2/3 ln, whereln is the length of thenth link. The
dynamics of the coordinatesqi, i = 1, ..., n−3 are completely
decoupled from the dynamics of the remaining coordinates
(x, y, θ). Therefore, we will henceforth only consider the case
n = 3.

Following [34], we choose the cartesian coordinates of the
center of percussion as the system’s (flat) outputs:

[
y1

y2

]
=

[
x
y

]
+ KCP

[
cθ

sθ

]
. (27)
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Differentiation of equation (27) yields
[

ẏ1

ẏ2

]
=

[
ẋ
ẏ

]
+ KCP θ̇

[
−sθ

cθ

]
(28)

[
ÿ1

ÿ2

]
=

[
c2
θ sθcθ

sθcθ s2
θ

] [
ax

ay

]
−R(θ)

[
KCP θ̇2

0

]
(29)

where R(θ) is the matrix associated to a planar rotation of
an angleθ. Being the matrix multiplying the acceleration vec-
tor (ax, ay) singular, dynamic feedback must be considered.
Define an invertible feedback transformation

[
ax

ay

]
= R(θ)

[
χ + KCP θ̇2

ψ2

]
(30)

whereχ and ψ2 are two auxiliary variables. As a result we
have [

ÿ1

ÿ2

]
= R(θ)

[
χ
0

]
. (31)

By adding two integrators on the first auxiliary variable,
namely settingχ̇ = ι, ι̇ = ψ1, and differentiating equation
(29), we get [

y
(3)
1

y
(3)
2

]
= R(θ)

[
ν

χθ̇

]
(32)

[
y
(4)
1

y
(4)
2

]
= R(θ)

{[
1 0

0 − ξ
KCP

]
ψ +

[
−χθ̈2

2ιθ̇

]}
=

= R(θ)
{

P (θ, χ)σ + q(θ, θ̇, χ, ι)
}

, (33)

with ψ = (ψ1, ψ2) the new input variables.
Under the assumption thatP (θ, χ) is nonsingular or, equiv-

alently, away fromχ 6= 0, the inversion-based controlψ =
P−1(θ, χ)(RT (θ)v − q(θ, θ̇, χ, ι)), with v = (v1, v2) as new
input vector, yields two decoupled chains of four input-output
integrators. The assumption means that pure rotational motion
around the center of percussion is not allowed. Since the
relative degree is 8(4 + 4), the dimension of the robot state
is 6 (x, ẋ, y, ẏ, θ, θ̇) and the dimension of the compensator is
2 (χ, ι), exact linearization has been achieved.

For the integrators of the compensator, we use zero initial
conditions. In order to satisfy the assumption, we impose a
nonzero linear acceleration of the last link along its axis.

The dynamics of the system after the dynamic feedback
linearization are written asy(4)

1 = v1, y
(4)
2 = v2. Choosing

a sample timet = 1s we obtain the following discrete time
linear system:

x+
i = Axi + Bvi =

=




1 1 1
2

1
6

0 1 1 1
2

0 0 1 1
0 0 0 1


xi +




1
24
1
6
1
2
1


 vi

wherexi =
(
yi, y

(1)
i , y

(2)
i , y

(3)
i

)
, i = 1, 2. Being each sub-

system controllable, there existS such that(S−1AS, S−1B)
is in control canonical form. For each subsystem in control
canonical form, the set of equilibria is given by{α14 ∈ IR4 :
α ∈ IR}. Then, in the initial coordinates, the set of equilibria
is given by{αS14 ∈ IR4 : α ∈ IR}. For a givenα ∈ IR we

Fig. 5. An underactuated robot arm of type2Ra − Ru used in example 2:
the given initial and final configurations are shown by dashedand solid lines,
respectively.

Fig. 6. Coordinatesy1 (left) andy2 (right) of the center of percussion

obtain the equilibriumα14 for the control canonical form and
the equilibrium(α, 0, 0, 0) for the original subsystem, hence
a constant position of the considered coordinate of the center
of percussion. The scale factor is1 in this case.

To obtain a reachable lattice of sizeγ1, γ2 > 0, 1W, 2W
can be chosen to be any finite sets of integers, such that at
least two of its elements are coprime, and and inputs scaled
as iv ∈ γi

iW , i = 1, 2.
Given an initial robot pose(y1, y2, θ) = (0, 0, 0), consider

three maneuvers: translation along thex axis, translation along
the straight liney = x and translation along they axis. The
first one can be achieved with a single symbolw applied on
the input1v for n = 4 periods. The second maneuver is similar
to the first one: we apply the previous command on the two
inputs 1v and 2v for n = 4 periods. We can split the third
maneuver in two maneuvers of the previous types.

Initial and final positions of a 3R robot are shown in fig. 5.
Simulations were performed settingl1 = l2 = 3m, KCP =
1m, T = 1s, andw = 0.8m/s2. Fig. 6 shows the coordinates
of the Center of Percussion of the last link while fig. 7 shows
the angles of the active joints and the orientation of the last
passive link, respectively.

VI. CONCLUSIONS

In this paper, we have described methods for steering
complex dynamical systems by signals with finite-length de-
scriptions. Of particular relevance are results on reducing
the specification and computational complexity of palnning
problems.

Systems tractable by symbolic control under encoding in-
clude all controllable linear systems, nilpotent driftless nonlin-
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Fig. 7. Active joints angles (left) and orientation of the last passive link
(right)

ear systems and (dynamically) feedback-linearizable systems.
It seems fair to affirm that few practically interesting classes of
controllable systems remain outside the scope of application
of the presented methods — among which, most notably, are
non-differentially flat systems.

Many other open problems remain open in order to fully
exploit the potential of symbolic control. A limitation of our
current approach is that we assume that a flat, linearizing
output to be available, as well as state measurements. Con-
nections to state observers in planning are unexplored at this
stage. As mentioned in the introduction, an advantage of our
planning method is that it can be computed and communicated
very efficiently, hence it can be conceivably used as a feed-
forward block to generate and update in real-time reference
trajectories to be tracked by a complex remote system. In such
an application, however, the joint stability of the feed-forward
and feedback blocks would need thorough investigation.

APPENDIX I

Lemma 16:Systems in strictly triangular form (12) are
additively approachable.

Proof: Consider a control encodingΣ → U , σi 7→ ui,
with U finite set, of cardinalityNp, of constant input quanta
ui : [0, T ] → IRnp . Let U be symmetric, i.e. include all
inversesūi = −ui, and let σ̄i 7→ ūi. Define acommutator
sequenceas [σi, σj ] = σiσj σ̄iσ̄j . By (12), we immediately
get that, upon application of any commutator sequence,xp(t+
4T ) = xp(t).

Let Ωp:=Σ, and define recursivelyΩk−1 = [Ωk,Ωk] to be
the set of all commutator sequences built onΩk. A flag of
words sets (not sub-languages)Ωp ⊃ Ωp−1 ⊃ · · · ⊃ Ω1

is thus obtained such that, for words inΩi, i < p, all
state variables(xp, xp−1, . . . , xi+1) undergo a closed path
in IRni+1+...+np . Our strategy is to use the sub-language
generated byΩi in backward recursion to move the coordinate
xi. Let Ni denote the cardinality ofΩi. By construction, we
have Ni−1 = Ni(Ni − 1)/2. To each word ofωj

i ∈ Ωi,
j = 1, . . . , Ni, there corresponds a quantum displacement
vectorh(ωj

i ) ∈ IRni providing a net motion onxi at intervals
of 4p−iT . Hence, the action of words inΩi is additive on
IRni . Let Qi = {h(ωj

i ), ωj
i ∈ Ωi} denote the set of quantum

displacements. IfNi ≥ ni, then, in generic hypothesis, we can
assume that span(Q) = IRni .

Notice that Qp is given by {T ∑p

i=1 gi
pui, u =

[u1, . . . , up] ∈ U}. If U is formed by rational constant control
quanta andgi

p ∈ lQ, then the group generated byQp is a lattice

Λp whose mesh size can be made as small as desired by scaling
control values inU .
Otherwise,Qp, generically, generates a dense subset of IRnp .
In this case, we can choose a symmetric subsetŨ ⊂ U of
cardinality2np such thatnp of the corresponding elements of
Qp are linearly independent. TheñU generates a lattice and,
again, we can decide the mesh size by rescaling controls.
For the other componentsxi we can reason similarly checking
if the displacements inQi are rationals, otherwise selecting
suitable subsets of words.
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