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Abstract— In this paper, we consider the problem of steering
complex dynamical systems among equilibria in their state
space in efficient ways. Efficiency is considered as the possibility
of compactly representing the (typically very large, or infinite)
set of reachable equilibria and quickly computing plans to
move among them. To this purpose, we consider the possi-
bility of building lattice structures by purposefully introducing
quantization of inputs. We consider different ways in which
control actions can be encoded in a finite or numerable set of
symbols, review different applications where symbolic encoding
of control actions can be employed with success, and provide a
unified framework in which to study the many different possible
manifestations of the idea.

I. INTRODUCTION

Although traditional system theory has been concerned
separately with either discrete event systems or controlled
dynamic systems with a continuous state space, the actual
system configuration in many technical contexts involves a
close interaction of such components (see fig. 1). Here, a
physical plant, described in terms of a classical difference or
differential controlled system, is interfaced to the controller
via encoding of its outputs in a finite or countable set of
symbols (say, an alphabet L = {A,B,C, . . .}). On the other
hand, control actions decided by the controller are also sim-
ilarly encoded in a different alphabet G = {α, β, γ, . . .} of
symbols. Naturally, in this framework the feedback controller
should be regarded as a (possibly dynamic) map form L to G,
hence as an automaton. The cardinality of the I/O alphabets,
and the dimension of the feedback automaton, are indicative
of the complexity of the controller (cf. [1]). The most obvious
occurrence of such a scheme is related to systems with
quantization of inputs and outputs, a very common aspect of
digital control, which has recently attracted renewed attention
in the stabilization literature ([2], [3], [4], [5]).

Fig. 1. Basic scheme of a hybrid analogic-symbolic feedback system

There are higher-level instances of the scheme of fig.1,
where the physical plant represents a large system capable of
complex behaviours, and logic control represents hierarchi-
cally abstracted levels of decision, planning and supervision.
Particularly fitting to this perspective are examples from
robotics, where input symbols may represent commands (aka
behaviors, or modes), such as e.g. walk, run, stop,
squat, etc. in the control of humanoids via linguistic
primitives [6]. A framework for describing these systems,
Motion Description Languages, has been introduced recently
([7], [8], [9]), while extensions to systems with symmetries
have been presented in [10].
This paper is concerned with the problem of steering complex
dynamical systems among equilibria in their state space.
Indeed, we assume here that the system has a large (often
infinite) set of equilibria, which are stable, possibly following
the use of lower-level controllers we disregard here: typical is
the case of driftless systems. Steering efficiency is considered
as the possibility of compactly representing the set of reach-
able equilibria, and quickly computing plans to move among
them. To this purpose, we consider the possibility of build-
ing suitable structures in the reachable set by purposefully
introducing symbolic encoding of inputs. Indeed, previous
work ([11], [12], [13], [14]) has shown that quantized (i.e.,
symbolic) inputs can induce particular structures on the
reachable set of continuous sytems. In particular, while it
may happen that a reachable system maintains the possibility
of approaching arbitrarily close any point in the state space,
under some circumstances the rechable set under quantized
control is itself discrete, and possesses a lattice structure.
Further work has shown that lattice structures can be turned
to advantage in several applications such as, for instance,
planning motions of complex systems ([15]) or applying
efficient algorithms for optimal control computations ([16]).

In this paper we will study conditions under which the
control of a continuous system can be encoded in symbols,
so as to achieve some desirable properties related to the
structure of its reachable set. To this purpose we will define a
concept of “reticulability” of a system, meaning the existence
of encoding schemes that make the reachable set a lattice, and
of “approachability”, meaning that the encoding can be tuned
so as to make the lattice mesh arbitrarily fine. We will discuss
conditions under which these properties are achievable. It so
turns out that a hierarchy of encoders can be considered, from
simpler schemes (such as piece-wise constant control signals)
to more complex encoders (e.g. piecewise continuous). The
hierarchy is topped by feedback encoders, which offer the



richest possibility for achieving the desired structures. We
will illustrate the results by several examples, ranging from
linear systems to chained-form, nilpotent, and more general
nonlinear systems.

II. BASIC DEFINITION

Consider a control system

ẋ = f(x, u) (1)

where the state x ∈ M evolves on a manifold, and let the
control u take values in the continuous control space U .
Symbolic control is inherently related to the definition of
elementary control events, or atoms, or quanta. We will refer
to the following

Definition 1: A control quantum is a couple (u, T ) where
u : IR+ × M → U and T : M → IR+. The set of control
quanta is denoted by Ũ .
In a natural way, we associate to each control quantum (u, T )
a map φ(u,T ) : M → M : given x0 ∈ M , φ(u,T )(x0) is the
solution at time T (x0) of the Cauchy problem{

ẋ = f(x, u(t, x))
x(0) = x0.

(2)

If the time–varying vector field fu = f(x, u(t, x)) is smooth
with sublinear growth, and T is smooth, then the map φ(u,T )

is well defined and we write φ(u,T )(x0) = eT (x0)fux0. Under
suitable conditions on T (e.g. T constant), denoting by D(M)
the space of diffeomorphism of M onto itself, we have the
map Φ : Ũ → D(M), Φ((u, T )) = φ(u,T ).

Definition 2: A control quantization consists in assigning
a finite or countable set U ⊂ Ũ . A (symbolic) control encoder
on a control quantization is a map E : Σ → U , where Σ =
{α, β, . . .} is a finite or countable set of symbols.
In fig. 2, three different control encoding schemes are
pictorially described. Piecewise constant encoding, where
each control quantum qi = (ui, Ti) has both ui and Ti

constant, is the simplest case. Piecewise smooth controls,
where Ti is fixed, and ui are smooth functions of time
not depending from the state, allow for more powerful
encoding - for instance, different ui’s may represent pieces
of extremal controls to be pasted together in an approximate
optimal control scheme. Finally, feedback encoding consists
in associating to each symbol a control input u that depends
on the symbol itself, on the current state of the system,
and on its structure (e.g., the scheme can be regarded as
generated by defining a feedback u = f(x, r) for system
(2), and a piecewise constant encoding on the reference r.)
Although the definition above is not the most general one
could introduce (e.g., it could be generalized to couples
(u, T ) where u : M → L∞(IR+×M,U) and T : M → IR+,
thus allowing for time–varying feedbacks u depending on
the initial point of application), it is broad enough for our
purposes.
Given a control quantization and an encoder, we have the
diagram

Σ E−→ U Φ−→ D(M),

Fig. 2. Three examples of symbolic encoding of control: piecewise constant
(top), piecewise smooth (middle), and feedback encoding.

which can be extended in an obvious way to

Σ∗ E∗
−→ U∗ Φ∗

−→ D(M),

where Σ∗ is the set of words formed with letters from the
alphabet Σ, thus providing an action of the monoid Σ∗ on M .
Given a quantization U and an initial point x0, let R(U , x0)
denote the reachable set from x0 under U , i.e. the Σ∗–orbit
for the action defined via Φ∗ ◦ E∗.
In general, being Σ∗ just a monoid, the analysis of its action
on M can be quite hard. However, in many cases, it is
possible to define a group H as the quotient of Σ∗ with
respect to the kernel of the application Φ∗ ◦ E∗ (or, if this
is not possible for the whole Σ∗, by applying the quotient
operation on particular submonoids). Once a group H and
its action on the manifold M is obtained, the structure of
the reachable set is completely determined when M can be
identified with a Lie group G and it holds Φ∗ ◦E∗(H) ⊂ G.
In this case, we have that if H is dense, discrete or finite then
the reachable set will be correspondingly dense, discrete, or
finite. Naturally, different choices of the symbolic encoding
of control affect the structure of H . A particular appealing
structure that one may want to achieve is a lattice, because
representing and steering on lattices is particularly efficient.
Another important concern is that the system maintains the
possibility of approximating arbitrarily well all reachable
equilibria in its state space. These requirements motivate the
following definitions.
From now on we assume M endowed of a Riemannian metric
indicated by d. Given a lattice Λ we define

S(Λ) = sup
x∈M

inf
y∈Λ

d(x, y).

Definition 3: A control system (1) is reticulable if there
exists a control quantization U such that, for every x0 ∈



M , R(U , x0) is a lattice (finitely generated by commuting
actions).
Notice that it may happen that reachable sets under symbolic
encoding are discrete, but do not possess a lattice structure:
this is e.g. the case for systems with drift as shown in the
next section.

Definition 4: A control system (1) is:
– ε–approachable if there exists a control quantization Uε

such that, for every x0, y ∈ M , there exists x ∈ R(Uε, x0)
with d(x, y) < ε.
– approachable if it is ε–approachable for every ε > 0.
– lattice-approachable if for every ε > 0 there exists
a control quantization Uε for which the system is both
reticulable and ε–approachable with commuting actions.
Remark: Notice that a system can be both reticulable and
approachable without being lattice-approachable. Indeed the
control quantization producing a lattice may fail to guarantee
approachability and viceversa (this is the case for linear
systems and the Dubins’ car with constant control quanta,
discussed later on).
It is clear that a lattice-approachable system can be conve-
niently quantized to approach any point in M from a given
point x0. Also, for a lattice-approachable systems it holds
that, for every ε > 0, there exist w1

ε , . . . , wnε
ε ∈ Σ∗ such

that, for every x0 ∈ M , the lattice R(Uε, x0) is generated by
the action of Φ∗ ◦ E∗(w1

ε), . . . ,Φ∗ ◦ E∗(wnε
ε ), where these

actions commute. From this property we immediately get the
following proposition, which explains our interest in lattice-
approachable systems:

Proposition 1: If a control system (1) is lattice-
approachable then for every ε > 0 and x, y ∈ M , there
exist m1, . . . ,mnε

such that

d
(
Φ∗ ◦ E∗((w1

ε)m
1 · · · (wnε

ε )mnε
)
(x), y

)
< ε.

The previous proposition implies that the planning problem
is trivially solved in case of lattice-approachable systems.

III. LINEAR SYSTEMS

We first focus on quantizations with rational constant
control laws proving various limitations. In particular we see
that generic linear systems are not lattice-approachable by
control quantization with rational constant control quanta.
Then we pass to consider state–feedback control quanta
showing their strength by proving that every reachable linear
system is lattice–approachable from the origin.
Let us first introduce some more notations. Consider the
reachable linear system: ẋ = Ax+B u. If we use a constant
control quantum u(t, x) ≡ u, T ≡ δ then we get the discrete
time system:

x+ = Ã x + B̃ u, (3)

where Ã = eδA, B̃ = eδA
∫ δ

0
e−sAB ds. In case of Ã =

B̃ = I , the identity matrix, we have (cf. [13]):
Lemma 1: If U = {v1, . . . , vn+1}, where v1, . . . , vn are

linearly independent, and wi are the components of vn+1

w.r.t. to the other vi’s, then R(U , 0) is dense if and only if wi

is negative for all i and 1, w1, . . . wn are linearly independent
over ZZ, that is a0 + a1w1 + · · ·+ anwn = 0, ai ∈ ZZ, if and
only if ai = 0 for all i.
For a scalar SISO system (3) reduces to: x+ = etax +
eat−1

a b u. To analyze the reachable set from zero the term
eat−1

a b can be subsumed into u, hence we can neglect it.
Defining λ = eat we get:

x+ = λx + u, (4)

and from now on we treat directly this discrete time system.
A key role is played by special class of algebraic integers
called Pisot numbers. An algebraic integer λ > 1 is a Pisot
number if its Galois conjugates, i.e. the other roots of the
minimal polynomial, have norm strictly less than one. The
most famous Pisot number is the golden number g = 1+

√
5

2 .
Notice that the reachable set from 0 for a control quantization
U is given by R(U , 0) = {∑n

i=0 uiλ
i : n ∈ IN, ui ∈ U},

that are the evaluations at λ of polynomials with coefficients
in U . Pisot numbers are characterized by the fact that their
annihilators, the set of polynomials with integer coefficients
that vanish at the Pisot number, are recognizable by an
automaton, see [17]. Roughly speaking, this implies that the
reachable set R(U , 0) contains few points if U consists of
integer constant control quanta.

Definition 5: A control quantization with control quanta
(u, T ), T ≡ δ and u(t, x) ≡ u, is called standard if the
following holds: δ is equal for all control quanta, 0 ∈ U ,
∃0 �= u ∈ U and finally if u ∈ U then −u ∈ U .
For simplicity in the following we consider only standard
control quantization.

Theorem 1: Consider the system (4) and standard control
quantizations with rational constant control quanta. Then

1) For every λ ≥ 3 there exists U such that R(U , 0) is a
discrete set (but not a lattice).

2) For every λ > 1 (4) is approachable on any compact
set. If λ > 1 is not Pisot then it is approachable from
0 on the whole IR.

3) For every λ ≥ 5 compact K and ε > 0 there exists U
with rational constant control quanta such that R(U , 0)
is discrete and maxx∈K miny∈R(U,0) |x − y| < ε.

4) For every compact K and ε > 0 there exists U with
integer constant control quanta such that R(U , 0) is
discrete and maxx∈K miny∈R(U,0) |x − y| < ε if and
only if λ > 1 is a Pisot number.

5) (4) is not lattice-approachable.
In particular Theorem 1 implies that, a fortiori, a linear sys-
tem in any dimension is not generically lattice approachable
by rational constant control quanta. The proof of Theorem
1 relies on a deep analysis developed in [14], [18], [17].
We first recall some results from these papers restated in the
following Proposition.

Proposition 2: Consider the system (4) with λ > 1
and let Rm be the reachable set from 0 with controls in
{0,±1, · · · ,±m}. Then



a) Rm is never dense for any m ∈ IN if and only if
λ is a Pisot number. Moreover, if λ is Pisot then
the quantity supy∈[−M,M ] infx∈Rm

|x− y| tends to
zero as m → ∞ for every M .

b) If λ is not a Pisot number then Rm is dense for
every m ≥ 2(λ − λ−1).

c) If m ≤ (λ − 1)/2 then Rm is not dense.
d) If λ ≥ 5 then the maximum hole of R1 is bounded

by 1, that is maxx∈R1 minx�=y∈R1 |x − y| ≤ 1.
Proof:[Theorem 1] From c) of Proposition 2 we get the
conclusion 1. Indeed if λ ≥ 3 then R1 is discrete, thus the
needed quantization consists of constant control quanta with
u = −1, 0, 1.
Approachability from 0 is guaranteed by b) of Proposition 2
for non Pisot numbers and by a) for Pisot numbers. In both
cases the needed quantization consists of constant control
quanta with u = −m, . . . , 0, . . . , m, with m big enough. To
conclude for every initial data in a compact set, consider
the development in base λ of the initial point, details can
be found in [14]. Assertion 4. follows similarly from a) of
Proposition 2.
Consider conclusion 3. and fix a λ ≥ 5. If λ is Pisot the
conclusion is guaranteed by 4. Thus assume that λ is not
Pisot. From c) of Proposition 2, R1 is discrete. For every
q ∈ IN we consider the control set Uq = {0,± 1

q} and let Rq

be the corresponding reachable set from 0. Since Rq = 1
q R1,

Rq is a discrete set and, from d) of Proposition 2, we have
that supx∈[−M,M ] infy∈Rq |x − y| ≤ C(M)

q thus the quantity
on the left-hand side is tending to zero (3. is proved).
Last assertion 5. follows directly from the fact that reachable
sets are never lattices due to the presence of the drift term.
�
Opposed to these results are the following showing the
strength of state–feedback control quanta.

Theorem 2: A reachable linear system is always lattice-
approachable from the origin by control quantization with
rational state–feedback control quanta.

Proof: By standard change of variable and feedback, we
can put the system in Jordan-Brunovsky normal form. That
is made by blocks each of which is of the type:

ẋi = Aixi + uibi,

where

Ai =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
0 · · · · · 0


 , bi =




0
0
...
0
1


 .

This system can be directly integrated and each con-
stant control v̄i applied for time t with initial point
(x̄i,1 . . . , x̄i,ni

) gives rise to the displacement vector (x̄i,2t+
· · ·+ x̄i,ni

tni−1

(ni−1)! + v̄i
tni

ni!
, . . . , x̄i,ni

t+ v̄i
t2

2 , v̄it). Now to get
reachable sets from the origin that are lattices it is enough

Fig. 3. Tessellation of the plane

to choose v̄i and t rational. Moreover, the generated lattice
can be arbitrarily fine. �

IV. THE N–TRAILER AND CHAIN FORM SYSTEMS

We recall that the n–trailer system is formed by a car
with n–trailers. The configuration of the car is identified by
its baricenter position (x, y) ∈ IR2, while the positions of
trailers are given by angles θi between i–th trailer and i+1–
trailer. For the case where the forward velocity of the vehicle
is fixed, there are no trailers, and there are bounds on the
trajectory curvature (this case is sometimes referred to as the
Dubins’ car), the equations are: ẋ = sin(θ), ẏ = cos(θ), θ̇ =
u, with |u| ≤ C.

Proposition 3: The Dubins’ car (car with no trailer) with
constant control quantization is reticulable, approachable and
ε–lattice-approachable only for ε > min{π

4 +
√

2
2C , π

3 +
√

3
3C }.

Proof: The action of a constant control quantum corresponds
either to a rotation along a circle of radius 1/|u| if |u| �= 0 or
to translation along a straight line if u = 0. A quantization U
thus leads to rotations with a finite number of possible radii
and translations with a finite number of possible lengths.
More precisely each constant control quantum acts as an
element of SE(2) on itself, after identifying SE(2) with
the semidirect product of IR by S1. Indicating by (r, θ) an
element of SE(2) (r ∈ IR2, θ ∈ S1) the product rule is the
following: (r1, θ1) ·(r2, θ2) = (r1 +R(θ1)r2, θ1 +θ2), where
R(θ) is the rotation of angle θ. Each action of a constant
control corresponds to a right multiplication by an element
of SE(2).
An equivalent problem is that motivated by rolling of a
polyhedron over a plane, see [12]. If R(U , x0) is a lattice
then it is invariant for the subgroup of SE(2) generated by a
finite number of elements. It is well known that there are only
two possible kinds of invariant lattices that correspond to a
tessellation by squares or triangles, see Figure 3. Therefore
the system is reticulable. On the other side, all generic
choices of a finite number of constant control quanta generate
a dense reachable set from any point, hence the system is
approachable.



Since possible lattices generated by a quantization are those
indicated above, th eproof is finalized. �
The last part of the previous Proposition implies the follow-
ing:

Theorem 3: The n–trailer system is not lattice-
approachable by control quantization with constant control
quanta.
On the other hand, in [13] we proved the following:

Theorem 4: A system in chained-form is lattice-
approachable by control quantization with rational constant
control quanta.
The proof relies on the following steps. 1) Find a natural
base–fiber decomposition. This is immediate for chain–form
systems and can be found by a general method looking for
normal subgroups of D(IRn) generated by Φ(U), see [19].
2) Characterize the reachable set on the base part. 3) Find a
group of generators for the subgroup of actions on the fiber.
4) Characterize the reachable set on the fiber part.
One of the key point is that we can write the group 〈Φ(U)〉
as direct product of two subgroups whose action is additive
on the base and, respectively, on the fiber. More generally
we have the following:

Proposition 4: Consider a control system on IRn. Assume
that, for every control quantization U , the group 〈Φ(U)〉 can
be written as the (semi)direct product of two subgroups each
of which is additive on the corresponding either base or fiber.
If the set of generators give rise to arbitrary small rational
displacements, then the system is lattice–approachable.
It is well known that the n–trailer system can be put in chain
form by a state–feedback, we thus get

Theorem 5: The n–trailer system is lattice-approachable
by control quantization with state–feedback control quanta.

V. TRIANGULAR FORM SYSTEMS

A system is in strictly triangular form if it is written as

ẋ1 =
∑p

i=1 gi
1(x2, . . . , xp)ui

ẋ2 =
∑p

i=1 gi
2(x3, . . . , xp)ui

...
ẋp−1 =

∑p
i=1 gi

p−1(xp)ui

ẋp =
∑p

i=1 gi
pui

(5)

with x = [x1, x2, . . . , xp] ∈ IRn1+n2+···+np = IRn, u =
[u1, ..., up] ∈ IRnp , np = p.
We recall that nilpotent systems are feedback equivalent
to strictly triangular systems with polynomial coefficients
(gi

j) (see [20]) while solvable systems are state equivalent
to strictly triangular form systems with no restriction on
the coefficients gi

j (see [21]). A crucial property of strictly
triangular form systems is that they can be integrated by
quadratures (that is, by simple monovariate integration for-
mulae).

The approach of quantization for strictly triangular form
systems was proposed in [15] where a control quantization
by “loop” control quanta was shown to efficiently solve
the steering problem. By loop control quantum we mean a

control quantum for which the xp variables of the systems
undergo a closed path in IRnp .
A particular choice of loop control quantum is given by
a piecewise–constant control quantum of the type u(t) =
[u1, u2] = u1 ◦ u2 ◦ ū1 ◦ ū2 where ui : [0, τ ] → IRnp

are constant, ūi = −ui for i = 1, 2 and ◦ denotes the
concatenation operation. Hence we let U = Up+1 be a
control quantization by constant control quanta and U�

p =
[U�

p+1,Ustarp+1] the group generated by the loop control
quanta. Notice that if u, u1, u2 ∈ Up+1 then u[u1, u2]ū ∈ U�

p

indeed

u[u1, u2]ū = u ◦ (u1 ◦ u2 ◦ ū1 ◦ ū2)ū = uu
1 ◦ uu

2 ◦ ūu
1 ◦ ūu

2

where uu
1 = u ◦ u1 ◦ ū and ūu

1 = u ◦ ū1 ◦ ū. Thus U�
p is a

normal subgroup. Analogously we let U�
p−1 = [U�

p ,U�
p ] ⊂ U�

p

be a control quantization for which xp and xp−1 undergo a
closed path in IRnp−1+np . We proceed until a flag of control
quantizations U�

p ⊃ U�
p−1 ⊃ · · · ⊃ U�

2 is given such that
U�

i = [U�
i+1,U�

i+1] makes the variables xp, . . . , xi undergo a
closed loop. The following property holds for such a choice
of control quantization.

Proposition 5: For each i = 2, . . . , p+1 we have that U�
i

provides an additive action on IRni−1 .
Thanks to additivity property we have:

Definition 6: To each u ∈ U�
i there correspond a vector

δi ∈ IRni−1 , called quantum displacement, and a net motion
on the xi−1 variables, given by x+

i−1 = xi−1 +δi. We denote
by Ni the cardinality of U�

i , by δj
i , j = 1, . . . , Ni, the

quantum displacements corresponding to the control quantum
uj

i ∈ U�
i and by Qi = {δj

i , uj
i ∈ U�

i } the whole set of
quantum displacements corresponding to controls in U�

i .
Observe that it may happen that the elements of Qi are not
linearly independent. However, if Ni ≥ ni−1, in generic hy-
pothesis, we can assume that span(Q) = IRni−1 . Moreover,
by construction, we have that Ni+1 = Ni(Ni − 1)/2.

Proposition 6: A controllable system in triangular form
with control quantization is approachable by constant control
quanta.
Proof: To prove the proposition it is sufficient to guarantee
that, for each i, there are sufficiently many elements in Qi+1

to span IRni and that the subgroup generated by Qi+1 is a
dense subset of IRni . Therefore, by Lemma 1, it is sufficient
to choose U such that the following are satisfied: 1) Ni >
ni−1 + 1 for all i = 2, . . . , p + 1 2) up to reordering the
indices, δ

ni−1+1
i =

∑ni−1
j=1 ajδ

j
i , aj < 0, aj �∈ lQ, for i =

2, . . . , p + 1. Here condition 1) guarantees that the control
set is sufficiently reach and condition 2) guarantees that the
reachable set is dense. �

Proposition 7: A strictly triangular system, where the
gi’s are polynomials with rational coefficients, is lattice-
approachable with rational constant control quanta.
Proof: Consider a set Up+1 of rational constant con-
trol quanta. Then Qp+1 is given by {∑p

i=1 gi
pui, u =

[u1, . . . , up] ∈ Up+1}. Assume that gi
p ∈ lQ then the group

generated by Qp+1 is a lattice Λp with size S(Λp) that



can be made as small as desired by tuning on the controls
Up+1. (Notice that with integer constant control quanta the
system would be only reticulable with size constrained by
the gi

p.) Consider now U�
p and the corresponding set Qp =

{∫ ∑p
i=1 gi

p−1(xp)ui(t), u(t) ∈ U�
p}. The gi

p−1(xp) are
polynomials with rational coefficients in xp. Then the quan-
tum displacements in Qp are vectors with rational coefficients
and the set of reachable configurations for xp−1 are a lattice
with arbitrary size (depending on the rational constant control
quanta ui). The results for xp−1 extend in analogous way to
xi for all i = 1, . . . , p − 2. �

VI. CONCLUSIONS

In this paper we have considered control encoders that
allow to build a control language by which steering of
complex dynamical systems is efficiently solvable. The
key property of the system this approach relies upon is
lattice-approachability. We have shown that such property
is achieved by different important classes of systems,
depending upon the different encoding schemes that are
allowed. Among the most expressive encoding schemes
considered in this paper are feedback encoders, by which
a very large class of systems is lattice-approachable.
Investigations are under way as to which conditions can
guarantee lattice-approachability of a dynamic system under
different encoding schemes.

Work partially supported by EC grant IST-2001-37170
“RECSYS”.
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