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Feedback Encoding for Efficient
Symbolic Control of Dynamical Systems

Antonio Bicchi, Fellow, IEEE,Alessia Marigo, and Benedetto Piccoli,

Abstract— The problem of efficiently steering dynamical sys- simpler, lower dimensional ones, by e.g. kinematic redunsti

tems by generating input plans is considered. Plans are con-[2], group symmetries [3], [4], flatness-theory tools [1}, o
sidered which consist of finite—length words constructed on an hierarchical system abstractions [5].

alphabet of input symbols, which could be e.g. transmitted . -,
through a Iimitgd ca)[gacity channel to a remote gystem, where  With respect to that framework, an additional concern about

they can be decoded in suitable control actions. Efficiency is the complexity of describing plans is introduced whenever
considered in terms of the computational complexity of plans, communication or storage limitations are in place. Paldity
and in terms of their description length (in number of bits). fitting to this perspective are examples from robotics, &her
We show that, by suitable choice of the control encoding, input symbols may represent commands (dkdaviors or
finite plans can be efficiently built for a wide class of dynamical . . .
systems, computing arbitrarily close approximations of a desired modes) For instance, f_or autonomous mobile rove_rs, h'g_h I_e_vel
equilibrium in polynomial time. The paper also investigates how Plans may be comprised of sequences of motion primitives
the efficiency of planning is affected by the choice of inputs, such aswander, | ook_for, avoidwall, etc.; in the
and provides some results as to optimal performance in terms of control of humanoids (see e.g. [6]), symbols are encoudtere
accuracy and range. such asval k, run, stop, squat, etc.. An operational
Index Terms— Symbolic control, Specification complexity, Hy- specification for such systems is naturally given in terms

brid Logic-Dynamical Systems. of the language built on symbols. The capability of such
languages to encode the richest variety of tasks by words
l. INTRODUCTION of the shortest length, is a crucial aspect when dealing with

) ) ~_ realistic conditions. Consider for instance the case wiisee
I N this paper we consider the problem of planning inpuigpotic agent receives its reference plans from a remote- hig
to steer a controllable dynamical system of the type  |eye| control center through a finite capacity communigatio
i = f(z,u), r€ X CR"ueU CR’ 1) channel, or plans are exchang.ed in a networked system of
a large number of simple semi-autonomous agents. In gen-
between neighborhoods of given initial and final states. Asesal, it can be assumed that robots are capable of accepting
solution, we seek dinite plan i.e. an input function which finitely-described reference signals, and can implememtii fi
admits a finite description. We are interested in plans wittumber of possible different feedback strategies via tteeafis
short description length (measured in bits) and low computambedded controllers, according to the received messages.
tional complexity. Particular attention is given to plamsang Several important contributions have appeared in recent
equilibrium states, regarded as nominal functional comlit years addressing different instances of such symbolic con-
Motivations to study this problem come from a growingdrol problem, e.g. [4], [7], [8]. A general framework for
number of applications requiring to steer physical plaots)- such systems and problems can be traced back to ideas on
sisting of dynamical systems capable of complex behavjouMotion Description Languages in [9]. The line of research
by hierarchically abstracted levels of decision, plannamgl addressing finite hyerarchic abstractions of continoutesys
supervision, i.e. by logic control. In the control literegy via bisimulations ( [5], [10], [11]) has several contact msi
methods for generation of reference trajectories have bewith the one presented in this paper, although the type of
often considered as feedforward components in a two degreethods and results are thus far quite distinct. Of direct
of freedom controller design ( [1]). In this spirit, severatelevance to work presented here is the quantitative aisalys
authors have addressed the problem of reducing the trajectof the specification complexity of input sequences for a<las
generation problem for complex systems by planning faf automata, presented in [12]. The key result there is that
feedback can substantially reduce the specification codityple
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points ( [13]-[15]), thus making planning computationswer We considerefficienta solution to this problem such that

complex. The main contribution of this paper is to show thagplans in P have i) low computational complexity, in terms

again by suitable use of feedback, finite plans can be efflgienof the number of elementary computations to be executed to

found for a wide class of systems. find P, and ii) low specification complexity, in terms of the
More precisely, we show that by introduciegntrol encod- minimum number of bits necessary to represEntcf. [12]).

ing of a symbolic input language, we can compute in polyno-

mial time plans whose specification complexity is logarithm B. A simple example

in the size of the region to be covered. In our context, we To appreciate the difference between possible solutions to

postulate that control decoders are available and embedggghlemIl, consider a discrete-time linear controllable system

on the remotely controlled plant. Decoders receive symbQie 1 superscript denoting the forward shift operator)
from the planner, and translate them in suitable contrabast

possibly based on locally available state information. " =Azr+ Bu, re€R", uel,
Whenever the proposed method of symbolic encoding agith 7 = {ue R": |u| <ry} and M the hypercube of

plies, acontrol languageis obtained whose action on thehalf-size M in the r-dimensional equilibrium subspac of
system has the desirable properties of additive groups, i,

the actions of control words are invertible and commute. A direct approach might be the following: introduce a
Furthermore, under the action of words in this language, thfiite point setA = {z'} < M of dispersionp =
reachable set becomes a lattice. Finite—length plans teseh yax, . \ min; ||z — 2;||. For N sufficiently large, and every
arbitrarily close approximations of a given equilibriumncapair (27, 27), determine a control sequenaé’ of length
thus be computed in polynomial time. Under this point of viewy such thatz/ — AN2? — Ryu? = 0, where Ry =
the contribution of this paper can be regarded as an extensjgN-1p|...|B]. Notice that, to covetM in the worst-case
of planning techniques in [15] (only applicable so far t@jirection, it is necessary that(Ry)ry ~ M, whereo(Ry)
driftless nonlinear systems in so-called “chained-forntd)a denotes the minimum singular value &y. This forces a
much wider class of systems, most notably systems with. drigwer bound on the time horizoN. Using 8 ~ log, (2ru/p)
This objective is achieved by three main novel ideas whigjts to represent a real number, we get an approximate dontro
are developed in this paper: i) the introduction of feedbadequenceai’ such that|i’/ —u'/|| < ;. The desired tolerance
encoding, which affords the wealthy of feedback-equivedenon planning is achieved i#p + 1 (Ry) < ¢, with 7(Ry)
results in the nonlinear systems literature; ii) the studythte  the maximum singular value aRy. Fixing e.g.ua(Ry) ~

minimal specification complexity for interval-filling camfls, , ~ /3, for large M/ and N we get that the asymptotic
derived from concurrent work of number-theoretic naturl a specification complexity of” is given by

iii) the concept and technique of periodic steering for ey M
with drift. C(P) ~ arN log, <C(RN)> , (2)

By virtue of feedback encoding, complex nonlinear systems €
— indeed, the same class of differentially flat systems [16}ith o = (%)r and ¢(Ry) = (Ry)/a(Ry) > 1 the
considered in [1] — can be abstracted (at least locally) toc@ndition number ofR .
linear system. Planning for flat systems can then be achiaved As a result of Theorem 15, the approach introduced in this
a linear setting, hence projected back on the original systepaper leads instead to a specification complexity for theesam
by feedback decoding. This process is thoroughly illusttat problem of the order of
in the paper by an example of a MIMO nonlinear model of M
an underactuated mechanical system. C(P) ~ arlog, (a) . 3

A. Problem Description Plans provided by our method are developed over a time
Consider again the control system in (1). We assume tfiizon N’ which is minimal for a giveny, henceN > N'.
for inputs u in a rich enough class of functions (e.g., the&€ttingN' = N'itis then possible to compare the specification
space of bounded functiods®), the system (1) is completely complexities of the two methods, as illustrated in fig. 1.
controllable, i.e. for any given two points), x ¢, aplan (i.e.,
a finite-support input fli/ngctiom : [t,ZeJr t]) ex{sts Itohat éteers ”_‘ SYMBOL_'C _CONTROL AND ENCODING o
(1) from o to ;. Symbolic control is inherently related to the definition of
Such plan would generically require an infinite—length délementary control events, or atoms,quanta
scription. Because we are interested in finitely describabl Definition 1: A control quantumis a couple(u,T’) where
plans, i.e. concatenations of only a finite number of eleamgnt ¢ : X — L*(R* x X,U) andT : X — R™. The set of
control actions, only approximate steering can be achi@vedcontrol quanta is denoted ky.
general. We therefore study the following question: A control quantur(u, T') is naturally associated with a map
Problem IT: Given a compact subsgt C X and a $wr) + X — X, such that, givenry € X and denoting
tolerances, provide a specificatiod® of plans such Uz, = u(z0), P(u,1)(%0) IS the solution at timel'(xo) of the
that, for any pair(zg,z¢) € M2, a plan inP exists Cauchy problem
such that system (1) is steered fram to within an { &= f(z,ug (¢, x))

e-neighborhood ofr . 2(0) = o. 4
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9 Specification Complexity

14340 = 16210° Comparison set from any point inX under the concatenation of words in
14 A iy Q) is a setA generated by vectors(w),w € €2,

A= {h(wl))\l + -+ h(wN)/\N + ‘/\7, S Z,N € N}

When A can be generated by linearly independent vectors, it
is called alattice. This happens for instance whéfw) €Q",

Yw € €, or else when all words if2 consist of concatenations
of only n words in X* which produce independent vectors
h(w). Under rules (5), (6), a choice f& always exists such
Fig. 1. a) Specification complexity in (2), as a function/df/< in the range that A I.S a Iz_ittlce. In such hypOtheS&}’ .aCtS on R as Zn’

of 105, Each data point is obtained as an average over 50 systems3p, €NCE, in suitable state and input coordinates, the systiees t

r = 1), generated randomly by the Matlab DRSS function and scalécte 0n the form
spectral radius as in the legend. b) Ratios between speiificeomplexities _ _
(3) and (2), for data generated as above. 2T =z4+Hp, HeR™™ pczZ". @)

A further important concern is that system (1) under

Definition 2: A control quantizatiorconsists in assigning a Symbolic control, maintains the possibility of approximat
finite or countable s/ C /. A (symbolic) control encoding arbitrarily well all reachable equilibria in its state spador

on a control quantization is a mag : ¥ — U, wherey, = Suitable choices of symbols. _ -

{01,02,...} is a finite set of symbols. Definition 3: A control systemi = f(z,u) is additively
Given a control quantization and an encoder, we have t(¥ lattice) approachableif, for every ¢ > 0, there exist a

diagram control quantizatiori/. and an encodingZ* : 2 — U with

card(U:) = q € N, such that: i) the action of) obeys (5),
(6), and ii) for everyxy, zy € X, there exists: in the Q—orbit
whereD(X) denotes the group of automorphisms ¥nThis  of 2o with ||z — 2| < e.

can be extended in an obvious way to

2 2y -2 px),

L B b Remark 1:The reachable set being a lattice under quanti-
¥ —U" — D(X), zation does not imply additive approachability. For ins&n
where 3 is the set of words formed with letters fromconsider the example used in [17] to illustrate the so—dalle
the alphabets, including the empty string. We assume kinodynamic planning method ( [18]-{20]). This consists of
¢ o E(e) = Id(X), i.e. the identity map ifD(X). An action & double integratofj = u with piecewise constant encoding

of the monoid=* on X is thus defined. Given a quantizatio = {uo = 0,u1 = 1,u; = —1} on intervals of fixed length
U and an initial pointzo, R(U, o) denotes the reachable sef’ = 1. The sampled system reads
from zo underl{, i.e. theX*—orbit for the action defined via + 11 1
q q
BEtHIBNAE
In general, being the action &f* just a monoid, the analysis
of its action on the state space can be quite hard, and fHnce
structure of the _reachable set unc_;ler generic qu.antizedatsnt q(N) = ¢q(0)+ N%O) + ZZN:1 %u(i)
can be very mtncatgd (even f(_)r linear systems. see e.g.—[1_3 G(N) = 400)+ 3N, u).
[15]). However, suitable choices of encoding of symbolic . ]
control may simplify the analysis. The reachable set from(0) = ¢(0) =0 is
1

_Jla|_|3 O 2

A. Additive Group Actions and Lattices RWU.0) H q } [ 0 1 ] MAeZ }

We focus our attention on designing encodings that achievae quantization thus induces a lattice structure on the
simple composition rules for the action of words in a sublameachable set. The lattice mesh can be reduced to any desired
guagef) C ¥*, such that ¢ resolution by scalingU or T. However, the actions of

n . control quanta do not compose according to rule (5): indeed,
YVw e Q,JFh(w) e R":Vzx € X, (¢" o B (w))(x) =z +h(w), -, N . N
() (¢ (W)() ((5))) 1) (U1U2) # ¢*(uguy) (for instance ¢*(ujus2)(0,0) = (1,0),
and while ¢*(U2u1)(070) = (7170))
Ywr € Q301 € Q: (@" 0 E*(w1)) 0 (¢% 0o E*(i01)) = Id(X). The following theorem motivates the interest in seeking
(6) control encodings for additive approachability.
The additivity rule (5) implies that actions commute, i.e. Theorem 1:For an additively approachable system, a spec-
Ywy,wa € Q, (¢* o E*(wy))o(¢* o E*(wa)) = (¢* 0o E*(w2))o ification P for problemII can be given in polynomial time.
(¢*o E*(wq)): therefore, the global action is independent from  Proof: Consider a feedback encoding ensuring additive
the order of application of control words . Rules (5) and approachability. Arrange a sufficient numbgpf action vec-
(6) amount to requiring that the sublangua@eacts on the torsh(w;),w; € Q in the columns of a matri¥/ € R™*?. The
states as an additive group. As a consequence, the reacheddehable set from, is thus a lattice given byR(2, z¢) =



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. X, NO. Y, SPRING 2@ 4

zo + A, where A = {HA|X € Z?}. Additive approachability (NI L[2[3[4[5]06 7]
: . v1 [ 1] 3 ][ 5] 8 [11] 15 | 19
guarantees that the dispersion &fcan be bounded by}e, w247 1014 18 | 23
hencevzy, 3y € A : ||z —zo—y|| < e. Finding a plan ta ¢ vs || 31 5 | 8 | 11| 15| 19 | 24
is thus reduced to solving the system of diophantine equsitio M [[3]10]24]44]75] 114 168
y=HA ® (N[ i[2z[3[4]5 [0 [T]
Each lattice coordinate\; represent directly the number of Z; % 2 g ig ;3 22 ‘5‘%
times the control wordv;, hence the corresponding sequence s 131 7 (11 20] 29 | 39 | 55
of control quanta, is to be used to reach the goal. Due to vy |4 8 [12] 21| 30 | 40 | 56
additivity of the action, the order of application of the M ]| 4]16]36]84] 150 | 240 | 392

is ininfluent. The linear integer programming problem (8) TABLE |

can be .SOIveq n pOIynomlaI tlme.WIth. reSpeC'.: to the StaISPTIMAL INTERVAL -FILLING INPUT VALUES FOR SYSTEM(Q) FORmM = 3
space dimension andp. Indeed, writeH in Hermite normal
form, H = [L 0] U, where L € R™™ " is a nonnegative,
lower triangular, nonsingular matrix, antf € Q™™ is
unimodular (i.e., obtained from the identity matrix thrbug

elementary column operations). Once the Hermite normad for, o ative. Although this difference has substantial tezdini
of [ has been computed (which can be done off-line ifyjications, the difficulty of the two problems is compaeab
polynomial time [21], [22]), all possible plans to reach any proplem 1 was solved for — 2,3,4 and anyN in [24].

(ABOVE) AND m = 4 (BELOW).

desired configuratioy are easily obtained as We report here the explicit formulae for the optimal choiée o
L[ LYy S controls form = 2,3. Form = 2 we simply obtaimv; = N
A=U U »VHeEZ : andvy, = N + 1. Form = 3 we get:
] [ N?/4+3/2N+5/4 if N is odd
T N2/443/2N+1  if N is even
B. Reducing the specification complexity vy = vz — 1,

We now address the specification complexity for problem
II for a system in form (7). Without loss of generality to the
purposes of this section, we can set the toleranee1 and
assumeH = Id, thus reducing to system Table | reports the maximum interval of the horizontal line
9) which can be covered with unit resolution and different word

lengthsV, along with the actual values of the different control
This system can be treated componentwise, hence it will bets, form = 3 andm = 4. All values in table I, exceptV,
sufficient to consider (9) withh € R. should be scaled by the desired resolution

We address the steering probld taking the following Form = 2,3,4 and N >> m, for the largest value iV
point of view: fixed the cardinality of the control set and thé holds asymptotically
time horizon, choose control values maximizing the size of

Um (\‘

o vy —MH —1 if Nis odd
1= vy — & -2 if N is even

z+:z—|—u.

N J +2)(m=1), (10)

the region to be filled with reachable points. More precisely .
M —

we formulate the following problem.
Problem 1: For fixed integersn > 0 and N > 0, find the  Gjven 2m + 1 controls one can thus reach i steps a region

best choice of an integer control s&t = {0, +vy,..., v}  of size

such that the reachable set from the origimirsteps contains M ~ N™/m™. (11)
the maximum interval of integerg§(M) = [-M,—M +

1,....,M] Cc Z In [24], it is conjectured that (10), (11) hold for eveny.

Clearly, the cardinality2m + 1 of the control set and the Let us now go back to Problerfl for system (9), and
number N of steps determine the specification complexitgompute the specification complexity for optimized control
while M describes the size of the region which can be reache@lues. To describe plans covering the region of diZze a
Thus maximizingM is the same as maximizing the reachablsequence of lengtliv of symbols from an alphabet of size
region for a fixed specification complexity. 2m + 1 should be given. This would result on a specification
Problem 1 is a number theoretical problem, related babmplexity of N [log,(2m + 1)].
not equivalent to the well-known “Frobenius postage stampA further reduction of specification complexity can be
proble”. More precisely, the postage problem seeks to maottained by using run-length encoding (RLE) for control
imize the minimum postage fee not realizable using stamggmbols. RLE consists in replacing repeated runs of a single
from a finite set ofn possible denominations. For the classicaymbol in an input stream by a single instance of the symbol
postage problem, only results for small valuesroére known, and a run count. This compression method is particularly
see [23]. The main difference with Problem 1 is the positivitwell suited for our method, because of the commutativity of
of stamp denominations, while control values frdthare also symbols in control strings.
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The following proposition holds forn < 4, and is a ; Remote Sysiem
. . i P.-C. Decoder
consequence of the conjecture in [24] for larger controd:set | Physical Plant ;

Proposition 2: The specification complexity of Problef ,:": H “
for a system in the form (9) is given asymptotically By~ NEO

logy(M/e).
Proof: Consider the solution/V to Problem 1. By

commutativity of the action group, we can assign, for each a)

possible control value; € W, an integer of size at mosy, PSDQMWR"”WS"”‘-’”*

specifying how many times the contrel must be used. In this Physical Plant
way, the control sequence requit@sn+1)[log, (V)] bits, or / MH .

rather, by exploiting the symmetry of the symbol set andgisin EE' i= flxu) &
sign-magnitude representatiofin + 1) (1 + [logy (N + 1)])

bits. From (11), we getn ~ log, (M )/ log, (V). We conclude

reinserting the previously normalized tolerance [ ] . bs)_
We finally remark that the solution of Problem 1 at the same BT

time minimizes the number of stepg for given region size, f

specification complexity, and tolerance. In particulanfr(11) Hi— M
we get El @—'

Proposition 3: For a fixed tolerances and specification
complexity, with optimally chosen controls the numhbgrof
steps necessary to cover a region of diZzeés o(M). In other . (f)s_
terms, the sizeM/ of the reachable set increases faster thar ——
the word lengthV. !

C.T. Feedback Decoder

Sampled System

| Physical Plant

Ill. FEEDBACK ENCODING ] @M @hlii. = ) 2§

A few examples of possible control encoding schemes o ‘

increasing generality are pictorially described in fig. 2.

In piecewise constant encodingach input symbol irt is d)

assouated W'th.a control qu.antu‘m = (us, T3) Wh_erepyui Fig. 2. Four examples of symbolic encoding of control. Symbalagmitted

is constant for fixed tim&; (fig. 2-a). Input quantization, as through the finite-capacity channel are represented bgréeth the leftmost

defined in most part of the literature, is an instance of thiocks. From the top: a) piecewise constant encoding; jepiese smooth
. . . . engoding; c¢) continuous-time feedback encoding; d) disetiete feedback

scheme. The action of piecewise constant inputs on gen oding.

systems is typically unstructured [13]. However, the paitr

class of chained-form driftless systems was shown in [16Fto

additively approachable by rational piecewise-constantrol lence of dynamical systems. In this section we show how this

quanta. . .
Piecewise smooth encodinghereT; is fixed, andu; are can be exploited to apply the planning method of theorem 1
ts) rather general classes of systems.

smooth functions of time not depending on the state (fig.,2-b :
may allow for more powerful planning. For instance, difire A first consequence that follows almost for free from

u;'s may represent pieces of extremal controls to be past%?f]c‘?pts intrpduced above concerns the kinematic model of a
together in an approximate optimal control scheme (cf. e gf" Withn trailers ( [27], [28]). Indeed, by results of [29], we
[25]). Development of reference trajectories on a funailonknow that then-trailer system is locally feedback equivalent

basis, as in e.g. [1], [26] can also be regarded as an instatfe&hained form, hence additively approachable by feedback
of this scheme. encoding. By theorem 1, finite plans to arbitrary accuragy ca

Feedback encodingonsists in associating to each symbd?€ found in polynomial time.
a control inputu that depends on the symbol itself, on the A similar result holds indeed for a much broader class of
current state of the system, and on its structure. The schefgalinear systems.
can be regarded as generated by defining a feedbaek Theorem 4:Linear-in-control, driftless, controllable nonlin-
f(xz,r) embedded on system (4), and a piecewise const@at systems
encoding on the referenegand can be realized either directly »
in continuous time (fig. 2-c), or indirectly through samglin T = Zgi(x)“ia ze€R"
(fig. 2-d). If the encoding incorporates memory elements, e. =1
additional stateg are used to define = f(z,£,r) with =
a(é, z,r), the feedback encoding is referred to as dynamicwhose control Lie algebra is nilpotent, are locally addityv
approachable by feedback encoding.
A. Planning by Feedback Encoding Proof: We start noting that, by defining feedback encod-
The method of feedback encoding avails symbolic controlg according to the local feedback equivalence result 6f,[3
with powerful results from the literature on feedback egquivwe can reduce to the study of strictly triangular systems of
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Remote System H i
BT R e Thg most genergl theorem of thls.paper can be given
; Sampled System i resorting to dynamic feedback encoding. Indeed, recalling
C.T. Feedback Decoder i results from [16], [31], [32], we can state the following

Physical Plant

Theorem 5:Every differentially flat system is locally addi-
tively approachable.

‘ SN
i @% M(M

Fig. 3. Nested discrete-time continuous-time feedback engod

IV. LINEAR SYSTEMS
In this section we consider linear systems of type

T =Fzr+ Gu (13)
with z € R", v € U = R" and rankG = r. We start by some
the form preliminary results characterizing the equilibrium &et
iro= Y g1 (@)U
By = P  gh(zs,... 1), A. Preliminaries
: (12) Lemma 6:For a controllable linear system (13), difn= r.
Bpo1 = f;lg;i)71($p)ui Proof: The equilibrium equation is written as
By = Doy Gy
3 L Oz[FG][x]. (14)
with © = [z1,72,...,2,] € R™T2T T = R" ¢ = u

[u1,...,up] € R™, n, = p, and the coefficientg;(-) are By the PBH test, a paifF, G) is controllable if and only if the
polynomials. A lemma proving that systems in the strictlyhatrix [F— AT, | G] is full rank for all A € R. Applying this
triangular form (12) are additively approachable is given iwith A = 0, we gather directly that dim kérF ‘ G ] —
the appendix. [ ] u
Among controllable systems without drift, i.e. systems for Application to (13) of piecewise constant encoding of
which any state is equilibrium with zero control, the prable symbolic inputs (schema in fig.2) with durations?; = 7,

of finite planning by symbolic control remains open for nony;, generates the discrete-time linear system
nilpotent systems.

We now turn our attention to systems with drift, i.e. sys- ot = Az + Bu, (15)
tems which possess an autonomous dynamics independeny,f
applied inputs. More precisely, consider again system (1) T
A=¢"T B= / T g5 | G.
z=f(z,u), te XCR", uelUCR" 0

and the associate equilibrium equatigte, u) = 0. Let the Le_mma 7:_The equilibri_un_1 manifold ofaco_ntrollabl_e linear
equilibrium set be€ = {2 € X|3u € U, f(z,u) = 0}. We continuous-time system is invariant under discrete-tieedf
say that system (1) has drift & has lower dimension tha. back encoding, for almost all sampling tim&s

In the rest of this paper we will deal with the planning ~ Proof: Let £ and &’ denote the equilibrium manifold
problem for systems with drift, and in particular with generof (13) and (15), respectively. It holds C £’: indeed, all
ating trajectories to join different equilibrium configticms. equilibrium pairs(z, @) for (13) are also such for (15). On the
This focus is consistent with usual practice in control, seneOther hand, the equilibrium equation for (15) can be written
equilibrium configurations typically correspond to nonlina@S
working conditions for a system (possibly up to group sym- 0=[1-A|B] [ z ] . (16)
metries, see e.g. [4]).

Among systems with drift, linear systems are the simplest, is well known that, for almost all sampling timeg,
yet their analysis encompasses the key features and ditéigul controllability of the sampled system is conserved, henee w
of planning. Indeed, our strategy to attack the generalcase have, again by application of the PBH lemma, that &fire:
sists of reducing to planning for linear systems via feedlbadim ker[ I —A B | =r.
encoding. To achieve this, we introduce a further genezdliz The equilibrium manifold” for system (15) with a linear
encoder (still encompassed by the above definition of contfeedbacku = Kz 4w, coincides withE’. Indeed, writing the
quanta), i.e. theested feedback encodingscribed in fig. 3. new equilibrium equation

In this case, an inner continuous (possibly dynamic) feekiba -

loop and an outer discrete-time loop — both embedded on | I-A+BK | B | { " } =0, (17)

the remote system — are used to achieve richer encoding of

transmitted symbols. one has thatyz =z € &', u = u — Kz solves (17), hence
Additive approachabi”ty for linear systems, by discrétre g CE’ As Controllability is not altered by state feedback, a

feedback encoding (see fig. 3), is proved in theorem 9 beld@BH test argument as above concludes the proof. ~ m

By using nested feedback encoding, all feedback linedezab A crucial observation concering systems with drift is
systems are hence additively approachable. contained in the following lemma.
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Lemma 8:For a linear system (13) with=1 andn > 1, Assume that the state subvectors are ordered such that

it is impossible to steer the state among points€iwhile x; > 1 fori = 1,...,7" andr; = 1, j =" +1,... 7.
remaining in€. Let £ C & denote the subspace correspondingito= 0,

Proof: Let all solutions to (14) be written as it =1,...,7". The dimension of is hence equal to the number

_ of Kronecker indices equal to one. According to the above

z N, . . : . . . o

{ 7 } = { N ] u, p€R" discussion, steering a system with drift from an equilibriu
v “ point £(tg) = & to &(tg + 7) = £ € £ while remaining in

In order for the system’s trajectory to remain & it is ¢& forall o <t¢ <, + 7, can only be achieved in the very
necessary that its velocity lies in the tangent spac® teence special case that — &, € £.

that, Vi, 34’ € R",u € R" such that This observation motivates consideration of policies for
) , periodic steering among equilibria, i.e. such thgt) < €&,
&= Nap' = FNap + Gu. Vt =to+ kT, T >0, k = 0,1,2,..., while £(t) ¢ € is

Choosingu = N, + u, v’ € R", one obtains the necessanpllowedVt 7 to + kT

condition thatvy’, 3u’ such thatN,u’ = Gu/, i.e. that the

range space off and of N, must have nontrivial intersection.B. Periodic Additive Approachability

This condition contradicts controllability: indeed, by It The linear discrete time system (15) is not additively ap-

plying both sides byF we get FN,u' = FGu' and using proachable withu € U c Q", a discrete rational set. Indeed,

FNyp' = =GNy, we get rankG|FG] = 1. B if the system could be put in the form (7), thefi” should
The argument can be directly generalized to multi-inpie similar to the identity matrix, which cannot be the case fo

systems by recurring to the Brunovsky form (see e.g. [33]. controllable system with drift. Nor would the applicatioh

Indeed, it is well known that, for a controllable systema simple (linear) feedback encoding such as that in scheme

Dz = Fx + Gu, there exist a change of coordinatgsn the in fig.2 help in this regard, as we would only get a system in

state space an¥l in the input space, and a linear feedbacthe form (15) withA = e(F+GKT,

matrix Ko such thatS~' (F+GK()S = F andS~'GV =G,  An encoding of symbolic inputs achieving periodic additive

with approachability with periodT, 1 < ¢ € N for linear systems
Fey 0o 0 with drift can be conceived based on feedback encoding for
P 0 Fep o 0 the discrete-time system (15).
N : Lo, ’ Theorem 9:For a controllable linear discrete-time system
0o 0 --- F. xT = Az + Bu, there exists an integet > 1 and a linear
’ feedback encoding
gy 0 o0 E: YU,

o, — Kz + w;

. . ) ) with constantk’ € R™*" andw; € W, W C R" a guantized

0 0 - g control set, such that, for all subsequences of peridd
wherex; denotes the—th Kronecker control-invariant index. extracted frome(-), the reachable set is a lattice of arbitrarily
Accordingly, the statg = S~'z can be split inr subvectors fine mesh. In other terms, far(k) = x(7 + k(), 7,k € N, it

¢ =(&,. .., ) for which the dynamics are written as holds o
) 2t =24+ Hp, He RV, 2"
gi:FHi§i+gnq,v;7 7::17"'7T (18) _
andVe there exists a choice of a finil¢/ such that| H|| < «.
where¢; € R™, We recall preliminarily a result which can be derived
0 1 0 0 directly from [15].
00 1 0 Lemma 10:The reachable set of the scalar discrete time

L _ . X linear systemtt = £+ v, £ € R, v € W:=yW with v > 0
Fa=11 1 " | €RTTE, and W = {0,fwy,...,twy,}, w; € N with at least two
elementsw; w; coprime, is a lattice of mesh size

Proof: Theorem 9
For the controllable paifA, B), let S, V, and K, be matrices
0 such that(S—*(A + BK)S, S™1BV) is in Brunovsky form
(see above). In the new coordinatgs- S—'x we have

¢t =S~ (A+ BKy)S¢ + S~1BVY = A¢ + Bu'.
) i, Let v’ = K £ + v, where:
’UieRandZizlﬁii:n. ev € W = 'YllWX _”X,.YTTW’ with kW _

k k k.. _ C_
1the result holds for both continuous- and discrete-timeesgst Accord- 0, £ wy, ..., £ }CU"““ }_’ Wi €NE Loor g .
ingly, the operatorD should be read as either a total derivatig = 4y 1,...,my, each "W including at least two coprime

or a forward shiftDy(k) = y(k)* = y(k + 1) elementstw; Fw;;

o O
o O
o O
O =

glii = : € R’{i7

=)
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e K; € R™" such that its—th row (denoted<;;) contains matriceskK}’s.
all zeroes except for the element in the;_; + 1)-th Forj = n, we have that the first row of the matr{,_, (A +
column which is equal to one (recall that by definitiomlBK}) is given byK,,, which implies thati,, = e;. With this
ko = 0). choice of K,, the second row is given by the vectéf,,
Using notation as in (18), it can be easily observed that + shifted by one position, i.e.
B, K1) = I;,, thek; x k; identity matrix. Hence, if we let
[(Kn—l)n (Kn—l)l e (Kn—l)n—l} .

C=lem.{k;:i=1,...,1}

This implies thatK,_; = e;. By recursion we obtain the

hesis. ]
However, for multi-input systems, the period of

(.e.m;k;)T used in theorem 9 can be reduced to a

we get[S~!((A + BKy)S + BVE,)] = I,.. .
Let ¢; € R" denote the—th component of the state vector
relative to the paiA,,, B.,). For anyr € N we have

v;(T) minimal periodicity of (max; ;) T. This can be achieved by
&+ ki) = &(T) + : (19) the planning algorithm described below in section IV-D.
(O (’7’ + Ri — ].)
On the longer period of T, we have C. Moving among equilibria
Z%ﬁl 0i(T + kky) By the discrete-time feedback encoding scheme above dis-
k=07t ' cussed, any reachable state can be made an equilibrium state
G+l = &)+ : for subsequences of periddof the discretized system. As it

Zégl i+ ki — 1+ kki) can be gxpected, however, in ger)eral the beﬁaviour of the sys
= &(7) + Bi(r), - tem amid such periodic samples is not specmgd, and may turn

out to be unacceptable. Indeed, it can be easily observéd tha

hence for eachx;—dimensional subsystem, the intersample dynamics

U1 are written as
E(r+4) =¢&(1) + Do =g(r)
o gj:{(l) 156_1%#[(1)]@,&-,@':1,...,1« (20)

or, in the initial coordinates,
hence, within/ steps, each state variable takes once the values
other states have at the first step. If a goal has to be reached,
In conclusion, by the linear discrete—time feedback enapdi Which is far from the origin, the intersample behaviour may
5. Sy have a large-span erratic behaviour.
: rers (Ko 4 V}1é71)$ Ve However, recall that our main interest is to steer systems
! ! among states of equilibrium. We will show in this sectionttha
with v; € W, for all ¢-periodic subsequencesk) = z(7 + our feedback encoding scheme allows to solve this problem
kf), it holds while keeping the system'’s evolution arbitrarily close be t
2t =2+ ST, pez® equilibrium manifold. The proof of this property is obtathe
by comparing the length of the path produced by our method
. with that of the geodesic line joining the same end pointst{su
['=diag(yle,, 5 wls,) shortest path not being attainable by any control law).
It is also clear that, for any, it is possible to choosE such Notice that, in Brunovsky coordinate§, has a particularly
that z can be driven in a finite number of steps (multiple o§imple structure. Lettind.;, € R" denote a vector with all
) to within ane-neighborhood of any point in R B components equal tb, we have that for eack;-dimensional
It is interesting to note that, for single-input systemssubsystem in (20), equilibrium states gfe= a;1,,, a; € R,
the encoding considered in theorem 9 is indeed optimal, rence
terms of minimizing the periodicity by which the lattice is o
achievable. E={¢{¢=diag(ail,, o1, )1,}
Proposition 11: Let the single-input discrete time linear
control system be described by a péit, B) in Brunovsky For simplicity, consider the (worst) case of a system con-
form of dimensionn. Then for allj < n and K; € R", sisting of a single Brunovsky block, with initial sta€0) € &,
k=1,...,5, [T\_(A+ BK}) # I,. Moreover if j = n and and apply a sequence éf= n controlsv(0),...,v(n — 1).
[T (A + BK;)" = I,, then necessarily\; = --- = K,, = Let &(k) be the corresponding trajectory, and l2denote the
10 --- 0] polygonal through¢(k), £ = 0,...n. To estimate the length
Proof: Assume firsj < n, then the first.—j rows of the of P, consider its/; norm
matrix[[;_, (A+BKj) are given by the vectoks 1, . . . , e,. "
Thus we deduce that the matff; _, (A + BK}) can not be I,(P) = Z 1€(k) — £(k — 1)||1
k=1

x(r+ L) =z(1) + So.

with

equal to the identity matrix for any choice of the feedback
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A direct computation gives Notice however that a planner based on the straightforward
0 application of this proposition could lead to an inefficient
solution, as the size of the mesh for the—dimensional
susbsystem would be increased by a faeﬁf_ar
0 We now provide explicitly a more efficient method to steer
Ek)=¢k—1)+ v(0) . from an arbitrary statez € R™ to within ane-neighborhood
v(1) — v(0) of a given goal state: + 6 € R" (z and not necessarily in
: ).
o(k — 1) B v(k —2) 1) C_ompute the desired displacement ‘in Brunovsky coor-
dinatesA = S, and letA; € R™, i = 1,...,r
denote the desired displacement for th#éh subsystem;

We thus obtain

1 (P) = [v(0)] + (Jv(0)| + [v(1) = v(0)[) + -~ 2) Compute the lattice mesh size in Brunovsky coordinates
+ ([(0)] + [v(1) = v(0)[ + -+ + |v(n = 1) — v(n - 2)|) v = gy, Where

< Xoiso (20— 2k = 1)u(k)] < TiZg (20 = Do)
hence we have Qe Cl—s 0 L, - 0 |
I(P) < 1(P) < (20— Dllgls < Va@n - D, (21) T t [NPRR O

where [(P) denotes the Euclidean length &, and |v]|1, o _ _
Izl (@ = [v(0)---v(n — 1)]7) denote the geodesic distance 3) FindA;, the nearest point td\; on the lattice generated
between the initial and final points, in the 1-norm and in the by ~; ‘W and centered af; = (S~ 'x);.

Euclidean norm, respectively. 4) For eachi = 1,...,r, let the quantized control set be
Inequality (21) applies to any path starting fratn If we ‘W= {0, twy, .., ilwm_i}, ‘w; € N, and denote_ by
impose that the final point is also in the equilibrium mardfol *U the vector'wo 'wy -+ "wy,, |, where'wy = 0. Write
we have A ivi
v(0) Aj=~"'C'U (23)
§(0) = : =al, where /C' is a matrix inZ"*™*! with components
U(TL — 1) lCh,j_H = Zch,j, h=1,... K 7 =0,...,m,. Each

element‘c, ; of ‘C' describes the number of times
that the control’w; has to be used to steer tie-th
[(P) = L(P) = |lully = nla| = Vallel. - (22) component Of;.

5) Find integersic, ;, h = 1,...,Kk;, J = 1,...,my

We are thus ready to prove the following: solving the system of diophantine equations (23),
Theorem 12:For every controllable linear system and> and find the smallest integer§s , such that,Vh

0, there exists a control encoding such that the followingisol S iy i|:=N;. Ny, is thus a number of steps suf-
For every couple of points,z; both on the equilibrium fiotant tohéjtéer tlﬁe'—;hlsubsystem'
ma}nlfold £ there exists a path() connectingzy to ane 6) (Optional) Among all solutions of (23), find the one
neighborhood of: ; such thati(z(t), £) < e for everyt, where which minimizes max™ , "™ | “es;|:=N;. Notice
d(-,£) is the euclidean distance frot o == T

Proof: First choose a control encoding as in Theorem 9 Fh%g/vmét's. the Thlnlmur? Ength of a stnnlg of sylmtz_ols
having as reachable set a lattice of mesh sizen. n obtaining the goal. Fowever, no polynomiia-time

: . . ; algorithm is known for such optimization;
Now, for every fixedzy,zs € £ choose intermediate points ; o
Y Lo, s P ) Let N} = max; N;x;, and:* the corresponding index.

hence the condition

Z1,...,zx on & such that||z; — z;_1]| < ¢/+/n for every A ) ‘* X
i=1,...,N, and||zy — 2n]| < e. By the above reasoning, ngrl,Tifor a"AZ_ - 1"'.}# Z f ]Z\]'*: co]n\;pgtelﬁi 7t
there exists a patt®; connectingz;  to z;, ¢ =1,..., N, (Ai) (€ + Ai) — £ with ;= N — Nir;. Repea

such that the estimate (22) holds true. Then, we can conclude steps 4) an.d 5) with the new;. e
that ||y — ;]| < ¢ for everyy € P; and, sincer; € &, the ~ Remark 2:Notice that, since the matrixA;)™"" is ele-

theorem is proved patching together the pafhs m Mmentary (a permutation of rows and columns of the identity
matrix), it has the only effect of exchanging the components

of (& + A;). Therefore£; + A; belongs to the same lattice,

and it can be reached iN;~; steps.

Based on the above results, a planning strategy for steering, \,sher hound on the specification complexity of a generic
among equilibria can be obtained at once, which consstsd%n is thus given byN*rlog, (1+ 2", m;) when the
K =1 K3

using constant control values for a large enough number iﬂ[)ut sets'W are disjoint, orN* rlog, (1 + 2m) if W =

steps. Indeed we have iW, i, =1,...,r. The choice of section II-B for all input
Proposition 13:The application of a constant controlg,;o provides plans with low* to join any two points in a

vt + k) = 0, @ = 1...r for 0 <k < £ =1, popareube of sizel, as required in probler.

steers ijstem (20) fr?r?(r) € &1+ 1) = &(r) + Encoding these plans by their run-length reduces their

diag( (- 01) 1wy, s (- 00) Lk, ) 1n € E. specification complexity. Indeed we have

D. Planning algorithms and specification complexity
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Proposition 14: The specification complexity of a plan j=1;
from x to x + & according to the above algorithm encoded while C(h,j) == 0, j=j+1; end
by run-length, is of order 'V = cat (‘V, sign(C(h,j))*"w;);
€~ n(1 4 m) max (log, N,). (24) C(h.j) = C(h.j)-sign(C(h.})):

i end
Proof: We use the notation established in (23)gpg

whereby ‘U denotes an ordered set dfn; + 1) sym-

bols, and associate the run couf) ;1 to symbol ‘w;

if ‘Cpjt1 > 0, or to symbol —iw; if ‘Cp 11 < O. V. EXAMPLES
The plan is thus completely described by thematri- A Example 1: Linear System

ces iC e z"*M*D For specifying them, a total of , , ,

S ki(m; + 1) integers in [~N;, Nj] is needed. This As a flrst_ example, consider the problem of planning re_st-

anznaunts 03" (m; + 1) (1 + [logy(N; + 1)]) bits (in to-r_est motions of a cart, actuated _by horizontal forcesh wi

sign—magnitudé_rlepresentation). If the samelaif symbols 2" mverteq pe”d“'!{m _attache_d, Wh'Gh should start a_ndrTetur

is used for all inputs, we can bound the bit number b the uprlght egwhbyum. It is desired t9 plan mouon_s to
each all points in an intervat M of the horizontal line, with

n(m+1) (1 + [log,(1 + max; N;)]), hence the statemens i X
This result can 2be further improved for plans among eq esolutione. Each plan should be comprised of sequences of
inite length V using2m + 1 different symbols.

librium configurations using optimal input sets as desdtiine id i >ed model of th
section II-B. The following claim holds fom < 4, and relies Consider a linearized model of the system as

on conjecture in [24] otherwise: 0 1 0 0 0
Theorem 15:The specification complexity of a solutiaf ) 00 =p2 0 ﬁ

to problemII with M the hypercube of half-sizé/ in the T=190 0 0 12T o | @ (25)
r-dimensional equilibrium subspaéeof X, is of order 0 0 Mimg | =1
M M

C(P) ~ arlog, (M), where z1, x5 iS the cart position and velocityys, z4 the

£ pendulum angle and its rate, and the inpus the horizontal

with o = (w r force applied to the cart. Numerical values will be used as

Proof: Observe that, when moving among equilibria, the = 1m for the pendulum's lengthy = 9.81 m/s’ for
displacement also belongs £ and is thus described by adravity acceleration}/ = 20Kg andm = 5Kg for cart and
vector with equal components. Hence, each matéix has pendulum masses, respectively. The equilibrium manifeld i

i ' 4 N _
identical rows, and can be specified oy +1)(1+[log,(N;+ ¢ = {# € Rljz1 = a € Rowy = w3 = 2, = 0}. Apply
1)]) bits. Furthermore in this case, plan lengths can be the dl.scret.e—ume feeedback.encodlng of fig. 3-d, Wlth_ unit
equalized taN = max; N; by simply padding shorter control sampling timeT" = 1s. Accordingly, the sampled system is
sequences with zeroes. Recalling the estimate (1%)jsfthe 2t — Az + Bu —
mesh size of the reachable set avids the maximum distance

reachable inV steps, we can write L1 =312 -0.74 0.03
v _ 0 1 —-11.60 -3.12 0.08
_ logy () 0 0 1660 473 |TT| —006 |
logy N~ 0 0 5803 16.60 —0.23
Hence, being? comprised ofx different point-to-point plans, ang reachability is preserved. L§toe a change of coordinates
we have such that(S—!AS, S~!B) is in control canonical form. In the
C(P) ~ ar(m+1)(1+]logyN) new coordinates, the equilibrium setds= {$14,5 € R}.

o ()

- ar ( () 1) (1 + log, N) For corresponding equilibria in the two coordinate systéms

holdsa = Sr3, with scale factorSy = ||S14]| = 1.24.

~ ar (logy () +log, N) To obtain the required resolution ef choose a mesh size

v = (g—;) in S coordinates. To this purposB/ can be chosen

to be any finite sets of integers, such that at least two of its
elements are coprime, and inputs scaled asyW.

C(P) ~ arlogy (5) : Consider for instance the use of a rather sparse control set

with m = 3 (cf. table 1). Taking e.ge = 0.0lm and M =

0.75m, one getsy = 0.0161, henceM /v ~ 46.5. From table |

Ar m = 3, we getN = 5. Observe that the actual execution

of the plan takes: = 4 times N sampling instants, because

of the dimension of the state space.

Having observed in section II-B thal = o(M), we finally
have

|
The explicit construction of a procedure to decode pl
specifications’C' into a string of control inputéV for the
i—th channel is finally described in Matlab-like code:

C=C,; If a rest-to-rest displacement 0f65m on the horizontal line
R is specified, the closest point on the reachable latticevisngi
while (C "= 0) by § = (64¢,0,0,0). In control canonical form we can write

for h=1:;, 32v1, = yCU, whereU = (0,11, 14,15) and C is a matrix
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_cantposiion ‘ (q1y ey Gn-3,2,9,0) = (qq,0) Where (z,y) are the cartesian
coordinates of the base of the last link. Assuming motion in
a horizontal plane (or zero gravity), the dynamic model sake
on the partitioned form

0(n73)><1 )
E Ba(Qa) —mMy,dy,So o N
x mndnCQ
Oix(n=3) —Mndnse Mmnpdnceg In+ mpd? i
= B | | @l@d | | Fa 26
0 4 8 imets 12 16 2 . .

monge where F, = (Fi, ..., F\,_s, Fy;, F) are the generalized forces

15 ‘ : —_ Sares T lnear Sy performing work on they, coordinatessy = sinf andcy =
!",‘ :‘.I _-‘-w Colntinuos Time Linear System

cos 6. For then-th link, I,,, m,, andd,, are the baricentral
inertia, the mass and the distance of the center of mass from
its base. We assume that the robot arm has at least two active
joints (n > 3), so that forced,, and F,, can be independently
assigned. By the virtual work principle, we can recover the
original forces7 acting on the joints fron¥;, as

! m L(n—3)x(n-3) f
L ! T= : = : +
1 v il H ) :
|'.;' ‘-‘ Tn—1 02><(n—3) F,_3
: : s . I
time [s] x
; +J (Q1a "'aQn—l) |: Ja :l
Y
Fig. 4. Planned motions of the cart (ab d of the pendihetow) i . . . .
efz]ample 1anne motions of the cart (above) and of the pend{below) N\ are 7 s the Jacobian matrig x (n—1) of the direct

kinematics functiork.

In order to make the analysis independent from the nature
in Z*** obtained by themin max problem in the algorithm of then —1 active joints, the relative dynamics in (26) can be
of section IV-D as linearized via a globally defined partial static feedbadkist
reducing them to a chain of two integrators per actuated.join

0 -1 2 1 . . . o
0 -1 2 1 As in the computed torque method, such partially lineagzin
C= 0 -1 2 1 static feedback iF, = B,(q)a + ¢.(q,¢) where
0 -1 21 Ba(q) = Ba(qa)f
The motion of the cart and the pendulum corresponding to
L 0(71—3)><(n—3) 0(71—3)><2
such plan are shown in fig. 4. m2 d2
B I, + mnd% 83 —50Co

B. Example 2: Nonlinear System O2x(n-3) —spcp €D

By using the nested feedback encoding of fig. 3, it Bhe closed loop system then becomigs= a, ..., gn_3 =
possible to directly apply the proposed steering method 80 . i=ay ij= ay, g — %(59% — cpa,) where Ko p =
the substantially wider class of systems which are dynamig+m,,q2 is the distance of the center of percussion of the
feedback—equivalent to linear systems. In this example, \f\éesrﬁiiﬁlk from its base. Assuming uniform mass distributios
illustrate the power of the proposed method by solving the } . .

. ) aveKcp = 2/31,, wherel, is the length of thexth link. The
steering problem for an example in the class of underaaual

mechanical systems, which have attracted wide attention gexnamms of the coordlnat% i=1,..,n—3 are completgly
. ecoupled from the dynamics of the remaining coordinates
the recent literature (see e.g. [34]).

: ) . Therefore, we will henceforth onl nsider th
In particular, we consider the class of underactuated meéﬁ-’_yée) eretore, we enceforth only consider the case

anisms identified as(% — 1)X, — R, planar robots”, i.e.
mechanisms havingp — 1 active joints of any type, and
a passive rotational joint. In order to simplify the modef
analysis and control design, it is convenient to use a spe- { m } B [ x ] + Kep { co ]

Following [34], we choose the cartesian coordinates of the
enter of percussion as the system’s (flat) outputs:

cific set of generalized coordinates. In particular, det= Yo Y S (27)
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Differentiation of equation (27) yields

)=l e ] e
HEER RO

where R(6) is the matrix associated to a planar rotation of
an angled. Being the matrix multiplying the acceleration vec-

tor (ag,a,) singular, dynamic feedback must be considered.
Define an invertible feedback transformation

)2
“ | — R(g) | X+ HKor? (30) _ |
Fig. 5. An underactuated robot arm of typ&, — R,, used in example 2:

ay Po
. . the given initial and final configurations are shown by dasied solid lines,
where x and ), are two auxiliary variables. As a result Werespectively.

have i
n X
. = R(6 . 31
b= ]3] SR =
By adding two integrators on the first auxiliary variabl .
namely settingy = ¢, i = 11, and differentiating equatior -
(29), we get . o ‘
(3) n :
YIo 1 =R { " } 32) - . |
[ ) (0) N (32) n? n?
y(4) 1 0 7X9'2
%4) = R(H) { { 0 — 13 ] P+ { 2L9- ] } = Fig. 6. Coordinateg; (left) andys (right) of the center of percussion
Ys Kcp
= R(9) {P(H»X)U +q(0,0,x, L)} ; (33) obtain the equilibrium1, for the control canonical form and

the equilibrium(«, 0,0, 0) for the original subsystem, hence
a constant position of the considered coordinate of theecent
of percussion. The scale factorisin this case.

To obtain a reachable lattice of sizg, v, > 0, 'W, 2W
can be chosen to be any finite sets of integers, such that at
least two of its elements are coprime, and and inputs scaled

with ¢ = (¢1,12) the new input variables.

Under the assumption th&(d, x) is nonsingular or, equiv-
alently, away fromy # 0, the inversion-based contrgl =
P10, x)(RT(0)v — q(0,0, x, 1)), with v = (v1,v5) as new
input vector, yields two decoupled chains of four inputpuut
integrators. The assumption means that pure rotationgibmotﬁsiv €W, i=1,2.
around the center of percussion is not allowed. Since the

. . : . Given an initial robot poséy, y2,0) = (0,0,0), consider
relgtwe _degr,e (2 'g e :; fg tg.e d|m(_anS|ofnﬂ?f the robot Sttatethree maneuvers: translation along thaxis, translation along
IS 6 (x, 2.9, ) ) and the dimension ot the compensator Ig, o straight liney = = and translation along thg axis. The
2 (x, ), exact linearization has been achieved.

, . first one can be achieved with a single symbohpplied on
For the integrators of the compensator, we use zero initja|

diti | der t tisfv th e : fRe inputtv for n = 4 periods. The second maneuver is similar
conditions. ‘in order 1o sa isty the assumption, W€ 1MPOS€& e first one: we apply the previous command on the two
nonzero linear acceleration of the last link along its axis.

The d . f th ¢ fter the d ic teedb ié‘qgutslv and ?v for n = 4 periods. We can split the third
_ 'he dynamics of the sy?4;em arter (4)6 ynamic Teedbagi heuver in two maneuvers of the previous types.
linearization are written ag; ' = vi1, y, ~ = v2. Choosing

X ) i ) X Initial and final positions of a 3R robot are shown in fig. 5.
a sample time¢ = 1s we obtain the following discrete time g;, 1ations were performed settig — (2 — 3m, Kop —

linear system: 1m, T = 1s, andw = 0.8m/$. Fig. 6 shows the coordinates

+ A _ ' : € CO
i = A+ Bu; = of the Center of Percussion of the last link while fig. 7 shows
1 1 % 1 i the angles of the active joints and the orientation of theé las
0 1 1 i 1 passive link, respectively.
= 2 Ti + ? U
0 0 1 1 5
0 0 0 1 1 VI. CONCLUSIONS

O o@ @) . . In this paper, we have descr.ibed mgthogj; for steering
wherez; = (yu Yi > Yy ).i=1,2.Being each sub- complex dynamical systems by signals with finite-length de-
system controllable, there exist such that(S—*AS,S~1B) scriptions. Of particular relevance are results on redycin

is in control canonical form. For each subsystem in contrthe specification and computational complexity of palnning
canonical form, the set of equilibria is given w1, € R*:  problems.

a € R}. Then, in the initial coordinates, the set of equilibria Systems tractable by symbolic control under encoding in-
is given by {aS1, € R* : a € R}. For a givena € R we clude all controllable linear systems, nilpotent drifdesonlin-



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. X, NO. Y, SPRING 2@ 13

] A, whose mesh size can be made as small as desired by scaling
. control values irt/.

Otherwise,(),, generically, generates a dense subset 6f.R

In this case, we can choose a symmetric subset U of
cardinality2n,, such that», of the corresponding elements of

ol i { L Q, are linearly independent. Théh generates a lattice and,
" R -~ again, we can decide the mesh size by rescaling controls.

For the other components we can reason similarly checking

Fig. 7.
(right)

Active joints angles (left) and orientation of thestlgpassive link

ear systems and (dynamically) feedback-linearizableegyst
It seems fair to affirm that few practically interesting ces of
controllable systems remain outside the scope of applicati
of the presented methods — among which, most notably,
non-differentially flat systems.

Many other open problems remain open in order to full
exploit the potential of symbolic control. A limitation ofuo
current approach is that we assume that a flat, linearizing
output to be available, as well as state measurements. Con-
nections to state observers in planning are unexplorediat tHt
stage. As mentioned in the introduction, an advantage of our
planning method is that it can be computed and communicatédd
very efficiently, hence it can be conceivably used as a feed-
forward block to generate and update in real-time referenqg;
trajectories to be tracked by a complex remote system. Ih suc
an application, however, the joint stability of the feedward
and feedback blocks would need thorough investigation.  [4]

APPENDIXI 5]

Lemma 16:Systems in strictly triangular form (12) are
additively approachable.

Proof: Consider a control encoding — U, o; — u;,
with ¢/ finite set, of cardinality/V,,, of constant input quanta
u; @ [0,7] — R". Let Y be symmetric, i.e. include all
inversesu; = —u;, and letg; — ;. Define acommutator
sequencess [0;,0;] = 0,0;0,G;. By (12), we immediately
get that, upon application of any commutator sequengé,+
AT) = xp(1).

Let Q,:=%, and define recursivelf2;_1 = [Q4, Q4] to be
the set of all commutator sequences built @p. A flag of [9]
words sets (not sub-languageQ), > Q,_; D O W
is thus obtained such that, for words ®;, i < p, all [10]
state variables(z,,z,-1,...,z;11) undergo a closed path ;)
in R™+**t" Qur strategy is to use the sub-language
generated by?; in backward recursion to move the coordinat
x;. Let N; denote the cardinality of2;. By construction, we
have N;,_; = N;(N; — 1)/2. To each word ofw! € Q;,

j = 1,...4, N;, there corresponds a quantum displacemeff]
vectorh(w!) € R™ providing a net motion om; at intervals
of 4P~iT. Hence the action of words if; is additive on
R". Let Q; = {h(w]), w] € ;} denote the set of quantum
displacements. IV, > n;, then in generic hypothesis, we calys)
assume that spéf)) = R™.

Notice that Q, is given by {T'>! , glu;u
[u,...,up] € U} If U is formed by rational constant contro
quanta and;; €@, then the group generated B, is a lattice

(6l

(7]

8l

12]

(14]

ntrollX€!

if the displacements ir); are rationals, otherwise selecting
suitable subsets of words.
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