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Abstract—Coordination is a core problem in multi-robot sys-
tems, since it is key to ensuring safety and efficiency. Both cen-
tralized and decentralized solutions have been proposed, however,
most assume perfect communication. This article proposes a cen-
tralized method which removes this assumption, and is suitable
for fleets of robots driven by generic second order dynamics. We
formally prove that (i) safety is guaranteed if communication
errors are limited to delays, and (ii) the probability of unsafety
is bounded by a function of the channel model in networks with
packet loss. The approach exploits knowledge of the network’s
non-idealities to ensure the best possible performance of the fleet.
The method is validated via several experiments with simulated
robots.

Index Terms—Multi-Robot Systems; Planning, Scheduling and
Coordination; Formal Methods in Robotics and Automation.

I. INTRODUCTION

MODELING and accounting for the limitations of com-
munication is extremely important in multi-robot sys-

tems, both for performance and for safety purposes. Wireless
technologies are necessary for robot mobility, however, they
suffer from connectivity loss, spectrum interference and high
latency handover [1]. Fleets of AGVs are particularly impor-
tant in harsh environments such as underground mines, where
it is notoriously problematic to guarantee reliable communica-
tion [2]. Communication standards providing low delays and
packet loss have been proposed for use in automotive [3] and
industrial applications [4]. However, approaches that tackle
these limitations in conjunction with the multi-robot coordi-
nation problem make strong assumptions on paths and on robot
kinodynamics (see, e.g., [5, 6]).

Conversely, the literature on multi-robot coordination over-
looks the realities of the communication infrastructure, typi-
cally focusing on one or more of the following key require-
ments of real-world applications [7]: the robots in the fleet
are heterogeneous and subject to non-trivial kinodynamic con-
straints; goals become known and are posted asynchronously
(e.g., by a separate and pre-existing workflow management
system); the need to discretize the environment and/or robot
paths should be minimized, as this raises the cost of de-
ployment; it should be possible to regulate the motions of
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robots through shared regions according to application-specific
priorities; methods should scale to dozens of robots and large
environments; and coordination should guarantee safety (no
collisions) and liveness of the fleet (robots will eventually
reach their goals).

To the best of our knowledge, no existing approach adheres
to the requirements above while accounting for communication
limitations. Table I summarizes how selected approaches1

to multi-robot coordination relate to these requirements and
to communication-related aspects. The specific limitations of
existing approaches (see detailed notes in Table I) reveal the
reason why centralized decision making structures still dom-
inate in industrial practice: while distributed or decentralized
solutions are by nature relatively robust to communication
failures [9, 11–15], centralized methods deliver predictable
fleet behavior, provable safety and liveness, and high perfor-
mance [8, 10, 16–18].

In this paper, we explore the level of safety that can be
guaranteed with knowledge of a model of the communication
channel. Our algorithm builds on a supervisory control method
proposed in [18], where precedences for potentially colliding
pairs of robots are updated continuously, taking into account
robot kinodynamics. While maintaining its good properties
(see Table I), we extend [18] in the following ways: (i) the
assumption of perfect communication (necessary for safety
in [18]) is removed; (ii) the probability of robots not respecting
a precedence is guaranteed to be below a desired threshold
(knowing an upper-bound of the packet loss probability and
the maximum transmission delay); (iii) we prove that this
threshold is zero if network disturbances are limited to delays;
(iv) we provide a set of rules to design the network to ensure a
desired level of safety, avoiding network congestion. All prop-
erties are validated formally, and an experimental evaluation
highlights the behavior of the algorithm in realistically-sized
fleets, with typical channel models. Note that properties (iii)
and (iv) provide a means to design the communication infras-
tructure considering the requirements of the fleet. To the best
of our knowledge, this issue has never before been studied in
the multi-robot research area.

II. NOTATION AND PRELIMINARIES

We first introduce key concepts and a high-level description
of the algorithm in [18] as a basis for our approach. Hence,
for now, perfect communication is assumed. This assumption

1A comprehensive overview of multi-robot coordination methods is beyond
the scope of this paper, and the interested reader is referred to [8, 9]. We also
exclude approaches for solving the task allocation and/or motion planning
problem jointly with coordination, e.g., Multi-Agent Path Finding (MAPF)
methods; the problem at hand in these cases is intractable [10], hence
approaches tend to adhere to few of the requirements listed above.



Centralized coordination Decentralized or distributed coord. Reactive Distr. MPC(n)

Feature / Reference [16] [8](e) [17] [18] [10](e) [11](e) [12](e) [13] [9](e) [14] [15]
Heterogeneous fleets 3(a) 3 3 3 3(b) 3(a) 3(a) 5 3 3(b) 3(b)

Avoid environment or path discretization 5 3 3 3 3 5 5 5 3 3 3
Generic motion planners 5(c) 3 3 3 3 5(c) 5(c) 5(d) 3 -(k) 3
Kinodynamic constraints 5 3 3 3 3 5 5 3 3 3 3
Asynchronous goal posting 3 5 3 3 5 5 3 3 3 3 3
Avoiding static priorities 3 3 3 3 3 3 3 5 3 3 3(l)

Computation time (coordination) n.s. O(C)(j) O(eR) O(C)(j) O(C)(j) O(R) O(SR) O(SR) O(PRS2) O(O) n.s.
Scalability (# robots tested in sim.) n.s. 12 10 30 50 9 100 10 32 100 6
Safe with delays in trajectory execution 5 5 5(f) 3 3 3 3 3 5 -(k) 5(m)

Safe with unreliable communication 5 5 5(f) 5 5 5(i) 5(g) 5(g) 5(h) 5(k) 5(m)

Safe with clock de-synchronization 5 5 5 3 5 5 3 3 3 5(k) 5
Detailed commun. requirements for safety 5 5 5 5 5 5 5 5 5(p) 5 5
Provable liveness with ideal commun. 3 3 3 3 3 3 3 3 5 5 5

a: Assuming robots fit within allotted spatial resources. b: Assuming disc-shaped robots. c: Graph search w/o motion primitives. d: Graph search w/ motion
primitives. e: Tested only in simulation. f: Only for limited, bounded delays. g: No formal relationship between communications and speed, sensing neighbor
states, or sensing distance provided; unsuccessful sensing/occlusion of neighbors not handled. h: Assumed that robots can detect dropped messages; collisions
may occur due to occlusions. i: Communication radius required to be greater than a specific parameter of the graph. j: Limited to critical section computation.
k: No path is required, but assumes perfect reciprocal visibility and does not ensure absence of collisions. l: Assumes static priorities. m: Assumes environment
free of static obstacles. n: Model Predictive Control. n.s.: Not specified. R: # robots. C: # pairwise critical sections (Section II). S: # path segments. P: #
possible equivalent plans. O: # obstacles.

TABLE I: Classification of related work according to key requirements of real-world applications [7].

will be relaxed in Sections III and IV, while preserving safety
with a computable probability of violation.

Paths and spatial envelopes. Consider a fleet of n (possibly
heterogeneous) robots sharing an environment W ⊂ R3. We
use (·)i to indicate that variable (·) refers to robot i. Let
Qi be the robot’s configuration space, and Ri(q) ⊂ R3 its
collision space when in configuration q ∈ Qi. Consider a set of
obstacles O ⊂ W , so that Qfree

i = {q ∈ Qi : Ri(q) ∩O = ∅}
is the set of feasible (i.e., collision free) configurations. Let
pi : [0, 1] → Qi be a path in the configuration space
parametrized using the arc length σ ∈ [0, 1]. Then, path
planning is the problem of finding a (possible executable)
path pi(σ) ∈ Qfree

i from one feasible starting configuration
qstart to a final one qgoal ∈ Qfree

i , such that qstart = pi(0)
and qgoal = pi(1), typically subject to a set of kinematic
constrains fi(q, q̇) ≤ 0 (Fig. 1.a). Furthermore, for each pi,
the spatial envelope Ei is defined as a set of constraints such
that ∪σ∈[0,1]Ri(pi(σ)) ⊆ Ei. If the equality holds (which we
assume from now on), a spatial envelope is the sweep of
the robot’s footprint along its path (Fig. 1.b). Henceforth, let
E{σ

′,σ′′}
i = ∪σ∈[σ′,σ′′]Ri(pi(σ)).
Note that Ei ∩ O = ∅ ∀i ∈ {1, . . . , n} by construction,

that is, collisions between robots and the set of obstacles O
are avoided via path planning. Also, we assume that robots
are provided with a low-level safety system for detecting
and avoiding obstacles that are not other robots and are not
included in O. The focus of the fleet controller proposed in
this paper is therefore to avoid inter-robot collisions, not other
unforeseen obstacles.

Critical sections. Given a pair of paths pi and pj , collisions
may happen only in the set {qi ∈ Qi, qj ∈ Qj | Ri(qi) ∩
Ej 6= ∅ ∨ Rj(qj) ∩ Ei 6= ∅}. In particular, let Cij be the
decomposition of this set into its largest contiguous subsets,
each of which is called a critical section (Fig. 1.c and 1.d).
For each critical section C ∈ Cij , let `Ci ∈ [0, 1] be the highest
value of σi before robot i enters C; similarly, let uCi ∈ [0, 1]
be the lowest value of σi after robot i exits C. Considering

two temporal profiles σi(t) and σj(t), if there exists a time t′

such that Ri(pi(σi(t
′)))∩Rj(pj(σj(t′))) 6= ∅ (i.e., the robots

collide while laying in their envelopes), then `Ci < σi(t
′) <

uCi and `Cj < σj(t
′) < uCj . Hence, given a set of paths P ,

the coordination problem is the problem of synthesizing, for
each pair (i, j 6= i) such that Ei ∩ Ej 6= ∅, a constraint on
temporal profiles σi(t) and σj(t) such that Ri(pi(σi(t

′))) ∩
Rj(pj(σj(t

′))) = ∅ for all t′. We assume that, when idle, a
robot i is placed in a parking position defined by a path pi of
length one. This entails that idle robots are considered in the
computation of critical sections.

Precedence constraints and critical points. Precedence con-
straints are relations among the temporal profiles of two robots.
A precedence constraint is a pair 〈mi,mj〉, with mi,mj ∈
[0, 1], stating that robot i is not allowed to navigate beyond
arc length mi along its path until robot j has reached arc length
mj along its path — formally, σj(t) < mj ⇒ σi(t) < mi.
As explained in [18], mi changes over time to reflect updated
precedences and to allow for robots to “follow each other”
through critical sections. In general, collisions are avoided if,
for each C ∈ Cij and for each t, σi(t) and σj(t) adhere to the
constraint 〈mi(t), u

C
j 〉, that is, robot i yields for robot j at an

appropriately computed arc length mi(t) along its reference
path; this arc length depends on whether robot j has exited
critical section C (that is, reached arc length uCj ) and on its
current progress through the critical section:

mi(t) =

{
max

{
`Ci , rij(t)

}
if σj(t) ≤ uCj

1 otherwise
(1)

where rij(t) is defined as

supσ

{
σ ∈ [σi(t), u

C
i ] : E

{σi(t),σ}
i ∩ E{σj(t),u

C
j }

j = ∅
}
. (2)

Let T be the set of precedence constraints regulating the
motion of the robots in the fleet. A constraint

〈
mi, u

C
j

〉
∈ T

defines unambiguously which robot should yield, where it
should yield, and until when yielding is necessary for critical
section C. We use (i <C j) ∈ T to indicate that robot j



Fig. 1: Preliminary concepts.

has precedence over robot i at a critical section C. A key
feature of the approach is that T can be updated while robots
are in motion. In particular, any heuristic function can be
used to determine the precedence constraints in T , as long as
a conservative model of each robot’s dynamics is employed
to filter out ordering decisions that may not be physically
realizable (as detailed in [18]).

Let Ti(t) = {mi | ∃j :
〈
mi, u

C
j

〉
∈ T (t)} be the set of all

the arc lengths at which robot i may be required to yield. We
define the critical point σ̄i(t) of robot i at time t as the value
of σ corresponding to the last reachable configuration along
pi which adheres to the set of constraints T (t), i.e.,

σ̄i(t) =

 arg min
mi∈Ti(t)

mi if Ti(t) 6= ∅,

1 otherwise.
(3)

Then, coordination is the problem of computing and updating
periodically the set of critical points Σ̄ = {σ̄1, . . . , σ̄n}, such
that collisions do not occur. Algorithm 1 shows the main body
of the supervisory control loop proposed in [18].

Algorithm 1: Coordination at time t.
1 sample states2;
2 if new goals have been posted then
3 update the set of paths P (using appropriate planners);
4 update the set C of critical sections;

5 revise the set T (t) of precedence constraints;
6 compute the set of critical points Σ̄(t);
7 communicate changed critical points;
8 sleep until control period Tc has elapsed;

Under the assumption of a perfect communication (mes-
sages are not delayed or lost), and conservative models of the
robots’ dynamics, the algorithm ensures that collisions never
happen (see [18] for a formal proof). If the assumptions on
the channel are removed, then safety no longer holds.

Consider, for instance, a change in the order of access to
a critical section C ∈ Cij between two consecutive cycles of
coordination. Let Tc be the control period of the coordinator,
and assume that robot j has precedence over robot i at C at
time t − Tc. Hence, σ̄i(t − Tc) = `Ci and σ̄j(t − Tc) > `Cj .

2Assuming an ideal communication network, current robot states are
available via message passing without delays, message loss or disorder.

If robot j has not already entered C, i.e., σj(t − Tc) < `Cj ,
and j can stop before `Cj according to its dynamic model,
then the coordinator may decide to reverse precedence, so that
σ̄j(t) = `Cj . In this case, if the message to j containing the
new critical point σ̄j(t) is delayed or lost, then a collision
may happen. The same issue may occur whenever i is starting
a new path while j is already driving and (j <C i) ∈ T
for some C ∈ Cij . This undesired situation can occur since
the coordination algorithm does not explicitly reason about
the non-idealities of the network. The following sections will
show how prior knowledge about the channel can be included
in the algorithm so that safety is preserved.

III. PROBLEM FORMULATION

Given a set of paths P = {p1, . . . ,pn}, we aim to define
an algorithm to coordinate the fleet via message-passing. The
boundary conditions of the multi-robot system are summarized
as follows. We assume a duplex point-to-point communication
via wireless network (subject to delays and/or message loss)
between the coordinator and each agent. Message order can be
reconstructed [19] via time-stamps, and message replicas can
be filtered out (whether these are sent to increase probability
of message reception, or due to multi-path phenomena). Each
robot i has a control period of Ti seconds (robots may have
different control periods) and sends to the coordinator an
update on its state si(ti) sampled within its control period
of (clock-driven system). The state report contains the tuple
(qi(ti), q̇i(ti), q̈i(ti)), as well as the last critical point σ̄i
received by the robot. We also assume that the coordinator
receives at least one update of each agent’s state every Tc
seconds, and that Tc ≥ maxi∈1,...,nTi. Note that robots are
not required to be synchronized on a common Coordinated
Universal Time (UTC).

A. Channel model

Wireless networks are susceptible to a number of factors
that may corrupt packets in transit such as radio frequency
interference (RFI), radio signals that are too weak due to
distance or multi-path fading, faulty networking hardware,
faulty network drivers, or network congestion. Different levels
of network-induced imperfections may affect the communica-
tion such as time delays, packet loss and disorder, or clock
de-synchronization [20]. We model the network considering
three parameters: the maximum bandwidth, the packet loss
probability, and the maximum transmission delay.

Let B(t) be the bandwidth of the channel at time t, and
let BM be the maximum bandwidth (bit/s). Packet loss occurs
when one or more packets of data traveling across a network
fail to reach their destination. It is measured as the percentage
of packets lost with respect to packets sent. We model this
phenomenon using a Bernoulli distribution, and assuming the
upper-bound of the packet loss probability η to be independent
from the identities and locations of the source and destination
[20]. Hence, assuming BM =∞ (no congestion), the minimal
number of replicas (messages containing the same informa-



tion) required for a successful delivery with probability almost
p̄ can be computed as

N ≥
⌈

log (1− p̄)
log η

⌉
. (4)

Let τ chmax represent the maximum transmission delay (sec), that
is, the upper-bound of time elapsed between a send event and
the related receive event. This delay is usually the sum of net-
work access delay (i.e., the time required by a queued network
packet to be sent out) and the transmission delay through the
network medium. While the first is related to the channel’s
bandwidth, the second is intrinsic of the transmission, and
the longer the distance, the longer the delay under the same
conditions (bandwidth, protocols, etc.). Also, let τ chi (t) ≤ τ ch
be its current realization in a point-to-point communication
from/to robot i (Fig. 2). As in [21], we assume τ chmax to be
constant, symmetric and independent from the source and the
destination. Due to congestion, the packet loss probability and
the transmission delay may not be independent from the load
of the channel. However, for our field of application, it is
reasonable to assume the network to be dedicated for fleet
management3. Hence, given the number of robots, the required
bandwidth can be explicitly computed to design the network
to avoid congestion (see Section VI). Under this assumption,
we assume η and τ chmax to be uncorrelated with B(t).

B. The coordination problem

At each control cycle Tc, the coordinator should decide
a correct (i.e., collision free) and feasible (i.e., physically
executable) set of critical points Σ̄, according to its current
view. In doing so, to preserve safety, it should reason about
delays affecting the control system. For each robot, we define
the maximum delay between sensing and actuation τsai =
τsci +τ ca

′

i +τa
′a

i +τai whose components are defined as follows
(see also Fig. 2).

Fig. 2: Delays of a point-to-point communication between the
coordinator and each robot i.

τsci is the time elapsed between robot i’s state being trans-
mitted and read by the coordinator (sensing delay); assuming
robots to be asynchronous, and at least one updated set
{s1, . . . , sn} to be available within each Tc, then τsci =
Tc + τ ch + Ti in the worst case. τ ca

′

i is the time required
for a critical point σ̄i to be received by robot i; assuming
the communication protocol requires to send a burst of M

3so it is not necessary to model the network queue as a Markov process.

packets for each σ̄i, and letting Tp be the period between two
consecutive packet deliveries, then τ ca

′

i = τ chi + (M − 1)Tp;
since reasonably (M − 1)Tp � Tc, we assume τsci + τ ca

′

i =
Tc+2τ ch+Ti in the worst case. τa

′a
i +τai is the delay between

when robot i receives a message and the corresponding action
is executed (e.g., to yield); this is a function of Ti, the message
queue length Qi, and the robot control system; if Qi = 1 as
reasonable, then τa

′a
i = Ti in the worst case. We also assume

no actuation delay, τai = 0.
Let τbreaki be the maximum breaking time for robot i,

which depends on its dynamics and maximum speed. For
each C ∈ Cij(t), we can assess the feasibility of changing
the priority of access to C by looking into the future. In the
worst case, a command to yield sent by the coordinator at
time t will make the robot stop at time t + ∆stop

i , where
∆stop
i = τsai +τbreaki . Hence, if (i <C j) ∈ T (t−Tc), and the

coordinator has received the state of robots i and j at times ti
and tj , it can decide to change the precedence of the two robots
to (j <C i) ∈ T (t) iff σj(tj + ∆stop

j ) ≤ `Cj (i.e. the robot
which loses the priority can effectively stop before entering
the critical section). Algorithm 2 implements this feasibility
check, given a conservative dynamic model gi and maximum
acceleration/deceleration uacci , udeci of the robot. Specifically,

Algorithm 2: The canStop function.
Input: (qi(ti), q̇i(ti), q̈i(ti)) last known state; σ̄i(t− Tc) last

communicated critical point (or −1 if none was communicated);
gi(qi, q̇i, q̈i, ui, t) dynamic model of the robot; uacc/deci

maximal acceleration/deceleration; ∆stop
i look-ahead; `Ci

stopping point at critical section C; pi current path; ∆t
integration time step.

Output: true iff robot i can stop before entering C
1 if σ̄i(t− Tc) 6= −1 ∧ σ̄i(t− Tc) ≤ `Ci then return true ;
2 t← ti;
3 while t < ti + ∆stop

i do
4 t′ ← t+ ∆t;
5 (qi(t

′), q̇i(t′), q̈i(t′))← gi(qi(t), q̇i(t), q̈i(t), u
acc
i , t′);

6 t← t′;

7 while q̇i(t) > 0 do
8 t′ ← t+ ∆t;
9 (qi(t

′), q̇i(t′), q̈i(t′))← gi(qi(t), q̇i(t), q̈i(t), u
dec
i , t′);

10 t← t′;

11 return p−1
i (qi(t)) ≤ `Ci ;

the robot is clearly capable of stopping (line 1) if it was already
constrained to stop at a critical point preceding the beginning
of the critical section C at the previous control period (i.e., at
time t−Tc). If this is not the case, the robot’s dynamic model
gi is used to compute whether it can achieve zero velocity
before the critical point (lines 3–10). In doing so, it assumes
that the robot has progressed with maximal acceleration from
its last reported state (qi(ti), q̇i(ti), q̈i(ti)) for a period of
∆stop
i (lines 3–6). Note that a robot state report with q̇(ti) = 0

is not sufficient to conclude that the robot can stop moving,
as this state was sampled at time ti and the robot may have
started moving in the meantime.

IV. THE COORDINATION ALGORITHM

In (1) and (2), we assume that rij (the furthest σi the yield-
ing robot is allowed to reach) is computed with knowledge
of the current progress σi(t), σj(t) of the two robots. Due to



possible delays in communication, we must now rely on σi(ti)
and σj(tj), where t − τsci ≤ ti < t and t − τscj ≤ tj < t.
Hence,

mi(t) =

{
max

{
`Ci , rij(t)

}
if σj(tj) ≤ uCj

1 otherwise
(5)

and rij(t) is computed as

supσ

{
σ ∈ [σi(ti), u

C
i ] : E

{σi(ti),σ}
i ∩ E{σj(tj),u

C
j }

j = ∅
}
. (6)

With this revised formulation of precedence constraints, we
can now define an algorithm for coordination which guarantees
correct behavior of the fleet in the presence of non-ideal
communication channels. Algorithm 3 is based on the principle
of Algorithm 1: at each Tc, the states si of all robots are
updated with the last report received, each at a potentially
different time ti (line 4); paths are computed for idle robots for
which a new goal has been posted (lines 5–9); critical sections
are updated (lines 10–11); and constraints are revised (lines
12–13) and communicated to the robots (line 14). At the core
of the coordination algorithm is a call to the function revise,
detailed in Algorithm 4. For each critical section, this function
decides the order of traversal, according to the current state
of the involved robots (lines 2–8), using the aforementioned
canStop function (see Algorithm 2). Then, it updates the set
of precedence constraints T (t) according to (5) and (6) (lines
9–10).

Algorithm 3: The coordination algorithm.
Input: G set of goals posted for robots {1, . . . , n}.

1 P ← ∅, C ← ∅, T ← ∅, Σ̄← {−1}n;
2 while true do
3 t← getCurrentTime();
4 for i ∈ [1, . . . , n] do si(ti)← getStatusMsg(i) ;
5 for i : gi ∈ G ∧ isIdle(si(ti)) do
6 G ← G \ {gi};
7 remove robot i from P , Σ̄(t− Tc) and C;
8 pi ← computePath(si(ti), gi);
9 P ← P ∪ {pi};

10 for
(
pi,pj 6=i

)
∈ P2 do

11 C ← C ∪ getIntersections(Ei(pi), Ej(pj));

12 T (t)← revise(P, C, T (t−Tc), Σ̄(t−Tc), {s1(t1), . . . , sn(tn)});
13 Σ̄(t)← ∀i compute σ̄i as in (3) or -1 if i is idle;
14 for i ∈ [1, . . . , n] do send(i, σ̄i(t)) ;
15 ∆t = getCurrentTime()− t;
16 if ∆t < Tc then sleep(∆t) ;

In particular, for each critical section C, if neither of the
two involved robots is known to have passed the critical
section’s upper bound (line 3), and both of them can achieve
zero velocity before entering it (line 4), then an ordering is
heuristically4 decided. If one of the two robots has entered
or cannot stop before entering C (lines 6–7), then that robot
is given precedence. If this is the case for both robots, the
previously decided ordering is re-imposed (line 8). Note that
an idle robot involved in a critical section is necessarily already
inside it, hence, will always have precedence over the other
robot.

4Note that, as in [18], any heuristic can be chosen here.

Algorithm 4: The revise function.
Input: P current set of paths; C (possibly empty) set of pairwise

critical sections; T (t− Tc) (possibly empty) previous set of
precedence constraints; Σ̄(t− Tc) previous set of critical
points; si(ti) last received robot state, including σi(ti).

Output: Trev set of revised precedence constraints.
1 Trev ← ∅;
2 for Cij ∈ C, C ∈ Cij do
3 if σi(ti) < uCi ∧ σj(tj) < uCj then
4 if σi(ti + ∆stop

i ) ≤ `Ci ∧ σj(tj + ∆stop
j ) ≤ `Cj then

5 (h <C k)← compute ordering with a heuristic;
6 else if σi(ti + ∆stop

i ) > `Ci ∧ σj(tj + ∆stop
j ) ≤ `Cj then

(h <C k)← (j <C i) ;
7 else if σi(ti + ∆stop

i ) ≤ `Ci ∧ σj(tj + ∆stop
j ) > `Cj then

(h <C k)← (i <C j) ;
8 else (h <C k)← get previous ordering from T ;

9 〈mh, uCk 〉 ← compute as in (5) and (6);
10 Trev ← Trev ∪ {〈mh, uCk 〉};
11 return Trev;

V. SAFETY ANALYSIS

In this analysis, we make the following assumptions:
A1. Paths do not start or end in critical sections.
A2. Robots always stay within their envelopes.
A3. The channel delay τ chi is bounded.
A1 and A2 are made to simplify the analysis — the algorithm
can be easily modified to include these specific cases. A3 is a
reasonable assumption to make on any real network. We start
by considering η = 0 (no packet loss), while the case of η > 0
is considered in Section VI.

Lemma 1. Algorithms 4 and 2 satisfy the preposition: if T (t′)
is a set of feasible constraints, then T (t′′) is a set of feasible
constraints ∀t′′ > t′.

Proof. The proof is given by induction. T (0) is feasible
because robots do not move if Σ̄ = {−1}n and we assume
A1. Thanks to Algorithm 2, precedences can be changed only
if the yielding robot i can effectively stop before `Ci .

Basic step: T (0) feasible ⇒ T (Tc) feasible. The proof
is given by contradiction: note that T (Tc) is unfeasible iff
∃〈mi, u

C
j 〉 ∈ T (Tc) such that mi(Tc) < σ̄i(0) and, given

tj ∈ [0, Tc), i cannot stop at

mi(Tc) =

{
max(`Ci , rij(Tc)) if σj(tj) ≤ uCj (c1)

1 otherwise (c2)

Condition (c1) can happen only in the following cases:
a. (i <C j) ∈ T (0) ∧ (i <C j) ∈ T (Tc), i.e., the previously-

decided order is held.
b. (j <C i) ∈ T (0) ∧ (i <C j) ∈ T (Tc), i.e., the previously-

decided order is changed.
c. C /∈ C(0)∧C ∈ C(Tc), i.e., the order is decided for the first

time.
However, feasibility holds for all of them: a. Since σj is
monotone increasing, then according to (6) max(`Ci , rij(0)) ≤
max(`Ci , rij(Tc)). But then, mi(Tc) is feasible since σ̄i(0) ≤
mi(0) ≤ mi(Tc). b. 〈mj , u

C
i 〉 ∈ T (0), and according to

A1, mj(0) = `Cj . Moreover, due to (3), σ̄j(0) ≤ `Cj , so at
time Tc robot j can stop. Hence, according to Algorithm 4,
(i <C j) ∈ T (Tc) iff σi(Tc + ∆stop

i ) ≤ `Ci , i.e., iff the



constraint is feasible. c. Robot j is assigned to a new goal at
time Tc, so it is assumed to be not in motion (idle). Then,
according to A1, (j <C i) ∈ T (Tc) is feasible, so as in the
previous case, (i <C j) ∈ T (Tc) may be decided iff feasibility
holds.

In condition (c2), by definition, σ̄i(t) ∈ [0, 1], and since i
can stop at σ̄i(0) ≤ 1, then σ̄i(Tc) = 1 is feasible. Hence,
@〈mi, u

C
j 〉 ∈ T (Tc) that is unfeasible if T (0) is feasible,

proving the preposition in the basic step.
Inductive step: Note that the previous proof holds for every

consecutive pair of T (t′) and T (t′ + Tc), if T (t′) is feasible.
Then, T (0) feasible ⇒ T (Tc) feasible ⇒ · · · ⇒ T (kTc)
feasible, ∀k ∈ N+.

As a result, we can prove that:

Theorem 1 (Feasibility). The set Σ̄(t) is feasible.

Proof. According to (3), T (t) feasible implies Σ̄(t) feasible.
Hence, the proof follows from Lemma 1.

We use this result to prove the correctness of Algorithm 3:

Theorem 2 (Correctness). The set Σ̄(t) is collision free.

Proof. A collision happens iff ∃t such that Ri(pi(σi(t))) ∩
Rj(pj(σj(t))) 6= ∅. According to A2, this may happen iff
both robots are inside a critical section. Hence, correctness
holds if, for every C ∈ Cij(t), Algorithm 4 ensures collision-
free access to C (c1), and (5) and (6) ensure collision-free
progress through C (c2).

Case c1. If no goals are posted at time 0, then robots are all
idle and there are no critical sections due to A1. This is a safe
starting configuration. Let t0 be the time such that gi ∈ G(t0)
is assigned to robot i. Let the set of robots for which ∃C ∈
Cij(t0) be partitioned in the sets D containing the robots which
are already driving, and I containing the robots which are still
idle. We can prove that Ri(pi(σi(t0)))∩Rj(pj(σj(t0))) = ∅,
∀j ∈ I as follows. According to Algorithm 2, σi(t0+∆stop

i ) ≤
`Ci (robot i can stop) and robot j is idle, so, Algorithm 4 will
decide for 〈`Ci , uCj 〉 according to (5) and (6). Note that, since
i is still not moving, feasibility holds at time t0. Moreover, (3)
will ensure σ̄i(t) ≤ `Ci ∀t as long as j remains idle. Finally,
due to A1, we can assume that j would not be assigned a goal
∀t ≥ t0, preventing j to collide with robot i. We can also prove
that Ri(pi(σi(t0)))∩Rj(pj(σj(t0))) = ∅, ∀j ∈ D, as follows.
According to A1, we can assume Ri(pi(0)) ∩ Ej(t0) = ∅.
Note that at time t0 there exists at least a feasible and correct
ordering (i <C j) ∈ T (t0), ∀C ∈ Cij(t0). Also, Algorithm 4
may decide for (j <C i) ∈ T (t0) iff σj(t0 + ∆stop

j ) ≤ `Cj .
Hence correctness holds: due to feasibility, mutual access to
the critical section is collision-free, as either σ̄i(t0) ≤ `Ci ⇒
σi(t0 + Tc) ≤ `Ci , or σ̄j(t0) ≤ `Cj ⇒ σj(t0 + Tc) ≤ `Cj . Also,
at time t > t0 the previously decided ordering can be changed
iff the yielding robot can stop, so correctness holds even for
t > t0.

Case c2. Let (i <C j) ∈ T (t) be the order of accessing
a critical section C ∈ Cij(t). Assume that the last received
status messages reports that the robots are both inside C. It is
easy to show that safety is preserved if the status message of
either robot is delayed. Let σi(ti) and σi(t) be the last notified
and the current value of σ of robot i respectively (the same

for j). Since σ is a monotone increasing function, then for any
interval [σ′

i, σ
′′
i ], σ′′

i > σ′
i, if E{σ

′
i,σ

′′
i }

i ∩ E{σj(tj),u
C
j }

j = ∅, then

E{σ
′
i,σ

′′
i }

i ∩ E{σj(t),u
C
j }

j = ∅, that is, a delay of the leading robot
preserves safety. Moreover, given σj(tj), (6) will give the same
rij(t), ∀σi : `Ci < σi < uCi , that is, the same conclusion holds
in case of a delay of the waiting robot.

The proposed algorithm thus maintains a key feature of [18]
even in the case of arbitrary (bounded) channel delays:

Corollary 1. For any robot i in the fleet, any realization of
σi(t) that adheres to Σ̄(t) is correct. This includes unforeseen
stops or changes in velocity due to low-level control and/or
safety mechanisms.

VI. THE COMMUNICATION PROTOCOL

In order to minimize the possibility of robots colliding
due to packet loss (η ≥ 0), we could use a protocol with
message acknowledgment. Although this would ensure the
deterministic outcome of message sending, a single non-
acknowledged message could invalidate the consistency of
the set Σ̄(t). Thus, we would have to modify the algorithm
in a non-trivial (and potentially computationally expensive)
manner in order to properly handle such situations. We adopt
here an approach which preserves the relative simplicity of
the algorithm, namely, an unreliable (UDP-like) protocol.
Specifically, given a model of the channel, this can be used to
compute the smallest N such that a burst of N equal messages
will result in a probability of successful delivery that is greater
than a threshold p̄.

Assume that 〈mi, u
C
j 〉 ∈ T (t− Tc), 〈mj , u

C
i 〉 ∈ T (t), and

that σ̄j(t) = mj . According to (4), in the worst case,
1. a correct change of priority may happen with probability
p̄2 (i.e., both σ̄i(t) and σ̄j(t) are successfully delivered);

2. the probability of maintaining the old constraint is equal to
(1− p̄)2 (i.e., both σ̄i(t) and σ̄j(t) are lost);

3. a collision may happen with probability p̄(1− p̄) (i.e., σ̄i(t)
is successfully delivered while σ̄j(t) is lost);

4. a temporary starvation may happen with probability p̄(1−p̄)
(i.e., σ̄i(t) is lost while σ̄j(t) is successfully delivered).

We consider a constraint to be violated whenever a communi-
cation fails to happen as it would without packet loss; hence,
the probability of constraint violation is p̄u = 1 − p̄2. Note
that constraint violations do not necessarily lead to collisions.

Bandwidth. As mentioned in Section III-A, congestion can
be avoided by explicitly considering the maximum bandwidth
required for successful coordination. Specifically, at each time
t the required bandwidth is given by:

B(t) =

nd(t)∑
i=1

Ni
bi
Ti

+Nc(t)N
bc
Tc
,

where Ni is the number of replicas sent by robot i every Ti;
bi is the number of bits of each si message; bc is the number
of bits of each σ̄i message; Nc(t) is the number of σ̄i(t) that
are updated at time t; and nd(t) is the number of driving
robots at time t. Then, the maximum load of the network can
be computed assuming Nc(t) = nd(t) = n (i.e., all robots
are driving and all the critical points are updated). However,



the subset of Σ̄(t) that is effectively communicated may be
smaller (since only the changes with respect to Σ̄(t− Tc) are
really informative), and the effective load may be lower.

Let γ ∈ [0, 1] be a desired percentage of bandwidth
dedicated to coordination5. Assuming (bi, Ti, Ni) to be equal
for each robot, congestion is avoided if

n

(
Ni

bi
Ti

+N
bc
Tc

)
≤ γBM . (7)

We can use (7) to relate the number of robots that can be co-
ordinated to the maximum bandwidth BM , with a probability
of constraint violation lower than a the given threshold. The
goal is then to define a function to compute the maximum
n assuming as parameters the maximum bandwidth BM ,
the control periods Ti, Tc, the upper bound of packet loss
probability η, and a desired threshold for the probability of
constraint violation. For this purpose, we define α ∈ R+ such
that Tc = αTi; hence, Ni = dN/αe is the minimum number of
replicas needed to ensure that at least one si will be received
from each robot at each Tc with probability almost p̄. Then,
from (7), we have that:

nmax =

⌊
BMTi
bi + bc

⌋
, hence n(α, γ,N) = γ

α

N
nmax.

Decreasing α, Tc, and ∆stop
i allows to react faster to changes,

confirming the intuitive fact that a fleet that reacts faster to
changes also imposes a higher average load on the network. α
can be used by the designer to tune this trade-off as desired,
possibly defining an optimization problem.

Controller Synthesis. The following process can be used to
design a fleet controller that accounts for a given channel
model (BM , γ, η, Ti, α): (i) choose the desired upper-bound
p̄u on the probability of constraint violation; (ii) compute p̄
so that p̄u ≤ 1 − p̄2; (iii) compute the minimal number of
replicas needed to ensure a probability of receiving at least
one replica greater than p̄ as N ≥ dlog (1− p̄)/ log ηe; (iv) set
Tc = αTi and Ni = dN/αe. Then, the maximal number n of
robots which can be coordinated using a UDP-like protocol is

given by n = γ
Tc
N

BM
bi + bc

.

VII. EXPERIMENTAL VALIDATION

The implementation of Algorithm 3 evaluated here main-
tains the original good properties of the one proposed in [18],
hence fulfills all requirements stated in Table I. The compu-
tational overhead of the approach remains unchanged, as the
scalability analyses of [18] remain valid. Hence, the simula-
tions presented here focus on communication, and, in particu-
lar, aim to confirm the formal properties stated in the previous
theoretical discussion. In all experiments, Algorithm 3 was run
on an Intel Core i7-5500U CPU @ 2.40GHz × 4 processor.
The algorithm is implemented in Java and is available as open
source [22].

Setup. The simulator back-end presented in [18] was used for
all tests. Uniformly distributed random variables were used
for injecting different realizations of τ chi (t) ∈

[
τ chmin, τ

ch
max

]
.

For simplicity, simulations considered homogeneous robots

5Usually, γ < 1 to reserve bandwidth for synchronization or QoS.

Test 1 Test 2
Environment empty space Map 1 and 2

Motion planning off-line online
Channel model:

η 0 0.2
τchmax [0.1, 2] sec 2 sec
τchmin τchmax 0.01 sec

In all tests: Tc = 1s, Ti = 0.03s, vmax
i = ±4m/s, umax

i = ±3m/s2.

TABLE II: Simulation parameters.

(although Algorithm 3 is designed for general heterogeneous
platforms). Paths were computed using a sampling-based mo-
tion planner (RRTConnect). Robot motion synthesis and the
conservative model gi used in Algorithm 2 were both based on
a trapezoidal velocity profile with maximum velocity vmax

i and
constant acceleration/deceleration uacci = udeci = umax

i . Goals
were dispatched asynchronously to robots, requiring them to
navigate 10 times from their current location to the opposite
side of the environment and back. Deadlocks were handled by
re-planning, via a prioritized planning method [23]. Simulation
parameters are listed in Table II, and tests were repeated 10
times to obtain statistically significant results. Moments of all
tests are shown in the video attachment.

Evaluation metrics. Given the probability p̄u (and so, the
maximum p̄ =

√
1− p̄u), the probability of the system being

in an unsafe state is upper bounded by p̄(1 − p̄) (i.e., the
message to the newly yielding robot is lost, not the other). This
situation involves a pair of events, and is difficult to measure
in a distributed setting. Conversely, if a collision happens,
then it is certain that the previous pair of events has indeed
occurred. Hence, defining as collision rate the ratio between
the number of collisions observed and the number of critical
sections traversed, we expect the collision rate to be less than
p̄(1− p̄). It should be remarked that the formal proof of this is
given in the previous sections; this experimental evaluation is
intended to support the theoretical findings. Note also that the
collision rate tends to p̄(1− p̄) as the number of observations
approaches infinity.

A. Test 1: Injecting channel delays (τ chi > 0, η = 0).
The goal is to validate the claim that prior knowledge of

the channel delay is required to ensure safety. The collision
rate obtained using the algorithm proposed in [18] (which
is uninformed of the channel model) is compared with the
one obtained using our implementation of Algorithm 3. To
provide the same testing conditions, the simulation uses a fixed
set of paths and a constant channel delay (τ chi = τ chmax, ∀i).
Results are shown in Fig. 3, which highlight the unsafety of
the uninformed algorithm [18] and validate the safety of the
proposed solution.

B. Test 2: Random Paths (τ chi > 0, η > 0)
The goal is to validate safety when the network’s non-

idealities are modeled as described in Section III-A. In order
to stress Algorithm 3 as much as possible, we provoke random
delays and packet loss rate within an upper bound, and
generate random paths for the robots (so that the geometry of
critical sections is unpredictable). We simulate a particularly



Fig. 3: Test 1: collision rate using the uninformed algo-
rithm [18] and the one proposed in this article.

bad communication channel, with high packet loss and high
delays with great variance (which causes the “jerky” motions
visible in the video). Simulations are run considering two
environments, with a total amount of critical sections analyzed
equal to 110693 (Map 1) and 42748 (Map 2). Results are
shown in Table III; as expected, the measured collision, packet
and message loss rates are smaller then the expected values.

p̄u = 2% Upper bound Measured
avg. max min

Packet Loss 0.2 0.201 0.209 0.191
Message Loss 1.0e-2 8.9e-3 1.3e-2 4.6e-3
Collision Rate 9.9e-3 3.8e-4 1.3e-3 0

p̄u = 10% Upper bound Measured
avg. max min

Packet Loss 0.2 0.182 0.192 0.176
Message Loss 5.1e-2 3.6e-2 4.2e-2 3.1e-2
Collision Rate 4.9e-2 3.1e-4 8.5e-4 0

p̄u = 2% Upper bound Measured
avg. max min

Packet Loss 0.2 0.198 0.209 0.190
Message Loss 1.0e-2 8.3e-3 1.1e-2 6.0e-3
Collision Rate 9.9e-3 4.9e-4 1.1e-3 0

p̄u = 10% Upper bound Measured
avg. max min

Packet Loss 0.2 0.185 0.202 0.149
Message Loss 5.1e-2 3.5e-2 4.2e-2 2.6e-2
Collision Rate 4.9e-2 4.4e-4 1.2e-3 0

TABLE III: Test 2: results using Map 1 (top) and 2 (bottom).

VIII. CONCLUSION

We have presented a centralized coordination algorithm
(based on [18]) which does not assume perfect communication,
allowing message disorder, bounded message delays, and mes-
sage loss. The approach enables periodic, heuristically-guided
constraint revision while guaranteeing a desired maximum
rate of constraint violation. We have shown formally that this
probability is zero with no packet loss and arbitrary delay.
We have also provided a set of rules to relate communica-
tion infrastructure requirements, number of robots, controller
parameters, and maximum rate of constraint violation. These
rules can be used for fleet controller synthesis, as well as for
fleet and network dimensioning. We have validated our formal
findings quantitatively via simulations. Preliminary tests with
two real robots subject to random communication delays and
packet loss confirm6 the applicability of the method to real-
world use-cases. Future work will focus on deployment in
environments that are affected by severe network problems
(e.g., quarries and underground mines). We will also analyze
the problem of deadlock avoidance and resolution.

6Video available at https://youtu.be/-rBK Qgcj28.
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