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Abstract

Quantized linear systems are a widely studied class of nonlinear dynamics resulting from
the control of a linear system through finite inputs. The stabilization problem for these
models shall be studied in terms of the so called practical stability notion that essentially
consists in confining the trajectories into sufficiently small neighborhoods of the equilibrium
(ultimate boundedness) .
In this paper, we study the problem of describing the smallest sets into which any feedback
can ultimately confine the state, for a given linear single-input system with an assigned
finite set of admissible input values (quantization). We show that a controlled invariant set
of minimal size is contained in a family of sets (namely, hypercubes in canonical controller
form), previously introduced in [14, 15] . A comparison is presented which quantifies the
improvement in tightness of the proposed analysis technique with respect to classical results
using quadratic Lyapunov functions.

Keywords: controlled invariance, quantized systems, practical stability.

1 Introduction

Quantized control systems are controlled dynamical systems with input and/or output maps

taking values in finite sets. As a simple reference model, consider a discrete–time quantized
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Figure 1: Graphical illustration of the hybrid structure of a quantized control system.

system given by 



x(t + 1) = f
(
x(t), u(t)

)

y(t) = h
(
x(t)

)

x(t) ∈ X = Rn , u(t) ∈ U , h(x) ∈ Y ,

(1)

where U or Y are finite sets and ∀u ∈ U , f( · , u) is a smooth function.

The study of these models has increasingly attracted the attention of the control community in

the past twenty years
(
see for instance [6, 21, 5, 7, 2, 3, 17, 20, 10]

)
. In fact, the need of dealing

with this special class of systems arises from many control applications. For instance, a possible

way to study the control of a physical system interfaced by digital sensors and actuators is that

of considering mathematical models including a properly chosen quantized output function h

and a finite control set U . This approach is particularly suitable when the sensors and/or ac-

tuators are “low–cost” (as e.g., a stepper motor) so introducing a coarse quantization. Another

commonly encountered example is concerned with the presence of finite capacity communication

links in the control loop: in this case quantization must be introduced in order to properly encode

analog signals into a finite set of symbols to be transmitted over the communication channel (see

Fig. 1) .

More in general, in a quantized control problem we have to deal with a hybrid structure which is

organized into two levels: at the logical level we perform the control synthesis (the controller is

in fact a device manipulating output and input strings from discrete alphabets) ; at the physical

level, the plant is modelled by an equation like (1) . The overall picture results in a highly non-

linear dynamical system. Indeed, even in the seemingly easy situation in which the dynamics is

described by a linear transformation
(
i.e., f(x, u) = Ax + Bu

)
, the presence of discrete vari-

ables produces nonlinear closed loop dynamics which may exhibit features such as the presence

of multiple isolated equilibria and chaotic behaviors
(
see e.g., [6, 8]

)
. This kind of models will

be referred to as quantized linear systems and will be the subject of this work.

We are interested in the stabilizability problem for discrete–time quantized linear systems.
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The basic observation is that if the control function u(t) is constrained to take values from

a finite set and the system is open loop unstable, it is not possible to confine the trajectories

within arbitrarily small neighborhoods of the origin [6] . Therefore, practical stability notions

are to be considered for these models. Accordingly, the practical stabilization may consist in the

synthesis of symbolic feedback controllers capable of steering the system to within sufficiently

small neighborhoods of the equilibrium, starting from large attraction basins [6, 22, 10, 19] . The

size of the final set within which the trajectories are confined is a measure for the steady–state

performance of the closed loop dynamics.

Hence, for a given quantized system, the practical stabilizability analysis can be divided in two

steps. The first stage is prior to the control synthesis and consists in finding the controlled

invariant neighborhoods of the equilibrium, namely the sets such that there exists a quantized

control law u(t) ∈ U ensuring that the trajectories starting from that set remain in the set.

Once a proper notion for the size of a set is defined, the identification of the smallest controlled

invariant neighborhood of the equilibrium allows to establish the optimal steady–state perfor-

mance one could aim at obtaining. In a second stage the control synthesis is performed with

the purpose of achieving the convergence of the trajectories towards the smallest invariant set

specified in the first stage.

As for the search of controlled invariant sets, it will be satisfactory to identify a sufficiently rich

family of sets. In this paper we are mainly interested in the steady–state performance, therefore

the suitability of the considered family is related to the existence of a controlled invariant set in

the family whose size (in some proper sense) is sufficiently small or even minimal with respect

to the size of any other controlled invariant set.

In [14, 15] , we have addressed the stabilization problem for n–dimensional discrete–time

linear systems under quantization of both the scalar input and output variables. While standard

stability analysis techniques are based on the study of quadratic Lyapunov functions and invari-

ant ellipsoids, in that work we found convenient first to change the state space coordinates to the

so called canonical controller form, then to perform the stability analysis in terms of invariant

hypercubes.

According to the picture drawn above, in this paper we first briefly review the technique based

on invariant hypercubes. We hence introduce the notion of size of a set. The main focus is then

steered into showing that, for the most interesting types of control quantizers (i.e., the uniform

and the logarithmic ones) , the family of invariant hypercubes actually contains one element

whose size is minimal with respect to all invariant sets. For these quantizers the convergence

of the trajectories towards the minimal hypercube can be ensured too. These results guarantee

that the hypercubes based analysis is a suitable choice and it is not conservative as far as the

steady–state performance is concerned.
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In this work, the analysis is restricted to systems with input quantization only (i.e., y = x ) .

To reach our purpose, we first analyze some geometric properties holding for invariant sets of

arbitrary shape and show the peculiarities exhibited by hypercubes in controller form coordi-

nates. Such a discussion will be helpful to introduce the suitable notions of size of a set. The

first notion, called magnitude, essentially consists in measuring the extension of the set in terms

of the infinity norm. The corresponding minimality in magnitude property is shown to hold for

the final invariant hypercube, in the case of uniformly or logarithmically quantized input sets,

irrespective of the unstable dynamics of the linear system. Since sets with the same magnitude

can have different volumes, the notion of magnitude is then strengthened by adding a require-

ment which involves the containment relation. This leads to the so called strong minimality

property that will be shown to hold for the final invariant hypercube provided that the system

is sufficiently unstable.

A quantitative comparison is also presented that shows the improvements in the practical sta-

bility analysis that can be obtained via the hypercubes based technique with respect to the

approach relying on classical Lyapunov theory. Nonetheless, a counterpart of the hypercubes

based approach for multi–input systems or continuous–time models is still missing. In these

cases the classical approach fully preserves its validity.

There exists a wide literature on problems concerned with controlled invariance
(
see [4] and

references therein
)
. However, most of the results on constrained control are limited to bounded

convex sets and hence do not apply to the quantized control case. A quite general framework

within which invariant sets can be studied is provided by the Viability theory [1] . Here the

limits are concerned with the algorithmic procedures which the main tools are based on
(
as

for instance the “Controlled Invariance Kernel Algorithm” [18]
)
. Typical problems stem from

having to cope with the huge computational complexity due to the increasingly larger number of

constraints needed to describe the sets involved in the iterative procedures. Another interesting

approach is the one proposed in [19] for switching systems (thus including quantized systems

as a special case) where invariant Euclidean balls are algorithmically computed using nonlinear

programming. This technique can efficiently handle the two stages of practical stabilization (i.e.,

invariance and convergence) ; on the other hand it has the drawback of having to cope with

a non–convex optimization, hence the global optimum may not be found. Also, because the

algorithm is restricted to search for Euclidean balls, it does not provide, in general, a minimal

invariant set. In this work instead, thanks to the nice geometric properties of the controller

form, it has been possible to perform a precise and non conservative analysis without resorting

to algorithmic approaches, hence avoiding the related complexity.

We finally remark that the need to restrict to the notion of practical stability is forced by

the choice of considering control laws taking values in a finite set. Other works on quantized

4



systems
(
see [5, 7, 12, 20]

)
show the possibility of achieving asymptotic stability by means of

time varying control policies (i.e., a finite set of control values is taken to be time varying and

adaptively chosen) . Nevertheless these techniques result in a control law u(t) taking infinite

values accumulating towards the limit point u = 0 .

The paper is organized as follows: in Section 2 we fix the notation and provide a brief review

of the practical stabilization technique introduced in [14, 15], the main results on the optimality

of such a technique are presented in Section 3 .

Notation and terminology: While S1 ⊆ S2 refers to the standard containment relation for

sets, S1 ⊂ S2 means that S1 is strictly contained in S2 , namely S1 ⊆ S2 and ∃ s ∈ S2

such that s 6∈ S1 . A topological set S is said to be discrete iff all its points are isolated.

Given E ⊆ Rk : cE and # E denote respectively its complementary and its cardinality; for

v ∈ Rk , let E − v := {x ∈ Rk |x + v ∈ E} . Given E ⊆ R , diam(E) := sup
x,y∈E

|x − y|
is the diameter of E . Let x ∈ Rn and xi be the ith coordinate of x : given Ω ⊆ Rn ,

Pri Ω := {ωi ∈ R |ω = (ω1, . . . , ωi, . . . , ωn) ∈ Ω} , diami Ω := diam
(
Pri Ω

)
; if A ∈ Rn×n ,

A Ω = {Aω |ω ∈ Ω} . For x ∈ Rn , ‖x‖ and ‖x‖∞ := maxi=1,...,n|xi| stand for the Euclidean

and infinity vector norm of x respectively; the corresponding induced matrix norms are denoted

by ‖A‖ and ‖A‖∞ . Qn(∆) :=
[− ∆

2
; ∆

2

]n
=

{
x ∈ Rn | ‖x‖∞ ≤ ∆

2

}
is the closed hypercube

of edge length ∆ while Qo
n(∆) :=

[− ∆
2
; ∆

2

[n
is the semi–open hypercube. x′ denotes the

transpose of the vector x , x+(t) stands for x(t + 1) : the dependance on t will be often

omitted. For a given Rn×n 3 P > 0 and R 3 r > 0 , let EP,r := {x ∈ Rn |x′Px ≤ r} .

2 Preliminaries and Review

We are interested in the stabilization issue for the following discrete–time, single–input linear

system under quantized control:
{

x+(t) = Ax(t) + Bu(t)

x ∈ Rn, u ∈ U ⊂ R , t ∈ N ,

where U is a closed and discrete set containing 0 . Such a system will be denoted by the triple

(A,B,U) . We assume that the pair (A,B) is reachable and, without loss of generality, that the

pair (A,B) is in controller form:

A =




0 1 · · · 0
...

. . . . . .
...

0 0 · · · 1

α1 α2 · · · αn




, B =




0
...

0

1




, (2)
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where sn − αns
n−1 − · · · − α2s− α1 is the characteristic polynomial of A . Because

‖A‖∞ = max
i=1,...,n

n∑
j=1

|Ai,j| = max
{

1 ,

n∑
i=1

|αi|
}

,

if
∑n

i=1 |αi| ≤ 1 then the system is stable, we hence assume
∑n

i=1 |αi| > 1 and we let α :=∑n
i=1 |αi| .

As for the control set, because U is supposed to be closed and discrete, then U may have

countably infinite cardinality. Nevertheless, under this assumption, any bounded set contains

only a finite number of elements of U . Hence, control sets having u = 0 as an accumulation

point are not allowed and, from the point of view of the steady–state analysis, this is not different

from assuming #U < +∞ . For U 6= {0} , let

u0 := min
u∈U\{0}

|u| . (3)

The practical stability property we are interested in is based on the notion of invariant set [4] :

Definition 1 A set Ω ⊆ Rn is said to be positively invariant for a system x+ = f(x) iff

∀x ∈ Ω , x+ ∈ Ω ;

Definition 2 A set Ω ⊆ Rn is said to be controlled invariant for system (A,B,U) iff ∀x ∈ Ω ,

∃u ∈ U such that x+ = Ax + Bu ∈ Ω .

Definition 3 (Practical stability) Let 0 ∈ Ω ⊆ X0 ⊆ Rn with Ω being a bounded neigh-

borhood of 0 . A feedback control law u : Rn → U is said to be (X0, Ω)–stabilizing iff the

corresponding closed loop system x+ = Ax + Bu(x) is such that both Ω and X0 are positively

invariant and ∀ x(0) ∈ X0 , ∃ tx(0) ∈ N such that x(tx(0)) ∈ Ω . If moreover ∀x(0) ∈ X0 ,

tx(0) ≤ m , then the control law is said to be (X0, Ω)–stabilizing in m steps. A system (A,B,U)

is said to be (X0, Ω)–stabilizable iff there exists a (X0, Ω)–stabilizing control law.

We shall make use of the quantized version of the so called deadbeat controller:

Definition 4 Given system (A,B,U) , let

ν : R −→ U
be a mapping which associates to each real number r an element of U minimizing the Euclidean

distance from r . The feedback law u : Rn → U defined by

u(x) = ν
(−∑n

i=1 αixi

)

is called quantized deadbeat controller (qdb–controller).

The function ν is well defined because U is a closed set.
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Figure 2: U(∆) = {m(∆) = u1, u2, u3, u4, u5, u6 = M(∆)} : ρ(∆) = u3 − u2 , the thicker

segments represent the intervals where m(∆) and M(∆) satisfy inequalities (7a–b) .

2.1 Review

Hypercubes Qn(∆) in controller form coordinates are particularly suitable to study the practical

stability problem. In fact, given ∆ > 0 , let x ∈ Qn(∆) and u ∈ U : by the controller form of

(A,B) ,

x+ =
(
x2, . . . , xn,

∑
i αixi + u

) ∈ Qn(∆) ⇔
∣∣ ∑

i αixi + u
∣∣ ≤ ∆

2
.

Namely, the invariance of Qn(∆) can be tested considering the nth component only.

The following Lemma singles out the control values that are relevant to ensure the invariance of

Qn(∆) :

Lemma 1 [15] If x ∈ Qn(∆) and u is such that x+ ∈ Qn(∆) , then u ∈ [−∆
2
(α+1) ; ∆

2
(α+1)

]
.

2

Accordingly, we define the finite set

U(∆) := U ∩ [− ∆
2
(α + 1) ; ∆

2
(α + 1)

]
. (4)

The hypercubes based analysis of practical stability is performed in terms of the following scalar

functions of the edge length ∆ : let
{

m(∆) := min U(∆)

M(∆) := max U(∆)
(5)

and

ρ(∆) :=





sup
{
b− a | ]a; b[⊆ [ m(∆) ; M(∆) ] and

]a; b[ ∩ U(∆) = ∅}
if #U(∆) > 1

+∞ (conventionally) otherwise.

(6)

be the dispersion of U(∆) (see Fig. 2) . The three functions m(∆) , M(∆) , ρ(∆) depend on

the dynamics of the system only through the infinity norm of A . Given U 6= {0} , let ∆̄ := 2u0

α+1(
see Equation (3)

)
, then: for ∆ < ∆̄ , ρ(∆) = +∞ ; for ∆ ≥ ∆̄ , ρ(∆) is piecewise constant

and non–decreasing with ∆ .
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Theorem 1 (Practical stability) [15] Consider a quantized linear system (A,B,U) .

ı) For ∆ > 0 , Qn(∆) is controlled invariant if and only if





m(∆) ≤ −∆
2
(α− 1)

M(∆) ≥ ∆
2
(α− 1)

ρ(∆) ≤ ∆ .

(7a)

(7b)

(7c)

ıı) If ∆0 > 0 satisfies the strict version of inequalities (7) , let ∆? := max {∆ < ∆0 | ρ(∆) = ∆} ,

then the qdb–controller is
(
Qn(∆0), Qn(∆?)

)
–stabilizing. 2

Inequalities (7a-b) ensure that there is enough control authority to achieve the invariance of

Qn(∆) and, in the strict version, convergence properties. Inequality (7c) is a bound on the

quantization error.

Remark 1 For a quantized system (A,B,U) , if Qn(u0) is controlled invariant, it is straightfor-

ward to verify that for almost all x ∈ Qn(u0) , there exists a unique u ∈ U such that x+ ∈ Qn(u0)

and that such a control value coincides with the one selected by the qdb–controller. Namely, the

qdb–controller is the only control law that guarantees the positive invariance of Qn(u0) .

This is one of the reasons why Theorem 1.ıı , namely the statement on the control synthesis,

is concerned with the qdb–controller only. On the other hand, for x(t) ∈ Rn \ Qn(u0) seve-

ral controllers can be defined guaranteeing the convergence towards Qn(u0)
(
see [13] for more

details
)
.

Theorem 1 holds for very general kinds of input sets, indeed the only relevant assumption is that

U is a closed subset of R , also the assumption on the discrete structure of U can be removed.

Uniformly and logarithmically quantized control sets have been often considered in the literature

for their interesting features both from the theoretical and the practical point of view. Let us

specialize the results of Theorem 1 to these two cases.

Definition 5 A control set U ⊂ R is said to be uniformly quantized iff U = u0Z for some

u0 > 0 .

Example 1 (Uniform quantization) Given a system (A,B,U) , if U is uniformly quantized

it is not difficult to show that ∀∆ ≥ ∆̄ = 2u0

α+1
, ρ(∆) = u0 and that ∀∆ ≥ u0 , the hypercube

Qn(∆) is controlled invariant and the qdb–controller is
(
Qn(∆), Qn(u0)

)
–stabilizing in n steps.

♣

Definition 6 A control set U ⊂ R is said to be logarithmically quantized iff U = {0} ∪
{± θnu0 |n ∈ N} for some θ > 1 and u0 > 0 .
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Example 2 (Logarithmic quantization) Given a system (A,B,U) , let us suppose that the

control set is logarithmically quantized. According to Equations (4) , (5) and (6) , we have:

ρ(∆) =





+∞ if ∆ < 2u0

α+1

u0 if 2u0

α+1
≤ ∆ < 2u0

α+1
θ

⌈
logθ( θ

θ−1
)
⌉

u0
θ−1

θ
· θ

⌊
logθ

(
(α+1) ∆

2u0

)⌋
otherwise,

and

M(∆) = −m(∆) =





0 if ∆ < 2u0

α+1

u0 · θ
⌊

logθ

(
(α+1) ∆

2u0

)⌋
otherwise.

For ∆ ≥ 2u0

α+1
θ

⌈
logθ( θ

θ−1
)
⌉
,

ρ(∆) ≤ (θ − 1)(α + 1)

2 θ
∆ ,

and for ∆ ≥ 2u0

α+1
,

M(∆) > u0 · θ logθ

(
(α+1) ∆

2u0

)
−1

=
α + 1

2 θ
∆

(both the inequalities are tight) . The case in which 1 < θ < α+1
α−1

is particularly interesting. In

fact, using the expressions above, it is easy to check that ∀∆ > u0 , ρ(∆) < ∆ ; ρ(u0) = u0

and ∀∆ ≥ u0 , M(∆) > ∆
2
(α − 1) . Therefore, Theorem 1 ensures that ∀∆ ≥ u0 , Qn(∆) is

controlled invariant and the qdb–controller is
(
Qn(∆), Qn(u0)

)
–stabilizing. ♣

3 Geometric properties of invariant sets and minimality

properties of hypercubes

There are many possible shapes for invariant sets, the reasons for considering one class or another

(e.g., ellipsoids, hypercubes or more general polytopes) can be varied. Three basic requirements

one would aim at satisfying are: simplicity of description of the considered sets, simplicity of

practical stability analysis and optimality. As discussed in the introduction, since the goal of

practical stabilization is to confine the trajectories of the system within small controlled invariant

neighborhoods of the equilibrium, then optimality means that the considered family contains an

invariant set within which trajectories can be made to converge and that the size of such a set is

minimal with respect to all controlled invariant sets. These requests are often trading off: e.g.,

ellipsoids can be easily described but they are not optimal (as it will be shown in Section 3.3) ;

polytopes instead are usually optimal but may be of arbitrarily complex description.
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In this section we first point out the simplicity of the practical stability analysis based on

hypercubes, hence we analyze geometric properties holding for invariant sets of arbitrary shape

and show the peculiarities exhibited by hypercubes in controller form coordinates. This analysis

is helpful to properly define the concept of size for a set and is introductory to the statement

of the minimality theorems for hypercubes. The bottom line is that the choice of considering

hypercubes for the practical stabilization problem is motivated by the fact that they meet all

the requirements of simplicity of description, simplicity of analysis and optimality.

The simplicity of description of hypercubes is apparent, as well as the resulting practical stability

analysis (see Theorem 1) . The following simple result is helpful to appreciate such a simplicity

compared with other types of sets:

Lemma 2 [9] Ω ⊆ Rn is controlled invariant if and only if AΩ ⊆ ⋃
u∈U (Ω−Bu) . 2

Despite the simple formulation, the practical application of this invariance criterion is not

straightforward when dealing with arbitrary sets Ω . In particular, to test the invariance of

Ω , it is in general necessary to determine AΩ . We have seen instead that for Ω = Qn(∆) the

analysis can be reduced to a 1–dimensional problem where invariant hypercubes are character-

ized by simple algebraic relations between ∆ , α and the scalar functions ρ(∆) , m(∆) and

M(∆) . Furthermore, while Lemma 2 may give some insight on the geometric characteristics

of controlled invariant sets, on the other hand it does not really answer the question of how to

construct controlled invariant sets for a given system (A,B,U) .

3.1 Geometric properties of invariant sets

The attention is now turned to the study of some geometric properties holding for arbitrarily

shaped invariant sets and on how these results can be used for the practical stability analysis.

Since we will widely exploit the properties of the canonical controller form, it is worth recalling

that the control acts only on the nth component while the others shift upwards.

Let Pr(i1,...,im) x := (xi1 , . . . , xim) :

Proposition 1 If Ω ⊆ Rn is controlled invariant, then Pr(2,...,n) Ω ⊆ Pr(1,...,n−1) Ω . In particu-

lar, Prn Ω ⊆ Prn−1 Ω ⊆ · · · ⊆ Pr1 Ω and diamn Ω ≤ diamn−1 Ω ≤ . . . ≤ diam1 Ω .

Proof. ∀ y = (y2, . . . , yn) ∈ Pr(2,...,n) Ω , ∃x ∈ Ω with x = (x1, y2, . . . , yn) . Let u ∈ U be such

that x+ ∈ Ω : x+ = (y2, . . . , yn, x
+
n) , hence y ∈ Pr(1,...,n−1) Ω .

Given Ω ⊆ Rn , let Z := Prn Ω and Ω∗ := Ω ∩ Zn . The main property of Ω∗ is exhibited by

the following
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Proposition 2 If Ω ⊆ Rn is a controlled invariant neighborhood of the origin, then Ω∗ is

a controlled invariant neighborhood of the origin and ∀φ : Rn → U rendering Ω positively

invariant, φ is (Ω, Ω∗)–stabilizing in n− 1 steps.

Proof. Ω∗ is a neighborhood of the origin because such are both Ω and Zn . Since Ω is

positively invariant, to prove that φ is (Ω, Ω∗)–stabilizing in n− 1 steps, we have to show that

∀x(0) ∈ Ω , ∀ t ≥ n− 1 and ∀ i = 1, . . . , n , xi(t) ∈ Z . Indeed, ∀x ∈ Ω , x+
n ∈ Z by definition

of Z . Since the system is in controller form, the thesis follows.

Corollary 1 If φ is (X0, Ω)–stabilizing, then φ is (X0, Ω
∗)–stabilizing. 2

Therefore, Ω \ Ω∗ is a redundant part of the invariant set Ω , meaning that the trajectories lie

within Ω\Ω∗ only for a transient time of at most n−1 steps. As the aim of practical stabiliza-

tion is to confine the trajectories within small controlled invariant neighborhoods of the origin,

in the analysis of stabilizing control laws it is then proper to replace the final set Ω by Ω∗ ,

namely to “cut off ” the redundant region. This procedure is effective because, by Proposition 1,

Pri Ω ⊆ Pri−1 Ω ∀ i = 2, . . . , n and Ω \ Ω∗ 6= ∅ whenever one of the inclusions is strict. In

general, (Ω∗)∗ ⊂ Ω∗ , namely the cut–off procedure can be iterated.

Notice that if Ω = Qn(∆) , then Ω∗ = Ω , namely the hypercubes Qn(∆) are non–redundant.

This is not the case for more commonly encountered types of invariant sets such as ellipsoids.

Quantitative results on the effect of the cut–off procedure on ellipsoids will be given in Sec-

tion 3.3 .

Hypercubes are not the only example of invariant sets such that Ω∗ = Ω , the same property

holds if Ω is inscribed in a hypercube. This fact will be relevant in next section when discussing

on the minimality of hypercubes and is related with the advisability of introducing two notions

of minimality. Indeed, among these notions, the strongest one will allow to exclude the existence

of invariant sets Ω inscribed in the smallest invariant hypercube.

3.2 Minimality properties of invariant hypercubes

In order to investigate the minimality properties of the smallest controlled invariant hypercube

with respect to all controlled invariant sets, we need to introduce a suitable notion of size for

controlled invariant sets. We choose to study the minimality problem by comparing sets ac-

cording to their extension in some vector norm ‖ · ‖∗ . That is, for a neighborhood Ω of the

origin, we consider ‖Ω‖∗ := sup
x∈Ω

‖x‖∗ . Indeed, by achieving the convergence of the trajectories

to within Ω , it is guaranteed that lim supt→+∞ ‖x(t)‖∗ ≤ ‖Ω‖∗ .

For comparison purposes, we will also consider the volume and the containment relation. Nev-

ertheless, the volume only is not suitable in the practical stability framework because it does

11



not provide any information about how far a trajectory can go away from the equilibrium. As

for the containment relation, although it may appear to be a natural way of comparing invari-

ant sets, this relation is not a total ordering and controlled invariance does not behave well as

for intersection (i.e., if Ω1 and Ω2 are controlled invariant, then not necessarily Ω1 ∩ Ω2 is

controlled invariant) , therefore the minimality problem formulated in terms of the containment

relation is not well posed.

In what follows, sets are measured by considering their extension in the infinity norm in the

controller form coordinates. More precisely, we consider the diameter of the sets along the n

coordinate directions (i.e., diami Ω , i = 1, . . . , n ) . Actually, according to Propositions 1 and 2 ,

the relevant quantity is diamn Ω , in fact longer extensions of Ω along the other directions can

be cut off. We hence give the following

Definition 7 Consider a system x+ = Ax + Bu in the controller form coordinates and let Ω

be a controlled invariant neighborhood of the origin: the quantity diamn Ω will be referred to

as the magnitude of Ω . We will say that Ω is minimal in magnitude iff any bounded controlled

invariant neighborhood of the origin Ω′ has a magnitude greater than or equal to that of Ω .

If the pair (A,B) is not in controller form, the magnitude of Ω can be easily calculated through

the formula diam
(
PrB (Ω)

)
/‖B‖2 , where PrB(x) := x′B ∈ R .

Hence, the magnitude is the measure we will use for comparing invariant sets. In some cases

it will be still possible to consider the containment relation and to study minimality properties

which are stronger than minimality in magnitude: a result in this vein will be given in next

Theorem 3 .

Obviously, if A is a stable matrix, there exist arbitrarily small invariant neighborhoods of the

origin: therefore we will be interested only in the case of unstable matrices.

Theorem 2 (Minimality in magnitude) Let u0 = min
u∈U\{0}

|u| and Ω be a bounded controlled

invariant neighborhood of the origin. If A is an unstable matrix, then diami Ω ≥ u0 ∀ i =

1, . . . , n . In particular, if Qn(u0) is controlled invariant, then Qn(u0) is minimal in magnitude.

Proof. Thanks to Proposition 1 , it is sufficient to show that diamn Ω ≥ u0 (i.e., that the

magnitude of Ω is greater than or equal to u0 ) . Let us assume by contradiction that d :=

diamn Ω < u0 . Set a1 :=inf
x∈Ω

xn and a2 := sup
x∈Ω

xn , then Prn Ω ⊆ [ a1 ; a2 ] , a2 − a1 = d < u0

and 0 ∈ [ a1 ; a2 ] . Let Ω0 be the path connected component of Ω containing 0 . As Prn ◦A is

a continuous function, Prn (AΩ0) is an interval. Two cases can occur:

I) Suppose that Prn (AΩ0) ∩ c[ a1 ; a2 ] 6= ∅ : since Prn (AΩ0) is an interval that intersects

[ a1 ; a2 ] (in fact it contains 0) , then, with θ := u0 − d , there exists x̂ ∈ Ω0 such that (Ax̂)n ∈
] a1 − θ ; a1 [ ∪ ] a2 ; a2 + θ [ . In this case, by the definition of u0 , it is easy to see that ∀u ∈ U ,

12
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Figure 3: Visual help for the proof of Theorem 2 : the thicker segment represents Prn (AΩ0) .

x̂+
n /∈ [ a1 ; a2 ] (see Fig. 3) : this contradicts the controlled invariance of Ω as Prn Ω ⊆ [ a1 ; a2 ] .

II) Suppose instead that Prn (AΩ0) ⊆ [ a1 ; a2 ] . We claim that ∃x ∈ Ω0 such that Ax /∈ Ω . The

claim implies the thesis, in fact: for such an x , by the controlled invariance of Ω , ∃u ∈ U \{0}
such that x+ ∈ Ω , but u 6= 0 together with (Ax)n ∈ [a1 ; a2] and a2 − a1 < u0 imply

x+
n /∈ [ a1 ; a2 ] which contradicts the fact that x+ ∈ Ω .

Let us prove the claim: first, since Ω0 is a bounded neighborhood of the origin, AΩ0 6⊆ Ω0 .

In fact, if the contrary held, then ∀ k ∈ N , AkΩ0 ⊆ Ω0 which contradicts the fact that A is

unstable. Since AΩ0 is path connected, if AΩ0 ⊆ Ω , then AΩ0 would be contained in a path

connected component of Ω . As 0 ∈ AΩ0 ∩ Ω0 , then AΩ0 ⊆ Ω0 which is a contradiction.

Corollary 2 If system (A,B,U) is reachable and A is unstable, a necessary condition for the

(X0, Ω)–stabilizability of the system is that the magnitude of Ω is greater than or equal to u0 .2

Clearly, for the (X0, Ω)–stabilizability it is also necessary that Ω is reachable from X0 . The

general reachability issue is not faced here. However, the cases in which U is uniformly or

logarithmically quantized provide examples where the (X0, Ω)–stabilizability holds with Ω =

Qn(u0) . Namely, the lower bound for the magnitude is attained by a hypercube. In fact, for

uniformly quantized controls U = u0 Z , the minimal invariant hypercube is Qn(u0) which, by

Theorem 2 , is minimal in magnitude. Furthermore, ∀∆ ≥ u0 , the system is
(
Qn(∆), Qn(u0)

)
–

stabilizable (see Example 1) . In the logarithmically quantized case, for U = {0}∪ {± θnu0 |n ∈
N} , with 1 < θ ≤ α+1

α−1
and u0 > 0 , the same property holds for Qn(u0) (see Example 2) .

It is worth noting that invariant neighborhoods Ω strictly contained in Qn(u0) and with smaller

volume can exist (see Example 3 below) . Nevertheless, Theorem 2 states that, even if such an

Ω exists, it spreads up to the border of Qn(u0) in all the directions of the coordinate axes (i.e.,

∀ i = 1, . . . , n , diami Ω = u0 ; see Fig. 4) so that Ω and Qn(u0) are equivalent as for their

extension in the infinity norm. Therefore, even if the convergence of the trajectories to within

such an Ω was proved, no improvement would be obtained in terms of the asymptotic behavior
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of the system, meaning that it would be still guaranteed that lim supt→+∞ ‖x(t)‖∞ ≤ ‖Ω‖∞ =

‖Qn(u0)‖∞ .

Example 3 Let us consider the quantized control system

{
x+ = Ax + Bu

x ∈ Rn, u ∈ Z ,

where, as usual, the pair (A,B) is in controller form. It is easy to see that the semi–open

hypercube Qo
n(1) =

[− 1
2
; 1

2

[n
is controlled invariant and that ∀x ∈ Qo

n(1) , there exists a

unique u ∈ Z such that x+ ∈ Qo
n(1) . It is hence univocally defined the map

T : Qo
n(1) → Qo

n(1)

x 7→ x+
,

where x+ = Ax + B u(x) and u(x) ∈ Z .

Assume that A is an unstable matrix such that 0 < |det A| < 1 .

Since A is unstable, Qo
n(1) is minimal in magnitude by Theorem 2 . Because det A 6= 0 , T

is a local diffeomorphism at 0 , therefore, ∀ k ∈ N , the set T k
(
Qo

n(1)
)

is a neighborhood of

the origin. Moreover, since T k+1
(
Qo

n(1)
) ⊆ T k

(
Qo

n(1)
)
, then T k

(
Qo

n(1)
)

is controlled invariant

and, being a subset of Qo
n(1) , it is minimal in magnitude. Furthermore, we claim that

∀ k ∈ N , T k+1
(
Qo

n(1)
) ⊂ T k

(
Qo

n(1)
)

(8)

and, denoted by λ the Lebesgue measure,

lim
k→+∞

λ
(
T k

(
Qo

n(1)
))

= 0 . (9)

Namely, {T k
(
Qo

n(1)
)}k∈N is a strictly decreasing sequence of controlled invariant neighborhoods

of the origin made of minimal in magnitude sets and containing elements of arbitrarily small

volume. According to Theorem 2 , all of these sets spread up to the border of Qn(1) in all the

coordinate directions, thus having the same extension in the infinity norm as Qn(1) . The typical

structure of one of the sets of the sequence (in the two dimensional case) is represented by the

shaded region in Fig. 4 .

Before proving the claim, notice that the set T k
(
Qo

n(1)
)

is reachable in k steps by any point in

Qo
n(1) and, with a qdb–controller, in k + n steps by any point in Rn (see Example 1) .

Let us prove the claim. As for the inclusion (8) , because T k+1
(
Qo

n(1)
) ⊆ T k

(
Qo

n(1)
)
, we have

only to show that indeed the inclusion is strict. It holds that

∀ k ∈ N , λ
(
T k+1

(
Qo

n(1)
)) ≤ λ

((
A ◦ T k

)(
Qo

n(1)
))

. (10)
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Figure 4: The non–connected shaded region represents the controlled invariant set T
(
Qo

n(1)
)

for the two dimensional system discussed in Example 3 and having α1 = 0.4 and α2 = 4 .

In fact: ∀u ∈ Z , let Su :=
{
x ∈ Rn |u− 1

2
≤ xn < u+ 1

2

}
and Ru := Su∩

(
A◦T k

)(
Qo

n(1)
)
; then(

A ◦ T k
)(

Qo
n(1)

)
=

⋃
u∈ZRu and T k+1

(
Qo

n(1)
)

=
⋃

u∈Z(Ru − Bu) , inequality (10) then easily

follows. Since λ
((

A ◦ T k
)(

Qo
n(1)

))
= |det A| · λ

(
T k

(
Qo

n(1)
))

and |det A| < 1 , inequality (10)

yields

∀ k ∈ N , λ
(
T k+1

(
Qo

n(1)
)) ≤ |det A| · λ

(
T k

(
Qo

n(1)
))

< λ
(
T k

(
Qo

n(1)
))

.

This implies that ∀ k ∈ N , T k+1
(
Qo

n(1)
) ⊂ T k

(
Qo

n(1)
)

and λ
(
T k

(
Qo

n(1)
)) ≤ |det A|k·λ(

Qo
n(1)

)
,

thus the limit in Equation (9) holds . ♣

Example 3 shows that a minimal in magnitude set can contain other minimal in magnitude sets

having smaller volume (indeed, having an arbitrarily small volume) . This raises the need for

introducing the concept of strong minimality which strengthens the minimality in magnitude by

involving the containment relation.

Definition 8 A controlled invariant neighborhood of the origin Ω is said to be strongly minimal

iff it is minimal in magnitude and any neighborhood of the origin Ω′ strictly contained in Ω is

not controlled invariant.

If the system is sufficiently unstable (in a sense specified below) , then the strong minimality

property holds for hypercubes. More precisely,

Theorem 3 (Strong minimality) Let u0 = min
u∈U\{0}

|u| . If |α1| > 1 +
∑n

i=2 |αi| and Ω ⊆
Qo

n(u0) is a controlled invariant neighborhood of the origin, then Ω = Qo
n(u0) . In particular, if

Qo
n(u0) is controlled invariant, then it is strongly minimal.

Proof. We show that if such an Ω exists, then it contains a subset whose uncontrolled evolution

is confined within Qo
n(u0) until it covers the whole semi–open hypercube. By definition of u0 ,
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such an evolution is also the unique ensuring that the trajectories starting from this subset

remain within Qo
n(u0) : since Ω is controlled invariant, this entails that Ω = Qo

n(u0) .

In detail, the matrix A is invertible and

(A−1x)j =

{
xn−

∑n−1
i=1 αi+1xi

α1
if j = 1

xj−1 otherwise .
(11)

Let θ :=
(1+

∑n
i=2 |αi|)
|α1| . By the hypothesis θ < 1 , then

∀x ∈ Rn,
∣∣(A−1x)1

∣∣ ≤ |xn|+
∑n−1

i=1 |αi+1||xi|
|α1| ≤ θ · ‖x‖∞ < ‖x‖∞ . (12)

Equations (11) and (12) imply that A−1Qo
n(u0) ⊂ Qo

n(u0) , thus ∀h ∈ N

A−hQo
n(u0) ⊆ A−h+1Qo

n(u0) ⊆ · · · ⊆ A−1Qo
n(u0) ⊂ Qo

n(u0) , (13)

and in particular ‖A−h‖∞ ≤ 1. Moreover, by the Hamilton–Cayley identity, A−n = 1
α1

(
I −∑n

i=2 αiA
−n−1+i

)
, therefore ‖A−n‖∞ ≤ θ : this means that A−nQn(u0) ⊆ Qn(θ u0) and it

immediately follows that ∀ k ∈ N , A−nkQo
n(u0) ⊆ Qn(θk u0) .

Let Ω be a controlled invariant neighborhood of the origin: since lim
k→+∞

θk = 0 , ∃ k̂ ∈ N such

that Qn(θk̂ u0) ⊆ Ω , therefore A−nk̂Qo
n(u0) ⊆ Ω . We claim that if A−mQo

n(u0) ⊆ Ω for some

m ≥ 1 , then A−m+1Qo
n(u0) ⊆ Ω . In our case the hypothesis of the claim is satisfied ∀m ≥ nk̂

and the recursive application of the claim implies that Qo
n(u0) ⊆ Ω , namely the thesis.

Let us prove the claim. First, we show that if x ∈ Ω and Ax ∈ Qo
n(u0) , then Ax ∈ Ω . In fact,

by the controlled invariance of Ω , ∃u ∈ U such that x+ ∈ Ω ⊆ Qo
n(u0) : such a control value

must be u = 0 because for u 6= 0 , x+ 6∈ Qo
n(u0) . Indeed, −u0

2
≤ (Ax)n < u0

2
by assumption,

hence

−u0

2
+ u ≤ x+

n = (Ax)n + u <
u0

2
+ u , (14)

and for u 6= 0 it holds that |u| ≥ u0 which, together with inequalities (14) , yields either x+
n ≥ u0

2

or x+
n < −u0

2
. Now, consider y ∈ A−m+1Qo

n(u0) and let us show that y ∈ Ω : since −m+1 ≤ 0 ,

then y ∈ Qo
n(u0)

(
see the inclusions in Equation (13)

)
. Let x := A−1y ∈ A−mQo

n(u0) : x ∈ Ω

by assumption and y = Ax ∈ Qo
n(u0) , therefore y ∈ Ω .

By Theorem 3 , Qo
n(u0) is strongly minimal in both the cases of uniformly and logarithmically

quantized controls
(
provided that in the latter case we assume 1 < θ ≤ α+1

α−1

)
.

Remark 2 Assuming |α1| > 1 +
∑n

i=2 |αi| , which by the way is a condition involving only

the coefficients of the characteristic polynomial of A , is the same as asking that A−1Qo
n(u0) ⊂

Qo
n(u0) , namely it is a stability requirement on the matrix A−1 , hence corresponding to an

instability property of A .
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It can be shown that the condition ensuring the strong minimality of Qo
n(u0) is only sufficient,

nevertheless the result is interesting because it shows that there are cases in which, among the

minimal diameter sets (i.e., diami Ω = u0 ∀ i = 1, . . . , n ) , the whole Qo
n(u0) is actually the

smallest controlled invariant set.

3.3 Hypercubes vs ellipsoids

In this section, single–input systems under uniformly quantized controls are considered and

a quantitative comparison between different practical stability analysis tools is provided. It

is shown in particular that the classical quadratic Lyapunov functions based approach yields

significantly more conservative results than those obtained by considering the effect of the cut–

off procedure and, above all, by the hypercubes based analysis. The case of two dimensional

systems is considered in full details. Some results are presented for the general case too and

suggest that, as the state space dimension increases, the classical Lyapunov approach is more

and more conservative.

Let us consider the quantized control system

{
x+ = Ax + Bu

x ∈ R2, u ∈ Z ,
(15)

where the pair (A,B) is in controller form
(
see Equation (2)

)
. Let K := (−α1 − α2) and

u(x) = ν(Kx) be the qdb–controller. With e(x) := ν(Kx)−Kx , the closed–loop dynamics is





x+ = (A + BK)x + Be(x) =

(
0 1

0 0

)
x +

(
0

1

)
e(x) := Fx + Be(x)

|e(x)| ≤ 1
2
.

(16)

Practical stability for system (16) follows by the fact that an open loop asymptotically stable

linear system is input–to–state stable [11]. The analysis of practical stability based on hypercubes

(squares in this case) says that ∀∆ ≥ 1 , system (16) is
(
Q2(∆), Q2(1)

)
–stable (see Example 1) .

The following result provides a quantitative analysis based on classical Lyapunov arguments:

Lemma 3 [16] , cf. [5] Consider the system

x+(t) = Fx(t) + Be(t) , (17)

where F is Schur (i.e., all its eigenvalues have magnitude strictly less than 1) and ∀ t ≥ 0 ,

‖e(t)‖ ≤ E0 . For any Rn×n 3 S > 0 , let P be the solution of the Lyapunov equation F ′PF −
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P = −S and 



ri := R2
(
λmax(P − S) + λmin(S)

)
, where

R = E0

λmin(S)
α(P ) , and

α(P ) = ‖F ′PB‖+
√
‖F ′PB‖2+ λmin(S)‖B′PB‖ .

Then,

ı) ∀ r ≥ ri , EP,r is invariant;

ıı) ∀ r1 ≥ r2 > ri system (17) is
(EP,r1 , EP,r2

)
–stable. 2

If system (17) is single–input and in controller form, then, according to Corollary 1, Lemma 3.ıı

can be refined by stating that

ıı bis) ∀ r1 ≥ r2 > ri system (17) is
(EP,r1 , E∗P,r2

)
–stable.

Let us apply Lemma 3 to the practical stability analysis of system (16) . Let

R2×2 3 S =

(
s1 s3

s3 s2

)
> 0 ,

with s1 > 0 , s2 > 0 and s1s2− s2
3 > 0 . We can assume without loss of generality that s3 ≥ 0 .

It holds that: λmin(S) =
s1+s2−

√
(s1−s2)2+4s2

3

2
,

P =

(
s1 s3

s3 s1 + s2

)
,

R = 1
2 λmin(S)

(
s3 +

√
λmin(S)2 + s1s2

)
and

ri(S) = R2
(
s1 + λmin(S)

)
.

For a given S , the minimal invariant ellipse provided by Lemma 3 is EP (S),ri(S) : a possible

optimality criterion to select S is given by the minimization of the area of this ellipse, namely

min
R2×23S>0

π ri(S)√
det P (S)

.

It can be proved that the minimal value of the area is π√
2

which is achieved for S = s1I .

For S = I , one obtains ri = 1 and

EP (I),ri(I) = {x ∈ R2 |x2
1 + 2x2

2 ≤ 1} .

Let us quantify the effect of the cut–off procedure in terms of area reduction (see also Fig. 5) : it

holds that Pr2

(EP (I),ri(I)

)
=

[
−

√
2

2
;
√

2
2

]
whereas Pr1

(EP (I),ri(I)

)
= [−1 ; 1 ] , therefore E∗P (I),ri(I) =

EP (I),ri(I) ∩ Q2(
√

2) and1

Area (E∗P (I),ri(I)) =
4√
2

∫ √
2/2

0

√
1− x2dx =

π/2 + 1√
2

.

1Indeed,
∫ √

1− x2dx = 1
2

(
x
√

1− x2 + arcsinx
)
.
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Figure 5: Left : The minimal invariant ellipse provided by Lemma 3 with the optimal choice of

S = I and, in darker grey, the smaller invariant set E∗P (I),ri(I) obtained via the cut–off procedure.

Right: The dotted region represents the minimal invariant hypercube (square) .

Hence,
Area (E∗P (I),ri(I))

Area (EP (I),ri(I))
=

1

2
+

1

π
' 0.82 .

As for the hypercubes based analysis, the area reduction is really significant, in fact

Area
(
Q2(1)

)

Area (E∗P (I),ri(I))
=

√
2

π/2 + 1
' 0.55 .

Furthermore, it can be proved that ∀S > 0 , Q2(1) ⊂ EP (S),ri(S) . This is in agreement with the

minimality properties holding for hypercubes and presented in the previous section.

We conclude with a brief analysis for the generalization to n–dimensional state space of the

system in Equation (15) controlled by the qdb–controller. Also in this case we know that

∀∆ ≥ 1 , the closed loop system is
(
Qn(∆), Qn(1)

)
–stable (see Example 1) . For S = I ∈ Rn×n ,

the minimal invariant ellipsoid provided by the Lyapunov practical stability analysis based on

Lemma 3 is

EP (I),ri(I) =
{
x ∈ Rn | ∑n

j=1 jx2
j ≤ n2

4

}
,

and, for j = 1, . . . , n , Prj

(EP (I),ri(I)

)
=

[− n
2
√

j
; n

2
√

j

]
. In particular, diamn EP (I),ri(I) =

√
n .

Therefore, as the state space dimension n increases, while the magnitude of the minimal inva-

riant hypercube remains constant equal to 1 , the magnitude of EP (I),ri(I) diverges.

A qualitative result for the analysis of the effect of the cut–off procedure can be obtained by

considering the ratio between diam1 EP (I),ri(I) and diamn EP (I),ri(I) . Indeed, E∗P (I),ri(I) = EP (I),ri(I)∩(
Prn

(EP (I),ri(I)

))n

, so that diamn EP (I),ri(I) is the magnitude of the invariant set E∗P (I),ri(I) and

dictates the entity of the “cut”, while, according to Proposition 1 , the direction along the first
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coordinate is the one more affected by the cut–off procedure. Because

diam1 EP (I),ri(I)

diamn EP (I),ri(I)

=
√

n ,

also the effect of the cut–off procedure is more and more significant at the increasing of the state

space dimension.

The same phenomenon is pointed out when analyzing the volume of the minimal invariant

ellipsoid. In fact, such a volume, which is to be compared with the unitary volume of the

minimal invariant hypercube Qn(1) , is2

Volume (EP (I),ri(I)) =
(n
√

π)n

2n Γ
(

n
2

+ 1
)√

n!
:= V(n)

and, using the Stirling’s formula to bound n! , it can be seen that limn→+∞ V(n) = +∞ .

Remark 3 In the above analysis uniformly quantized controls have been considered. Other types

of quantizations can be analyzed: in fact, a result analogous to that of Lemma 3 and holding

for a wide class of quantizers, including logarithmic ones, has been obtained in [16] by taking

advantage of small–gain theory. In this case the study still relies on Lyapunov arguments but a

Riccati equation is involved rather than the standard Lyapunov one.

4 Conclusion

In this work we have studied the problem of describing the smallest neighborhood of the equilib-

rium into which the trajectories of a linear single–input system with assigned quantized controls

can be confined. We have introduced a suitable notion of size of a set and, for a given input

quantization, we have provided a lower bound for the minimal feasible size of an invariant set.

Such a bound is shown to be attained by a hypercube in controller form coordinates in the

master cases of uniform and logarithmic input quantizations. This means that the choice of

considering hypercubes is optimal as far as the analysis of the steady–state performance in the

practical stabilization problem is concerned.

The multi–input case is more complex because of the lack of a simple canonical form, however

we already have some preliminary results based on similar ideas.

In [14, 15] , hypercubes have been profitably used also for the analysis of practical stability in the

presence of input–and–output quantization. In this more general case, the size of the minimal

invariant hypercube is increased by a positive quantity directly related to the output quantizer

2Recall that the volume of the unit n–ball is πn/2

Γ(n/2+1) , where Γ(x) :=
∫ +∞
0

e−ttx−1dt and Γ(n + 1) = n! .
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resolution. However, the problem of characterizing the minimal invariants when both the inputs

and the outputs are quantized is open.
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