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Abstract— In this paper we address the problem of generating
input plans to steer complex dynamical systems in an obstacle-
free environment. Plans considered admit a finite description
length and are constructed by words on an alphabet of input
symbols, which could be e.g. transmitted through a limited
capacity channel to a remote system, where they can be decoded
in suitable control actions.

We show that, by suitable choice of the control encoding,
finite plans can be efficiently built for a wide class of dynamical
systems, computing arbitrarily close approximations of a desired
equilibrium in polynomial time. Moreover, we illustrate by sim-
ulations the power of the proposed method, solving the steering
problem for an example in the class of underactuated systems,
which have attracted wide attention in the recent literature.

I. INTRODUCTION

The problem of steering complex physical plants requires
the development of planning techniques capable of tackling
both kinematic and dynamic constraints. Classical techniques
usually try to face this problem by solving a kinematic motion
planning problem and then looking for a trajectory and a
control accounting for dynamic constraints. In recent years,
several approaches inspired to the kinodynamic paradigm [1],
[2], consisting in trying to solve these problems simultane-
ously, have been presented.

Moreover, dealing with physical systems and complex
control frameworks, such as those based on hierachically
abstracted levels of decision, usually involves additional issues
related to limited communication and storage resources. Con-
sider for instance the case where a robotic agent receives its
motion plans from a remote high-level control center through a
finite capacity communication channel. Or consider a scenario
providing that plans are exchanged in a networked system of a
large number of simple semi-autonomous agents, cooperating
to achieve a common task, e.g. in a formation control operation
or collaborative map building and object tracking.

In this vein, we address in this paper the problem of
planning inputs to steer a controllable dynamical system of
the type

ẋ = f(x, u), x ∈ X ⊆ IRn, u ∈ U ⊂ IRr (1)

between neighborhoods of given initial and final states. As a
solution, we seek a finite plan, i.e. an input function which
admits a finite description. We are interested in plans with

short description length (measured in bits) and low computa-
tional complexity. Particular attention is given to plans among
equilibrium states, regarded as nominal functional conditions.

Several important contributions have appeared addressing
different instances of symbolic control problems, e.g. [3]–[5].
In particular, [6] shows that feedback can substantially reduce
the specification complexity (i.e., the description length of the
shortest admissible plan) to reach a certain goal state.

The main contribution of this paper is to show that, by
suitable use of feedback, finite plans can be efficiently found
for a wide class of systems. More precisely, we use a symbolic
encoding ensuring that a control language is obtained whose
action on the system has the desirable properties of additive
groups, i.e. the actions of control words are invertible and
commute. Furthermore, under the action of words in this
language, the reachable set becomes a lattice. Finite–length
plans to steer the system from any initial state to any final state
within a given region can thus be computed in polynomial
time. The contribution of this paper can be regarded as an
extension of planning techniques in [7] (only applicable so far
to driftless nonlinear systems in so-called “chained-form”), to
a much wider class of systems, most notably systems with
drift.

By virtue of feedback encoding, complex nonlinear systems
— indeed, the same class of differentially flat systems [8]
considered in [9] — can be transformed (at least locally) into
a linear system. Planning for flat systems can then be achieved
in a linear setting, hence projected back on the original systems
by feedback decoding. This process is thoroughly illustrated in
the paper by application to an interesting MIMO underactuated
mechanical system: a simple model of a helicopter.

II. SYMBOLIC CONTROL

Symbolic control is inherently related to the definition
of elementary control events, or quanta, whose combination
allows the specification of complex control actions. A finite
or countable set U of control quanta can be encoded by
associating its elements with symbols in a finite set Σ =
{σ1, σ2, . . .}. Furthermore, letters from the alphabet Σ can be
employed to build words of arbitrary length. Let Σ∗ be the set
of such strings, including the empty one.

The analysis of the action of a generic Σ∗ on the state space
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can be quite hard, and the structure of the reachable set under
generic quantized controls can be very intricated (even for
linear systems: see e.g. [7], [10], [11]). However, a suitable
choice of the set Uε, namely a suitable control quantization,
and of the control encoding can make symbolic control a
powerful tool. This motivates the investigation of encodings
achieving simple composition rules for the action of words in
a sublanguage Ω ⊂ Σ∗, so as to obtain that the global action of
a command string is independent from the order of application
of each control symbols in Ω. Under this hypothesis, a choice
for Ω always exists such that the reachable set from any point
in X under the concatenation of words in Ω can be described
as a lattice which we assume henceforth. Hence, in suitable
state and input coordinates, the system takes on the form

z+ = z + H̄μ, H̄ ∈ IRn×n, μ ∈ ZZn. (2)

Definition 1: A control system ẋ = f(x, u) is additively
(or lattice) approachable if, for every ε > 0, there exist a
control quantization Uε and an encoding E∗ : Ω �→ U∗

ε , such
that: i) actions of Ω commute and are invertible, and ii) for
every x0, xf ∈ X , there exists x in the Ω–orbit of x0 with
‖x − xf‖ < ε.

Remark 1: The reachable set being a lattice under quanti-
zation does not imply additive approachability. For instance,
consider the example used in [2] to illustrate kinodynamic
planning methods [12]–[14]. This consists of a double inte-
grator q̈ = u with piecewise constant encoding U = {u0 =
0, u1 = 1, u2 = −1} on intervals of fixed length T = 1. The
sampled system reads[

q
q̇

]+

=
[

1 1
0 1

] [
q
q̇

]
+

[
1
2
1

]
u, (3)

hence

q(N) = q(0) + Nq̇(0) +
∑N

i=1
2(N−i)+1

2 u(i)
q̇(N) = q̇(0) +

∑N
i=1 u(i).

The reachable set from q(0) = q̇(0) = 0 is

R(U , 0) =
{[

q
q̇

]
=

[
1
2 0
0 1

]
λ, λ ∈ ZZ2

}
.

The quantization thus induces a lattice structure on the
reachable set. The lattice mesh can be reduced to any desired
ε resolution by scaling U or T . However, the actions of
control quanta do not commute. Indeed, being φ∗(u∗) the
solution of system (3) under the control sequence u∗, we have
φ∗(u1u2) �= φ∗(u2u1) (for instance, φ∗(u1u2)(0, 0) = (1, 0),
while φ∗(u2u1)(0, 0) = (−1, 0).

Motivations for planning on lattices are mainly due to the
following theorem [15]:

Theorem 1: For an additively approachable system, a spec-
ification of control inputs steering the system from any initial
state to any final state, can be given in polynomial time.

III. FEEDBACK ENCODING

A few examples of possible control encoding schemes of
increasing generality were considered in [15]. Some of them
are pictorially described in fig. 1. The most attractive one is
the feedback encoding which consists in associating to each
symbol a control input u that depends on the symbol itself, on
the current state of the system, and on its structure. Feedback
encoding was exploited for planning the trajectory of a car
with n trailers ( [16], [17]), whose kinematic model is locally
feedback equivalent to chained form [18] and hence, additively
approachable, thus demonstrating that finite plans to steer any
nonlinear driftless system can be computed in polynomial time
by theorem 1.

We now turn our attention to the much broader class of
systems with drift, i.e. systems which possess an autonomous
dynamics independent of applied inputs. More precisely, con-
sider again system (1)

ẋ = f(x, u), x ∈ X ⊆ IRn, u ∈ U ⊂ IRr

and the associate equilibrium equation f(x, u) = 0. Let the
equilibrium set be E = {x ∈ X |∃u ∈ U, f(x, u) = 0}. We
say that system (1) has drift if E has lower dimension than X .

Among systems with drift, linear systems are the simplest,
yet their analysis encompasses the key features and difficulties
of planning. Indeed, our strategy to attack the general case con-
sists of reducing to planning for linear systems via feedback
encoding. To achieve this, we introduce a further generalized
encoder, i.e. the nested feedback encoding described in fig. 1-c.
In this case, an inner continuous (possibly dynamic) feedback
loop and an outer discrete-time loop – both embedded on
the remote system – are used to achieve richer encoding
of transmitted symbols. Additive approachability for linear
systems, by discrete-time feedback encoding (see fig. 1-b), is
proved in theorem 6 below. By using the nested feedback en-
coding, all feedback linearizable systems are hence additively
approachable. Therefore, by resorting to dynamic feedback
encoding ( [8], [19], [20]), we can state the following theorem:

Theorem 2: Every differentially flat system is locally addi-
tively approachable.

IV. LINEAR SYSTEMS

In this section we consider linear systems of type

ẋ = Fx + Gu (4)

with x ∈ IRn, u ∈ U = IRr and rank G = r. We start by some
preliminary results characterizing the equilibrium set E .

A. Preliminaries

Let us recall from [15] the following lemmas:
Lemma 3: For a controllable linear system (4), dim E = r.
Application to (4) of piecewise constant encoding of sym-

bolic inputs (scheme a in fig.1) with durations Ti = T, ∀i,
generates the discrete-time linear system

x+ = Ax + Bu, (5)
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Fig. 1. Three examples of symbolic encoding of control. Symbols transmitted
through the finite-capacity channel are represented by letters in the leftmost
blocks. From the top: a) piecewise constant encoding; b) discrete-time feed-
back encoding; c) nested discrete-time continuous-time feedback encoding.

with

A = eFT , B =

(∫ T

0

e(T−s)F ds

)
G.

Lemma 4: The equilibrium manifold of a controllable linear
continuous-time system is invariant under discrete-time feed-
back encoding, for almost all sampling times T .

A crucial observation concerning systems with drift is
contained in the following lemma.

Lemma 5: For a linear system (4), it is impossible to steer
the state among points in E while remaining in E , except for
special cases.

As we want E to be a lattice, the previous observations
drive towards policies for periodic steering of systems among
equilibria. In particular, we are interested in seeking symbolic
input encodings that periodically achieve additive approacha-
bility on E . Within this perspective, we recall the following
theorem also from [15]:

Theorem 6: For a controllable linear discrete-time system
x+ = Ax + Bu, there exist an integer � > 1 and a linear
feedback encoding

E : Σ → U ,
σi �→ Kx + wi

with constant K ∈ IRn×n and wi ∈ W , W ⊂ IRr a quantized
control set, such that, for all subsequences of period �T
extracted from x(·), the reachable set is a lattice of arbitrarily
fine mesh. In other terms, for the undersampled system z(k) =
x(τ + k�), τ, k ∈ IN, it holds

z+ = z + H̄μ, H̄ ∈ IRn×n, μ ∈ ZZn

and ∀ε there exists a choice of a finite W such that ‖H̄‖ < ε.

We recall preliminarily a result which can be derived
directly from [7].

Lemma 7: The reachable set of the scalar discrete time
linear system ξ+ = ξ + v, ξ ∈ IR, v ∈ W def

= γW with
γ > 0 and W = {0,±w1, . . . ,±wm}, wi ∈ IN with at least
two elements wi wj coprime, is a lattice of mesh size γ.

Proof of Theorem 6: For the controllable pair (A, B),
let S, V , and K0 be matrices such that (S−1(A + BK0)S,
S−1BV ) is in Brunovsky form (see e.g. [21]). Denote with
κi, i = 1, . . . , r the Kronecker control-invariant indices. In the
new coordinates ξ = S−1x we have

ξ+ = S−1(A + BK0)Sξ + S−1BV v′ = Ãξ + B̃v′.

Let v′ = K1ξ + v, where:
• v ∈ W = γ1

1W × · · · × γr
rW , with kW =

{0,±kw1, . . . ,±kwmk
}, kwj ∈ IN k = 1, . . . , r, j =

1, . . . , mk, each kW including at least two coprime
elements kwi

kwj ;
• K1 ∈ IRr×n such that its i–th row (denoted K1i) contains

all zeroes except for the element in the (κi−1 + 1)–th
column which is equal to one (recall that by definition
κ0 = 0).

Denoting with (Aκi , Bκi) the i-th sub-system in Brunovsky
form, it can be easily observed that (Aκi + BκiK1i)κi = Iκi ,
the κi × κi identity matrix. Hence, if we let

� = l.c.m. {κi : i = 1, ..., r},
we get

[
S−1((A + BK0)S + BV K1)

]� = In.
Let ξi ∈ IRκi denote the i–th component of the state vector

relative to the pair (Aκi , Bκi). For any τ ∈ IN we have

ξi(τ + κi) = ξi(τ) +

⎡⎢⎣ vi(τ)
...

vi(τ + κi − 1)

⎤⎥⎦ (6)

On the longer period of �T , we have

ξi(τ + �) = ξi(τ) +

⎡⎢⎢⎢⎣
∑ �

κi
−1

k=0 vi(τ + kκi)
...∑ �

κi
−1

k=0 vi(τ + κi − 1 + kκi)

⎤⎥⎥⎥⎦
def
= ξi(τ) + v̄i(τ),

hence

ξ(τ + �) = ξ(τ) +

⎡⎢⎣ v̄1

...
v̄r

⎤⎥⎦ def
= ξ(τ) + v̄

or, in the initial coordinates,

x(τ + �) = x(τ) + Sv̄.

In conclusion, by the linear discrete–time feedback encoding

E : Σ → U ,
σi �→ (K0 + V K1S

−1)x + V vi
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with vi ∈ W , for all �-periodic subsequences z(k) = x(τ +
k�), it holds

z+ = z + SΓμ, μ ∈ ZZn

with
Γ = diag (γ1Iκ1 , · · · , γrIκr ) .

It is also clear that, for any ε, it is possible to choose Γ such
that z can be driven in a finite number of steps (multiple of
�) to within an ε-neighborhood of any point in IRn.

It is interesting to note that, for single-input systems, the
encoding considered in theorem 6 is indeed optimal in terms of
minimizing the periodicity by which the lattice is achievable.
However, for multi-input systems, the period of (l.c.m.i κi)T
used in theorem 6 can be reduced to a minimal of (maxi κi)T .
This can be achieved by the planning algorithm described
below in section IV-B.

As it can be expected, the behavior of the system between
such periodic samples is in general not specified, and may turn
out to be unacceptable. Indeed, if a goal has to be reached,
which is far from the origin, the intersample behavior may
have a large-span erratic behavior. Nevertheless, the feedback
encoding scheme allows to solve this problem while keeping
the system’s evolution arbitrarily close to the equilibrium
manifold (see [15]).

Notice finally that, in Brunovsky coordinates, E has a
particularly simple structure. Letting 1κi ∈ IRκi denote a
vector with all components equal to 1, we have that for
each κi-dimensional subsystem, the equilibrium states are
ξ̄i = αi1κi , αi ∈ IR, hence

E =
{
ξ̄|ξ̄ = diag (α1Iκ1 , · · · , αrIκr )1n

}
B. Planning algorithm

Based on the above results, we now provide explicitly an
efficient method to steer from an arbitrary state x ∈ IRn to
within an ε-neighborhood of a given goal state x + δ ∈ IRn

(x and δ not necessarily in E).
1) Compute the desired displacement in Brunovsky coor-

dinates Δ = S−1δ, and let Δi ∈ IRκi , i = 1, . . . , r
denote the desired displacement for the i–th subsystem;

2) Compute the lattice mesh size in Brunovsky coordinates
γi = 2ε

‖ζi‖ , where

[
ζ1 ζ2 · · · ζr

]
= S

⎡⎢⎢⎣
1κ1 0 · · · 0
0 1κ2 · · · 0
· · · · · · · · · · · ·
0 0 · · · 1κr

⎤⎥⎥⎦ ;

3) Find Δ̄i, the nearest point to Δi on the lattice generated
by γi

iW and centered at ξi = (S−1x)i.
4) For each i = 1, . . . , r, let the quantized control set be

iW = {0,±iw1, . . . ,±iwmi}, iwj ∈ IN, and denote by
iU the vector [iw0

iw1 · · · iwmi ], where iw0 = 0. Write

Δ̄i = γi
iC iU (7)

where iC is a matrix in ZZκi×mi+1 with components
iCh,j+1 = ich,j, h = 1, . . . , κi, j = 0, . . . , mi. Each

element ich,j of iC describes the number of times
that the control iwj has to be used to steer the h–th
component of ξi.

5) Find integers ich,j, h = 1, . . . , κi, j = 1, . . . , mi solv-
ing the system of diophantine equations (7), and find the

smallest integers ich,0 such that, ∀h,
∑mi

j=0 |ich,j| def
=

Ni. Niκi is thus a number of steps sufficient to steer
the i–th subsystem;

6) (Optional) Among all solutions of (7), find the one which

minimizes maxκi

h=1

∑mi

j=1 | ich,j| def
= N̂i. Notice that

N̂iκi is the minimum length of a string of symbols in
iW obtaining the goal. However, no polynomial-time
algorithm is known for such optimization;

7) Let N�
κ = maxi Niκi, and i� the corresponding index.

Then, for all i = 1, . . . , r i �= i�, compute Δ̃i =
(Ãi)−ri(ξ + Δ̄i) − ξ with ri = N�

κ − Niκi. Repeat
steps 4) and 5) with the new Δ̃i.

The explicit construction of a procedure to decode plan
specifications iC into a string of control inputs iV for the
i–th channel is finally described in Matlab-like code:

C=iC ;
iV = [ ] ;
whi le (C ˜= 0 )

f o r h =1 :κi ,
j =1 ;
whi le C( h , j ) == 0 , j = j +1 ; end
iV = c a t ( iV , s i gn (C( h , j ) ) ∗ iwj ) ;
C( h , j ) = C( h , j )− s i gn (C( h , j ) ) ;

end
end

V. SIMULATIONS

A. Helicopter

In this section, we illustrate the power of the nested feed-
back encoding of fig. 1-c, by solving the steering problem for
an example in the class of underactuated, differentially flat
mechanical systems.

Consider a simplified model for the helicopter depicted in
fig. 2. At first approximation, we can look at the helicopter
as a rigid body, directly actuated by the thrust T of the main
rotor and the torque τ of the tail rotor. Referring to fig. 2,
denote with (x, y, z) the position of its center of mass and
with (φ, θ, ψ) its orientation with respect to the x, y, and z
axes. With this choice, the dynamic model takes on the form⎧⎪⎪⎨⎪⎪⎩

M ẍ = T Sθ ,
M ÿ = −T Cθ Sφ ,
M z̈ = T Cθ Cφ − M g ,

J ψ̈ = τ Cθ Cφ ,

where M is the mass of the helicopter, J is its inertia about
the z axis, and g is the gravity acceleration. It is worth noting
that we have no direct control over the angles φ (roll) and
θ (pitch), but only through aileron and fore-aft cyclic control
respectively (see [9]). Nonetheless, in the remainder of this

1652



Fig. 2. Simplified model of a helicopter. The system is actuated by the thrust
T of the main rotor and the torque τ of the tail rotor. Angles φ (roll) and θ
(pitch) are indirectly established by means of cyclic control of the aileron and
the fore-aft respectively, and therefore can represent two additional inputs.

section, we will consider them as real control inputs for the
sake of simplicity.

The helicopter’s model is dynamically feedback equivalent
to a linear system, as we demonstrate in the following. Take
as system outputs y1 = x, y2 = y, y3 = z, y4 = ψ.
Differentiating twice these outputs, yields⎧⎪⎪⎪⎨⎪⎪⎪⎩

ÿ1 = T Sθ

M ,

ÿ2 = −T Cθ Sφ

M ,

ÿ3 = T Cθ Cφ

M − g ,

ÿ4 = τ Cθ Cφ

J ,

(8)

where the inputs are nonlinearly coupled. As a first
step, we add one integrator on each input channel, and
extend the system state by defining the auxiliary variables
Ṫ = u1, θ̇ = u2, φ̇ = u3, and τ̇ = u4. Then, we differentiate
once more the equations in (8). Thus, we obtain:⎡⎢⎢⎣

x(3)

y(3)

z(3)

ψ(3)

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
Sθ

M
T Cθ

M 0 0
−Cθ Sφ

M
T Sθ Sφ

M −T Cθ Cφ

M 0
Cθ Cφ

M −TSθCφ

M −T Cθ Sφ

M 0
0 − τ Sθ Cφ

J − τ Cθ Sφ

J
Cθ Cφ

J

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

u1

u2

u3

u4

⎤⎥⎥⎦ =

= D(T, θ, φ, τ)u .

Under the hypothesis that T �= 0, θ �= ±π
2 , φ �= ±π

2 ,

and θ �= − arcsin
(

C2
φ

Sφ

)
, matrix D is nonsingular, and the

system can be exactly linearized by the choice u = D−1v′.
With respect to the new input v′, the system’s dynamics is
indeed composed of four chains of integrators, i.e. y

(3)
1 = v′1,

y
(3)
2 = v′2, y

(3)
3 = v′3, y

(3)
4 = v′4. Due to its linearity, the

system can be steered by means of the method described
in section (IV-B). First of all, observe that its equilibrium
manifold is

E = {x ∈ IR12|x = (αx, 0, 0, αy, 0, 0, αz, 0, 0, αψ, 0, 0)} .

Now, apply the discrete-time feeedback encoding of fig. 1-c
with unit sampling time t = 1s, and compute matrices S, V ,
and K as in theorem 6. In the new coordinates, the equilirium
manifold is given by

E = {(βx13, βy13, βz13, βψ13)} ,

where αx = ζ1 βx, αy = ζ2 βy , αz = ζ3 βz , αψ = ζ4 βψ, and
ζ1 = ζ2 = ζ3 = ζ4 = ζ = 1.

When building a lattice for the system, it is reasonable to
ask for a tolerance ε1 on the x, y, and z coordinates which are
measured in meters, and a different one, ε2, on the ψ variable
which is instead measured in radiants. Take e.g. as numerical
values ε1 = 1m and ε2 = 0.01rad, hence it holds γ1 = γ2 =
γ3 = 2 and γ4 = 0.02. Assume that all points in a hypercube
of sizes 32m×32m×32m×0.32rad have to be reached, using
control sets with m = 4. From [15], we know that the optimal
choice is 1W = 2W = 3W = 4W = {0,±3,±6,±7,±8}
and every point can be reached within N = 2 steps. Similarly
to the previous example, the actual execution of the plan takes
n = 3 times N sampling instants, because of the maximum
dimension of the blocks in the Brunovsky form.

As for the helicopter’s motion, the following task is spec-
ified: lift up of a relative altitude of 6m from the actual
position, rotate of an angle ψ = π/4 rad while hovering, travel
horizontally of a relative displacement (20m, 20m), and finally
go down to the initial altitude. Plans for steering the system
according to the task are computed as in theorem 6. Such plans
and the corresponding state evolution are reported in fig. 3. In
fig. 4 the helicopter’s trajectory and shots of the helicopter’s
position and attitude are finally shown.

VI. CONCLUSIONS

In this paper, we have described methods for steering
complex dynamical systems by signals with finite-length de-
scriptions. Systems tractable by symbolic control under encod-
ing include all controllable linear systems, nilpotent driftless
nonlinear systems and (dynamically) feedback-linearizable
systems. Many other open problems remain open in order to
fully exploit the potential of symbolic control. A limitation of
our current approach is that we assume that a flat, linearizing
output to be available, as well as state measurements. Con-
nections to state observers in planning are unexplored at this
stage. Future work will first investigate application of these
methods to non–differentially flat systems, and will enquire in
the additional possibilities which might be offered by using
different feedback laws at different time instants. Finally,
effective finite planning in presence of obstacles has not been
considered yet and would need thorough investigation.
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