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Reachability and Steering of Rolling Polyhedra:
A Case Study in Discrete Nonholonomy

Antonio Bicchi, Yacine Chitour, Alessia Marigo,
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Abstract— Rolling a ball on a plane is a standard example of
nonholonomy reported in many textbooks, and the problem is also
well understood for any smooth deformation of the surfaces. For
non-smoothly deformed surfaces, however, much less is known.
Although it may seem intuitive that nonholonomy is conserved
(think e.g. to polyhedral approximations of smooth surfaces), cur-
rent definitions of “nonholonomy” are inherently referred to sys-
tems described by ordinary differential equations, and are thus
inapplicable to such systems.

In this paper we study the set of positions and orientations that a
polyhedral part can reach by rolling on a plane through sequences
of adjacent faces. We provide a description of such reachable set,
discuss conditions under which the set is dense, or discrete, or has
a compound structure, and provide a method for steering the sys-
tem to a desired reachable configuration. Besides its relevance to
applications such as manipulation of industrial parts, such a sys-
tem is interesting as a case study illustrating a rather general class
of dynamical systems that can be considered as the discrete-time,
discrete-input counterpart of traditional nonholonomic systems.

The paper discusses to what extent lessons learned from the case
study could be useful to study and solve similar problems for more
general discrete nonholonomic systems.

I. I NTRODUCTION

A LTHOUGH nonholonomic mechanics has a long history,
dating back at least to the work of Hertz and H¨older to-

wards the end of the 19th century, it is still today a very active
domain of research, both for its theoretical interest and its appli-
cations, e.g. in wheeled vehicles, robotics, and motion genera-
tion. In the past decade or so, a flurry of activity has concerned
the study of nonholonomic systems as nonlinear dynamic sys-
tems to which control theory methods could be profitably ap-
plied. As a result, the control of classical nonholonomic me-
chanical systems such as cars, trucks with trailers, rolling 3D
objects, underactuated mechanisms, satellites, etc., has made a
definite progress, and often met a satisfactory level.

Systems considered in classical nonholonomic mechanics
are smooth, continuous-time systems, i.e., they can be de-
scribed by ODEs on a smooth manifold of configurations, on
which smooth (often analytic) constraints apply. However,
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nonholonomic-like behaviours can be recognized in more gen-
eral systems, including for instance discontinuities of the dy-
namics, discreteness of the time axis, and discreteness (e.g.,
quantization) of the input space.

Such more general systems with nonholonomic features may
be used to represent some very general classes of systems and
devices of great practical relevance. However, some very basic
control problems such as the analysis of reachability and the
synthesis of steering control sequences for such systems still
pose quite challenging problems, to which, despite some deep
analogies that can be shown to exist with continuous nonholo-
nomic systems, known solution techniques from the continuous
domain do not extend by any trivial means. For these problems
are very hard in general, we focused our initial efforts, reported
in this paper, on a practically relevant case-study, from which
some general insight can be inductively gained.

A. Nonholonomic behaviours in nonsmooth systems

In general, classical nonholonomic constraints come in two
varieties, kinematic constraints (often due to contact kinemat-
ics, as e.g. in rolling), and dynamic constraints (due to sym-
metries induced by conservation laws, for instance, of angu-
lar momentum) [1], [2]. In this paper we focus on the former
type. Recall the definition of a (smooth) nonholonomic con-
straint that is familiar from elementary mechanics textbooks: a
mechanical system described by coordinatesq ∈ Q, with Q
a smoothn-dimensional manifold, subject tom smooth con-
straintsA(q)q̇ = 0, is nonholonomic ifA(·) is not integrable.

An equivalent description of such systems is often useful,
which uses a basisG(q) of the distribution that annihilatesA(q)
to describe allowable velocitieṡq ∈ TqQ as

q̇ = G(q)u. (1)

Thanks to Frobenius’ theorem, nonholonomy can thus be in-
vestigated by studying the Lie algebra generated by the vector
fields in G(q), or, in other terms, by analyzing the geometry
of the reachability set of (1). Such simple formulation of kine-
matic nonholonomic systems is sufficient to illustrate two fun-
damental aspects of nonholonomy:

1) elements ofu ∈ IRn−m in (1) play the role of con-
trol inputs in a nonlinear, affine–in–control, driftless
dynamic system. If the original constraint is non-
holonomic, the dimension of the reachable manifold
is larger than the number of inputs. This has moti-
vated purposeful introduction of nonholonomy in the
design of mechanical devices, to spare actuator hard-
ware while maintaining steerability (see e.g. [3], [4]).
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Notice explicitly that for driftless systems, reacha-
bility on a manifold with dimension larger than the
dimension of the input space is an essentially non-
linear phenomenon, which is altogether destroyed by
linearization, and can be considered as a synonim of
nonholonomy;

2) the effects of different consecutive inputs in nonholo-
nomic systems do not commute. In other words, peri-
odic inputs may produce net motions of the system in
directions not belonging to the input distribution eval-
uated at the starting point. This observation is crucial
in the interpretation of the role of Lie–brackets in de-
ciding integrability of the system[5].

Behaviors that, by similarity, could well be termed “nonholo-
nomic”, may actually occur in a much wider class of systems
than mechanical systems with smooth contact constraints or
symmetries. Let us refer to general time-invariant dynamic sys-
tems as a quintupleΣ = (Q, T ,U , Ω,A), with Q denoting the
configuration set,T an ordered time set,U a set of admissible
input symbols,Ω a set of admissible input streams (continuous
functions, or discrete sequences) formed by symbols inU , and
A a state–transition mapA : Q× Ω → Q.

It has been observed that in piecewise smooth (p.s.) systems
(where time is continuous,Q is a p.s. manifold, andA is a
p.s. map) with holonomic dynamics within each smooth re-
gion, nonholonomic behaviours can be introduced by switch-
ing among different smooth regions of the configuration space.
Piecewise holonomic systems have been studied rather exten-
sively (see e.g. [6], [7], [8], [9], [10]). A prominent role in
the study of p.s. nonholonomic systems is played by tools from
differential geometric control theory (cf. [1], [2]) and from the
theory of stratified manifolds ([11]).

Nonholonomic behaviors may also be exhibited by discrete–
time systems (T = IN). Consider that, ifQ andU in the system
quintuple represent continuous sets, a classical discrete–time
control system is described. For such systems, the reachabil-
ity problem has been already clarified in the literature (see e.g.
[12], [13], [14], [15]). On the other hand, ifQ andU are as-
sumed to be discrete sets, then the system essentially represents
a sequential machine (automaton). Reachability questions for
such systems are fundamentally equivalent to graph connectiv-
ity analysis, an extensively studied topic.

A particularly stimulating problem arises whenQ has the
cardinality of a continuum, butU is quantized (i.e. finite, or
discrete with values on a regular mesh). Such systems, which
will be referred to as quantized control systems (QCS), are en-
countered in many applications, due e.g. to the need of using
finite–capacity digital channels to convey information through
an embedded control loop, or to abstract symbolic information
from too complex sensorial sources (such as video images in
visual servoing applications). As a consequence, several re-
searchers devoted their attention to this type of systems (see
e.g. [16], [17], [6], [18]). It is important to notice that, while
inputs are quantized, the system configurations are not a priori
restricted to any finite or discrete set: thus, it may happen that
the reachable set has accumulation points, or is dense in the
whole space, or in some subsets, or nowhere ([19]).

Chitour and Piccoli [20] have studied a quantized control

Fig. 1. A die being rolled between two movable parallel plates. The plates
can be thought of as the jaws of a robotic gripper, manipulating the polyhedron
for reorientation purposes. The sequence illustrates a behaviour which could be
qualitatively described as nonholonomic.

synthesis problem for the linear casex+ = Ax + Bu, pro-
viding sufficient conditions and a constructive technique to find
a finite input setU to achieve a reachability set which is dense
in X . The analysis of the reachability set of a QCS with a given
quantized input setU , has been considered in [21], [19]. In
these papers, a complete analysis is achieved for driftless lin-
ear systems (while it is pointed out that the problem for general
linear systems is as though as some reputedly hard problems in
number theory), and for a particular class of driftless nonlinear
systems, namely the exact sampled models ofn-dimensional
chained–form systems ([22]), which can be considered as the
simplest nonholonomic system model.

In this paper, we study and solve the reachability and steer-
ing problems for another class of quantized nonholonomic sys-
tems, consisting of a polyhedral body rolling on a planar sur-
face. The problem is representative of a more general, and con-
siderably more complex, class of nonholonomic systems than
chained form systems, and is thus believed to offer, besides its
own interest in applications such as manipulation of industrial
parts, further illustration of the nature of the problems and of
possible solution techniques.

B. Rolling polyhedra

Manipulation of polyhedra through rolling by means of
robotic end–effectors (see e.g. fig.1), was proposed in [23],
in an endeavor to generalize to industrial parts with edges and
vertices the manipulation–by–rolling idea that proved effective
with regular bodies ([24], [4]). The goal of manipulation is to
bring the part from a given initial configuration to another de-
sired one: it is desired to know whether this will be possible for
a given pair of configurations, and if so, to provide a method
to steer the part. The example of a rolling polyhedron, already
mentioned in [19], can be considered as the discrete counter-
part of the well known plate–ball system (see e.g. [25], [26],
[27], [28], [29], [4]). The operation of rolling a polyhedron on
a planar surface is illustrated in fig.1. For this system (to be
defined in more detail later), consider input actions as rotations
about one of the edges of the face lying on the plate, by exactly
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Fig. 2. Sets of positions reached by the centroid of different polyhedra by
rolling on a plane in all possible sequences ofN turns. Only points lying on
a regular grid can be reached by rolling the cube (a), while points reached by
rolling the parallelepiped (b) or the polyhedron (c) tend to fill the plane asN
grows. Also, consider a line fixed with the polyhedron (not perpendicular to
any face), and the angle formed by its projection on the plane with a fixed axis:
angles obtained by rolling (a) and (b) only differ by multiples ofπ/2, while in
case (c) they tend to fill the unit circle asN grows.

the amount that brings an adjacent face on the plate. A first im-
portant aspect of the reachability analysis for rolling polyhedra
is illustrated in fig.2, showing the reachable set in a large but
finite number of steps as obtained by direct computation. The
fact that for some polyhedra the reachable set has a lattice struc-
ture, while for others the set gets denser and denser as manipu-
lation proceeds, is apparent from simulation results. This phe-
nomenon is akin to the one studied in detail for a simpler class
of systems in [19]. Rolling polyhedra also exhibit a second in-
teresting phenomenon which clearly bears some resemblance
with the nonholonomic behavior of the plate–ball system. In-
deed, consider applying first (through suitable forces applied
by the upper plate, possibly resorting to compliance and fric-
tion) a rotation on the right, hence forward, left and backward
(see fig.1). While the center of the die after the four actions
returns to its initial position, the orientation has changed: input
actions do not commute. However, the fact that at each config-
uration of a polyhedron, only a finite set of actions is available,
makes classical definitions of nonholonomy and differential ge-
ometric approaches to reachability analysis (such as e.g. those
proposed for discrete–time, continuous control systems in [12],
[13], [14], [15]) altogether unapplicable.

C. Paper outline

In this paper we consider the reachability problem for rolling
polyhedra as a case study for understanding some fundamen-
tal nonlinear dynamical effects in quantized control systems.
A mathematical model of the system is provided in section II,
while section III presents our results on a classification of the
structure of the reachable set in relation with the geometry of
the polyhedron. In section IV, the constructive proofs of these
results are exploited to provide a method to steer the polyhe-
dron to any reachable configuration. Of particular interest here
is the discussion of robustness of structural results to tolerances

in the system description. In section V, we turn our attention
to the generalization of problems and ideas encountered in the
case study, and consider nonholonomic behaviors that in gen-
eral systems with discrete input and time sets. A definition of
nonholonomy that generalizes classical ones to discrete systems
is proposed, along with some related concepts and illustrative
examples. A short conclusion section completes the paper.

II. ROLLING POLYHEDRA: MODELING AND MAIN

NOTATIONS

We consider manipulation of parts that have a piecewise flat,
closed surface, comprised of a finite number of faces, edges,
and vertices. Observe that actual parts need not be convex, in
general. However, the finger plates being assumed to be large
w.r.t. the diameter of parts, we need only be concerned with the
convex hull of parts themselves.

Several kinds of motions for a polyhedron on a plane are
possible, such as e.g. sliding on a face, pivoting about a ver-
tex or tumbling about an edge. However, we rule out the for-
mer two possibilities, and only consider sequences of rotations
about one of the edges in contact, by the amount that exactly
brings another face to ground.

This action on the parts, which will be referred to as an ele-
mentary “turn”, appears to be more reliably executed by robot
hands than sliding or pivoting. Indeed, while sliding manipula-
tion is obviously undesirable because of the complex and highly
uncertain model of friction and the risk of loosing the grip on
the object, the reason for excluding pivoting manipulation is
more subtle, and is illustrated in fig.3. Recall from standard
differential geometry [30] that the nonholonomic phase asso-
ciated with a closed curve on a regular surface is equal to the
total curvature of the enclosed region (the total curvature be-
ing the integral of the gaussian curvature, which in turn is the
product of the principal curvatures). Such phase also repre-
sents the net effect on the object orientation of a rolling op-
eration, conducted in such a way that the contact point traces
the given closed curve on the object’s surface [4]. The same
applies to polyhedral surfaces, provided that the gaussian cur-
vature function is replaced by a distribution which is zero ev-
erywhere (all planar faces and edges having zero gaussian cur-
vature) except at the vertices, where Dirac’sδ-functions of cur-
vature are concentrated. Consider now pivoting (i.e., have the
contact point pass through a vertex) with a “practical” polyhe-
dron with somewhat smoothed (and imprecisely defined) edges
and vertices (see fig.3, left). The total curvature of the region
enclosed within the path of the contact point will depend very
sensitively on the particular path and on the uncertain geometry
near the vertex, where a large amount of curvature is concen-
trated. On the other hand, a sequence of turns through all the
faces adjacent to the vertex will achieve a net effect equal to the
total curvatureat (ideally) ornear (practically) the vertex (see
fig.3, right), irrespective of those details. It can be easily seen
that such vertex curvature is equal to the so-calleddefect angle
at the vertex, i.e. the difference between2π and the sum of all
angles between pairs of coplanar edges adjacent to the vertex
(see fig.4).

In the rest of this section, we will provide a detailed descrip-
tion of the elements of the quintupleΣ = (Q, T ,U , Ω,A) that
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Fig. 3. Illustrating pivoting and turning operations.

Fig. 4. The defect angle at a vertex equals its total curvature.

models the rolling polyhedra dynamics. Let us first consider
the configuration setQ. Let P denote a polyhedron rolling on
a planeΠ, and

• V = {v1, . . . , vh} the set of its vertices;
• E = {e1, . . . , ek} the set of its edges;
• F = {F1, . . . , Fr} the set of its faces.

For a general polyhedron, it holds

h − k + r = χ, (2)

whereχ is the Euler-Poincar´e characteristic of the surface to
which the polyhedron is homeomorphic. We assume thatP is
convex and simple, i.e. continuously deformable into a sphere,
henceχ = 2 andh ≥ 4.

A generic configuration ofP could be identified by giving
the index of the face lying on the plane, the position of the pro-
jection on the plane of an arbitrarily fixed point inP , and the
orientation of the projection of an arbitrarily fixed line inP
(provided the line is not perpendicular to any face). Hence, the
configuration set can be identified with the stratified manifold
Q = IR2 × S1 ×F . Although such a description of the config-
uration set is very direct, it does not produce a convenient set
of coordinates to describe the dynamic evolution of a rolling
polyhedron, which motivates the introduction of a different de-
scription ofQ.

A 2D cartesian frame(oi, xi, yi) (oi denoting the origin) is
affixed to each faceFi by the following procedure. Choose a

Fig. 5. The developmentPD of a polyhedronP on the planeΠ.

2D cartesian frameOxy fixed onΠ. Fix, once for all, a pla-
nar development, or “unfolding”, ofP on Π (denotedPD),
consisting of a simply connected union ofr closed polygons
each corresponding to a different face (see fig. 5), such that two
polygons are adjacent inPD only if the corresponding faces are
adjacent inP (such a development is always possible, though
not unique). Affix to all polygons inPD a 2D cartesian frame
(oi, xi, yi) obtained by translation of the frameOxy of Π to a
pointoi of the polygon. This choice gives a unique frame fixed
on each face ofP whenPD is folded back into the original
polyhedron. It will be useful to define, for allj = 2, . . . , r, the
planar vectorswj := oj − o1 ∈ Π relative to(o1, x1, y1) (see
fig. 5).

A configuration ofP will henceforth be described by a triple
q = (z, θ, Fi) ∈ Q = IR2 × S1 × F , whereFi indicates the
face currently onΠ, z ∈ IR2 the coordinates of the pointoi

with respect to the frameOxy fixed onΠ, andθ the orientation
of (oi, xi, yi) w.r.t. Oxy. On this manifold, a distance can be
defined as

d ((x1, y1, θ1, Fi) − (x2, y2, θ2, Fj)) =√
(x1 − x2)2 + (y1 − y2)2 + ‖θ1 − θ2‖S1 + δ(Fi, Fj),

where‖θ1 − θ2‖S1 = min{|θ1 − θ2 (mod 2π)|, |θ2 − θ1

(mod 2π)|} is the distance induced by the Riemannian metric
on S1 (inherited from IR2) and δ(Fi, Fj) = 0 if i = j,
δ(Fi, Fj) = ∞ if i �= j.

As for the time setT in Σ, given the discrete nature of
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input actions for the polyhedron, it is natural to consider
T = IN+. Regarding the admissible input symbols and
stream sets,U andΩ, let us indicate by(FiFj) the elemen-
tary turn between two adjacent facesFi and Fj . If, for
n ≥ 2 and k = 2, . . . , n, Fjk

is adjacent toFjk−1 we de-
note by(Fj1 · · ·Fjn) the concatenation of the elementary turns
(Fj1Fj2), . . . (Fjk−1Fjk

), . . . , (Fjn−1Fjn). Moreover we call
ω = (Fj1 · · ·Fjn) a stream of length n.

If F is onΠ, (F ) denotes the lack of turns, i.e.F remains on
Π. The set of all admissible streamsΩ is clearly a subset of the
alphabet of the words generated by theF i’s, such that any two
consecutiveFi’s in a word correspond to adjacent faces ofP .
Forω, ω′ ∈ Ω such that the last face ofω coincides with the first
face ofω′, the streamω.ω′ is defined as the concatenation ofω
andω′. The relations(FiFjFi) = (FiFi) and(FiFi) = (Fi)
can be used to reduce words inΩ, i.e. to replace a stream with
a shorter one which has the same net effect on the polyhedron.
For each streamω = (Fj1 · · ·Fjn), the stream(Fjn · · ·Fj1 ) is
clearly admissible and will be denoted by byω−1. Using the
relations inΩ we have thatω.ω−1 = (Fj1). Furthermore, for
i, j = 1, · · · , r, let

(a) Ωij denote the subset ofΩ consisting of streams that
start atFi and finish atFj . If i = j, we simply write
Ωii = Ωi;

(b) ωij ∈ Ωij denote a particular stream fromFi to Fj ,
called ”transit”, which is uniquely defined as follows:
if i = j thenωii = (Fi); for 1 < j ≤ r, ω1j con-
tains the ordered sequence of faces encountered when
moving fromF1 to Fj on PD, without repetitions;
ωij = ω−1

1i .ω1j for i, j = 1, · · · , r.
It follows thatω−1

ij = ωji and, for allk = 1, . . . , r,
ωij = ωik.ωkj .

As a consequence of these definitions, eachΩi is a group for
the concatenation with identity element(Fi) and inverseω−1

for eachω ∈ Ωi. Moreover, recalling that equality among
streams is defined modulo the above relations, one can write
Ω =

⋃
1≤i,j≤r Ωiωij (where, by a common slight abuse of

notation, the action of a stream on a group replaces the ac-
tion on all the elements of the group). Indeed, any stream
ω = (Fi · · ·Fj) can be rewrittenω.ω−1

ij .ωij , andω.ω−1
ij ∈ Ωi.

Moreover, we haveΩi = ωi1Ω1ω1i, i.e. everyΩi is conjugate
to Ω1. We then get that

Ω =
⋃

1≤i,j≤r

ωi1Ω1ω1j . (3)

Let [Fi] denote the set of configurations with faceFi in con-
tact, which can be identified with the manifold IR2 × S1. For
all q = (z, θ, Fi) ∈ [Fi], the same set of admissible inputs is
available, namelyUq = {(FiFj) : Fj is a face adjacent toFi}.
The set of admisible input streams atq = (z, θ, Fi) is then
Ωq =

⋃
1≤j≤r Ωij .

The description of the quintupleΣ for a rolling polyhedron
will be now completed by describing the state-transition map,
i.e. the stateAq(ω) that the system reaches fromq underω ∈
Ωq.
Let q = (z, θ, Fi) andω = (Fi · · ·Fk) ∈ Ωq. Rewrite firstω
as the composition of the transit fromFi to F1 with a stream in

Ω1, followed by the transit fromF1 to Fk, i.e. ω = ω−1
1i .ω̃.ω1k

with ω̃ = ω1i.ω.ω−1
1k ∈ Ω1. Recalling the construction of the

plane development of the polyhedronPD (see fig. 5), and the
definition of transits, we directly get

A(z,θ,Fi)(ω
−1
1i ) = (z − eθwi, θ, F1) (4)

and
A(z′,θ′,F1)(ω1k) = (z′ + eθ′

wk, θ′, Fk). (5)

Next, observe that the action of the groupΩ1 of streams that
start and end with faceF1 on the plane, is clearly a subgroup of
SE(2), the Lie group of rigid planar motions (indeed, the same
holds forΩj , j = 1, . . . , r). Usual rules for composition of two
elementsg1, g2 in SE(2) apply: denotinggj = (tj , θj), tj ∈
IR2, θ ∈ S1, one has

g1.g2 = (t1 + eθ1t2, θ1 + θ2). (6)

Each element̃ω ∈ Ω1 corresponds then to a unique pair( t̃, θ̃) ∈
IR2×S1, depending on the polyhedron geometrical parameters,
and its action on[F1] is:

A(z,θ,F1)(ω̃) = (z + eθ t̃, θ + θ̃, F1). (7)

In conclusion, using equations (4), (5), and (7), we can write

Aq(ω) = A(z,θ,Fi)(ω
−1
1i .ω̃.ω1k)

= (z + eθ(t̃ − wi + eθ̃wk), θ + θ̃, Fk).
(8)

III. R EACHABILITY ANALYSIS

Consider the reachable set (ororbit) from a configurationq =
(z, θ, Fi), defined as

Rq = {Aq(ω) : ω = (Fi · · ·Fk) ∈ Ωq}. (9)

Thanks to(3) and(8), and with a little abuse of notation, we
can write

Rq =
⋃

1≤j≤r

Aq(ωi1.Ω1.ω1j), (10)

hence the reachable set fromq can be regarded as the union of
r copies of the set

R1
q = Aq(ωi1.Ω1), (11)

each copy being translated, rotated and taken to[F j ] by the set
of fixed transitsω1j , 1 ≤ j ≤ r. Therefore, regardingAq(ωi1)
as a given element of[F1] = IR2 × S1 on whichΩ1 acts as a
Lie subgroup ofSE(2), the reachability analysis of the rolling
polyhedron system reduce to the following algebraic problem:
studyΩ1 as a subgroup of(SE(2), ·), find a set of generators
for Ω1, hence decide whetherΩ1 is dense inSE(2) or not, and
if not, investigate its structure.

In this section, we first show thatΩ1 is indeed a finitely gen-
erated free group, and provide explicitly a finite set of gener-
ators along with their actions onQ (subsection III-A). Next,
by analyzing the action ofΩ1 on S1, we reduce the study of
Ω1 to that of its normal subgroupH1, which is the subgroup
of translations, and give a general result regarding all possible
structures of the reachable set (subsection III-B). Finally, we
end up the section by carefully studying the reachable set when
it turns out to be discrete (subsection III-C).



VERSION OF August 30, 2002 105

Fig. 6. Left: πc projects the polyhedron onto a circumscribed sphere. Right:
the induced partitionXS onS.

A. Study of Ω1

1) Description of Ω1 as a finitely generated free group: We
use in this paragraph standard definitions and results of graph
theory (cf. [31]) and algebraic topology (cf. [32]), which are
reported in Appendix for the reader’s convenience.

To a polyhedronP we associate a graphGP =
(
NP , EP

)
such that:

(i) NP = F (each node inGP corresponds uniquely to a
face of the polyhedronP);

(ii) EP = {(Fi, Fj) | Fi adjacent to Fj} (an edge exists
only between nodes corresponding to adjacent faces
in P).

The following result holds:
Proposition 1: For a convex polyhedronP , the associated

graphGP is a simple planar connected graph.
Proof: Given a convex polyhedronP , consider first the

simple, planar connected graphS(P) which is defined as fol-
lows (see fig. 6). Letc be some point in the bounded connected
component of IR3 \ P , let S denote a sphere circumscribed to
P , and consider the mapping of the surface of the polyhedron
onto the sphere defined by

πc : P −→ S πc(p) �→ S ∩ �,

where� is the half-line fromc throughp ∈ P . The image of the
edges of the polyhedron,πc(E), produces a partitionXS onS.
Such a partition defines a partition on the surface of the sphere
into connected components (cells), corresponding to the image
on the sphere of the faces of the polyhedron. Next, consider the
stereographic projection of the partitioned sphere from a point
υ ∈ S \ πc(E) onto a planeΠ tangent toS atσ ∈ S \ πc(E),

πυ : S \ {υ} −→ Π,

(see fig.7). The partition induced onΠ by S(P) = πυ(XS)
is known as the Schlegel map of the polyhedron. Note that
S(P) has as many faces, edges and vertices asP , and that the
unbounded face is the infinite component corresponding to the
cell of S containingυ. Regarded as a graph (by identifying its
vertices and edges with graph nodes and edges, respectively),
S(P) is a simple planar connected graph. Taking its dual (see
the Appendix), one easily obtainsGP , hence the thesis.

Fig. 7. A stereographic projection induces a partition of the planeΠ.

Fig. 8. Construction of the dual graphGP of the simple planar connected
graphS(P).

As a consequence of the above result, there is a one-to-one cor-
respondence between faces ofGP and vertices ofP . Being the
number of nodes inGP equal tor and the number of faces in
GP equal toh, by using the Euler relation (2) we also get that
the number of edges inGP is equal tok.

The group of streamsΩ1 discussed above can hence be iden-
tified with the fundamental group of the graphGP with base
nodeF1. The classical result reported in Appendix , Proposi-
tion 9, can be rephrased in this context as follows: any element
of Ω1 can be rewritten as an integer combination (by concate-
nation) of a finite number of generator streams inΩ1.

Let us apply Proposition 10 to the dual graph ofS(P),
namelyGP =

(
S(P)

)
d
, observing first that the numberf of

faces of the planar graph is equal to the number of vertices ofP ,
i.e. f = h. A generator setAGP = {αλ : λ = 1, · · · , f − 1}, is
given byαλ = αnλ

λ .Cλ.(αnλ

λ )−1, whereCλ is a cycle encom-
passing exactly one bounded face ofGP .

In terms of our previous notation of input streams, such
a generatorαλ corresponds to a stream of typeRλ =
ω1jλ

R̂λωjλ1, 1 ≤ λ ≤ h − 1. Here,R̂λ is a stream starting
and finishing at some faceFjλ

of the polyhedron adjacent to
the vertexvλ, and including all faces which are adjacent to the
vertexvλ, in the order in which they are encountered turning
around the vertex. Note also thatω1jλ

is the transit stream from
F1 to Fjλ

in PD. We finally obtain the following equivalent
characterizations ofΩ1:

i) Ω1 is a free group generated byh − 1 generators
Rλ1 , · · · , Rλh−1 corresponding toh − 1 distinct ver-
tices ofP ;

ii) for all ω ∈ Ω1, there existsN ∈ IN such that

ω =
N∏

k=1

Rεk

jk
, (12)

with jk ∈ {λ1, · · · , λh−1} andεk = ±1.

2) Action of the generators of Ω1 on the polyhedron: From
the previous definition of̂Rλ, it follows that, if P is initially
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lying onFjλ
, then the effect of̂Rλ onQ is a rotation about an

axis perpendicular toΠ throughvλ (which lies onΠ throughout
the action ofR̂λ), by an angle, denoted byβλ, equal to the
defect angle atvλ ∈ P , that isβλ = 2π −

∑
jλ

αλjλ
, where

the sum runs over alljλ such thatFjλ
is adjacent tovλ and

αλjλ
is the angle between two edges adjacent to the vertexvλ

and belonging to the same faceFjλ
(see fig.4). The following

proposition highlights a useful property of the defect angles of
a polyhedron.

Proposition 2: Let βλ, λ = 1, · · · , h be the defect angles of
P . They satisfy

h∑
λ=1

βλ = 4π. (13)

Proof: The previous equation can be deduced from the
definition of the defect angle and the Euler relation (2). We
have

h∑
λ=1

βλ = 2πh −
∑
λ,j

αλj .

We have
∑

αλj =
∑r

j=1 γj whereγj =
∑

λ αλj is the sum of

inner angles of faceFj . Denoting bye#
j the number of edges

of faceFj , and recalling thatγj = (e#
j − 2)π, we get

Observe now that in
∑r

j=1 e#
j , each edge ofP is counted

twice, as it belongs to two different faces. Therefore,∑r
j=1 e#

j = 2k. We conclude that

h∑
λ=1

βλ = 2π(h − k + r) = 4π.

Let the 2-vectorjλvλ denote the position of the vertexvλ

with respect to the reference frame(ojλ
, xjλ

, yjλ
) affixed onto

faceFjλ
. Then, simple geometric calculations show that the

action of R̂λ is described as an element ofSE(2) by ((1 −
eβλ) jλvλ, βλ), or, equivalently, thatA(z,θ,Fjλ

)(R̂λ) = (z +
eθ(1 − eβλ) jλvλ, θ + βλ, Fjλ

).
More generally, the action of streams of typeRλ =

ω1jλ
R̂λωjλ1, is described by((1 − eβλ) 1vλ, βλ) ∈ SE(2),

or

A(z,θ,F1)(Rλ) = (z + eθ(1 − eβλ) 1vλ, θ + βλ, F1), (14)

where1vλ is the 2-vector from the origino1 of the frame affixed
to faceF1 to the image ofvλ as a point ofFjλ

on the planar
developmentPD, in coordinates(o1, x1, y1).

It should be pointed out explicitly that the actions of bothR̂λ

andRλ are dependent on which faceFjλ
is considered. How-

ever, without any loss of generality, we will henceforth regard
every vertexvλ as associated to one of its adjacent faces, or,
which is equivalent, all copies of each vertex will be removed
in the planar development of the polyhedron except for one.
Such an arbitrary choice is tantamount to taking a particular set
of generators of the free groupΩ1, which is not going to alter
the ensuing study of the group orbit.

B. Structure for reachable sets of a rolling polyhedron

1) Dense structure and virtual vertex: Recall that to each
elementω̃ of Ω1 there corresponds a unique element( t̃, θ̃) of
SE(2). Let thena : ω̃ ∈ Ω1 �→ (t̃, θ̃) ∈ SE(2) be the group
homomorphism defined by:

a(ω̃) : IR2 × S1 × {F1} → IR2 × S1 × {F1}
a(ω̃)(z, θ, F1) = A(z,θ,F1)(ω̃) = (z + eθ t̃, θ + θ̃, F1).

Let π2 : SE(2) → S1 be the projection on the second fac-
tor. Recall thatS1 = IR/2πZZ is an Abelian Lie group. Then
π2 is a Lie group homomorphism, i.e., for everyg, g ′ ∈ G,
we haveπ2(g.g′) = π2(g).π2(g′) andπ2 is continuous. Then
π2(a(Ω1)) is the subgroup ofS1, generated by theβλ’s, 1 ≤
λ ≤ h − 1. Thanks to equation (13), it is evident thatβh is
generated byβλ, λ = 1, . . . , h − 1. Subgroups ofS1 are well
studied (cf.[33]), and some useful definitions are recalled here.

Let G be a group andiG its identity element. We use
< g1, · · · , gs > to denote the subgroup ofG generated by
g1, · · · , gs ∈ G. The order of an elementg of G is the smallest
integern ∈ IN such thatgn = iG. We writeoG(g) = n. If no fi-
nite integer exists such thatgn = iG, we letoG(g) = +∞. The
order of a groupG is the smallest positive integer̄n such that
gn̄ = iG, ∀g ∈ G and we writeo(G) = n̄. If there exists some
g ∈ G such thatoG(g) = +∞, then we leto(G) = +∞. Oth-
erwise,o(G) = l.c.m.g∈GoG(g) < +∞, wherel.c.m. stands
for least common multiple.

All possible structures ofπ2(a(Ω1)) are captured by the fol-
lowing proposition, which is a direct consequence of a classical
result from the theory of Diophantine approximation (cf.[33])

Proposition 3: Let π2(a(Ω1)) be the subgroup ofS 1 defined
above. Then one of the two following cases occurs:

(1.) If βλ

π /∈ lQ for at least one defect angle, thenπ2(a(Ω1))
is dense inS1;

(2.) If βλ

π ∈ lQ for all the defect angles, then there exists a
positive integerp such that

π2(a(Ω1)) =<
2π

p
> .

In case(1.), the following result also holds:
Proposition 4: Assume thatβλ

π /∈ lQ for at least one defect
angle. Then for everyq ∈ Q, the reachable set fromq, R q is
dense inQ.

Proof: If βλ

π /∈ lQ, π2(a(< Rλ >)) is dense inS1. This
implies that the polyhedron can be turned about an axis perpen-
dicular toΠ throughvλ (the vertex whose defect isβλ) so as to
reach as close as desired to any given orientation. On the other
hand, equation (13) guarantees that ifβλ

π /∈ lQ for someλ, then
βλ′
π /∈ lQ for someλ′ �= λ. Therefore the polyhedron can pivot

about two different verticesvλ andvλ′ , thus achieving arbitrary
motions in the plane. Proposition 4 readily follows.

For the rest of this section, we study case(2). For1 ≤ λ ≤ h,
we can writeβλ = 2π mλ

pλ
with 1 ≤ mλ < pλ two coprime

positive integers. Then eachβλ ∈ π2(a(Ω1)) is of orderpλ and

o(π2(a(Ω1))) = l.c.m.1≤λ≤h(pλ).

Letp = l.c.m.(pλ) (p ≥ 2) and denotedλ = p
pλ

for 1 ≤ λ ≤ h,
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then we have that any elementθ ∈ π2(a(Ω1)) can be written

θ = β(
∑

1≤λ≤h−1

nλmλdλ),

for arbitrarynλ ∈ ZZ andβ = 2π
p . Since thedλ, mλ’s are

coprime, we get thatπ2(a(Ω1)) =< β > i.e.

π2(a(Ω1)) = {θ = kβ (mod 2π), k ∈ ZZ}. (15)

We callβ the quantization angle and denoteQkβ the set of con-
figurations(z, θ, F1) ∈ [F1] such thatθ = kβ.

Fix nλ ∈ ZZ, 1 ≤ λ ≤ h − 1, such that

1 =
∑

1≤λ≤h−1

nλmλdλ,

and defineR0 =
∏h−1

λ=1 Rnλ

λ . Then it holdsR0 = (t0, β), for
somet0 ∈ IR2. Note also that thenλ’s do not depend on the
choice of the reference point onF1. Let v0 ∈ Π be defined by

v0 = (1 − eβ)−1t0. (16)

We can thus writeR0 =
(
(1 − eβ)v0, β

)
. Notice thatR0 acts

as if it were a rotation about a point whose projection onPD
would bev0 ∈ F1, in coordinates(o1, x1, y1). We will refer to
such a pointv0 as to thevirtual vertex. Moreover, denoting

H1 = {(t, 0) ∈ a(Ω1)},

the set of translations, we get
Corollary 1: For everyl ∈ Ω1, there existkl ∈ ZZ andTl ∈

H1 such that
l = Rkl

0 .Tl. (17)
Proof: Let l ∈ Ω1. We havel = (tl, θl) with θl = klβ,

kl ∈ ZZ. ThenR−kl
0 .l ∈ H1. SettingTl = R−kl

0 .l, we get the
conclusion.

2) Structure of the translation group H1: In order to fully
determine the structure of the reachable set of a rolling polyhe-
dron in case(2) holds, following from Corollary 1 it remains
to investigate if the projection on the first factor ofH1 is dense
in IR2. For such purpose, we introduce the symmetry angle
α = π

p′ ∈ S1 with p′ = p if p is odd andp′ = p
2 if p is even.

Such definition is motivated by the next proposition:
Proposition 5: The translation groupH1 is invariant by a ro-

tation of angleα, i.e., if (t, 0) ∈ H1, then(eαt, 0) ∈ H1.
Proof: To simplify the notation, we assume here that the

reference point onF1 coincides with the virtual vertexv0, hence
thatR0 = (0, β). Let T = (t, 0) ∈ H1. SinceH1 is a group,
−T = (−t, 0) ∈ H1. Moreover, for everyl ∈ ZZ, ±R l

0TR−l
0

belongs toH1. Let (
tl,−, 0

)
= −Rl

0TR−l
0 , (18)

with

l =
{

p′+1
2 , if p is odd,

p′ + 1, if p is even.

An easy computation shows thattl,− = eαt.

In the sequel, we identifyH1 with its projection on the first
factor i.e. with a subset of IR2. We will now give a simple set
of generators ofH1. Let Gn1 be defined by

Gn1 = {euαR−mλdλ
0 Rλ : 1 ≤ λ ≤ h − 1, 0 ≤ u ≤ p′ − 1}.

(19)
We next show that

Proposition 6: The group of translationsH1 is an Abelian
subgroup of IR2 generated by the elements ofGn1 .

Proof: Let G1 =< Gn1 >⊂ H1. First note that, for
1 ≤ λ ≤ h − 1, we haveRλR−mλdλ

0 is a translation and

RλR−mλdλ
0 = euαR−mλdλ

0 Rλ,

whereu = −2mλdλ if p is odd oru = −mλdλ if p is even and
thenRλR−mλdλ

0 ∈ Gn1 .
According to (12), we can write everyT ∈ H1 as

T =
N∏

k=1

Rεk
jk

.

We rewrite the above equation as

T =
N∏

k=1

R
εkmjk

djk
0

(
R

−εkmjk
djk

0 Rεk

jk

)

Notice that if T ∈ G1, thenRu
0TR−u

0 = euβT ∈ G1 for
all u ∈ ZZ. Using this fact, we have thatT is equal to the
product ofRNT

0 with NT =
∑N

k=1 εkβjk
∈ ZZ and a finite

number of elements ofG1. We hence get thatT is congruent,
moduloG1, toRNT

0 . SinceT ∈ H1, we have
∑N

k=1 εkβjk
= 0

andRNT
0 = (0, 0) ∈ H1, hence we have thatT is congruent,

moduloG1, to 0 i.e. T ∈ G1. ThenH1 ⊂ G1, and the proof is
complete.

For 1 ≤ λ ≤ h − 1, let zλ be the translation vector corre-
sponding toR−mλdλ

0 Rλ. We have

zλ = (1 − e−βλ)(v0 −1 vλ). (20)

Then (the projection on the first factor of)H1 is generated by

Gn2 = {euαzλ, 1 ≤ λ ≤ h − 1, 0 ≤ u ≤ p′ − 1}. (21)

A standard result on the classification of Abelian subgroupsG
of IR2 asserts that one of the three possibilities can occur (cf.
[33])

(a) G is a lattice i.e.G = ZZe1⊕ZZe2 wheree1 ande2 are
two linearly independent vectors of IR2;

(b) G = G̃ ⊕ ZZe2 whereG̃ is a dense subgroup of IRe1

with e1 and e2 two linearly independent vectors of
IR2;

(c) G is dense in IR2;
More generally, we useL(a, b) to denote the lattice of IR2 gen-
erated by the pair of vectorsa, b. We say thatL(a, b) is nonde-
generate ifa, b are linearly independent.

We will now show that case(b) cannot actually occur. We
first show that ifp′ = 1, i.e. α = β = π, then case(a) occurs.
Indeed, sinceh ≥ 4, thenα = π, by equation (13) implies that
h = 4, P is a tetrahedron and all theβλ’s are equal toπ. We
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deduce that the virtual vertex can be actually taken to be any
existing vertex andGn2 reduces to two elements. ThenH1 is a
nondegenerate lattice (see fig.9). Assume next thatp ′ > 1 and
then0 < α < π. If case(b) holds, thenH1 = H̃1 ⊕ ZZe2 with
H̃1 a dense subgroup of IRe1, e1 �= 0. By Proposition 5,H1

containseαH̃1. Sincee1 andeαe1 are linearly independent,
H1 is dense in IR2 and we obtain a contradiction. Therefore we
have proved that

Lemma 1: Let H1 be the group of translations ofΩ1. Then
eitherH1 is dense in IR2 or it is a nondegenerate lattice.

Remark 1: Notice that it is now easy to check whetherH1 is
a lattice or not. Indeed, whenβ = π, this is the case. Ifβ < π,
one of thezλ’s is not zero, let sayz1. Thenz1 andeαz1 are
linearly independent, i.e. they define a basisB of IR2. We can
therefore decompose every element ofGn2 in B. By a classical
result of Diophantine approximation, we get thatH1 is a lattice
if and only if every element ofGn2 is written inB with rational
coordinates.
A classical result on lattices (cf.[33]) says that, given a nonde-
generate latticeL(a, b), we have

µ = inf
t∈H1,t�=0

‖t‖ > 0,

and there existstmin ∈ H1 so that‖tmin‖ = µ. We call such
tmin a shortest element ofL(a, b). We thus have the following
result:

Lemma 2: Assume thatH1 is a lattice with quantization an-
gleβ = 2π

p , p ≥ 2. Then

β ∈ D = {π, π/2, π/3, 2π/3}. (22)
Proof: Recall that the symmetry angleα = π

p′ is smaller
thanπ. Let tmin be a shortest element ofH1. By Proposition 5,
eαtmin ∈ H1 and thent = (eα − 1)tmin ∈ H1. Since
‖t‖ ≥ µ = ‖tmin‖ > 0, we must have|eα − 1| ≥ 1. Thenp′

can only take the values1, 2 or 3. Going back to the definition
of α, we get (2).

We deduce from the previous lemma that
Lemma 3: Assume thatH1 is a lattice with quantization an-

gleβ ∈ D whereD was defined in (22). Lettmin be a shortest
element ofH1. Then eitherβ = π or

H1 = L(tmin, eαtmin), (23)

andα is equal toπ
2 or π

3 .
Proof: We assume thatβ < π. Let tmin be a shortest

element ofH1. We useL0 to denoteL(tmin, eαtmin). We
have of courseL0 ⊂ H1 and, by Remark 1, every elementt of
H1 can be written

t =
r1

s1
tmin +

r2

s2
eαtmin,

where r1
s1

and r2
s2

are rational. Lett′ ∈ L0 such thatt′ =
n1tmin + n2e

αtmin wheren1 andn2 are the nearest integers
to r1

s1
and r2

s2
respectively. Thent − t′ ∈ H1 and verifies

t − t′ =
r′1
s′1

tmin +
r′2
s′2

eαtmin,

with | r
′
1

s′
1
|, | r

′
2

s′
2
| ≤ 1

2 . By taking norms, we obtain

‖t − t′‖2 ≤ (
1
4

+
1
4

+ 2 cos(α)
1
4
)‖t‖2 ≤ 3

4
µ2.

By definition of µ, we must have‖t − t′‖ = 0, i.e. t ∈ L0.
Sincet is an arbitrary element ofH1, we conclude.

Thanks to equations (10), (11), (21), Proposition 4, and the
two previous lemmas, we are now in a position to state our
main result concerning reachability of rolling polyhedra. Let
us recall from [19] few useful definitions for quantized control
systems (see also fig.2): we say that a QCS isapproachable
if closure (Rq) = Q, ∀q ∈ Q. On the other hand, the
reachable setRq is discrete if it is nowhere dense, anddense
in a subset Q′ ⊂ Q if closure (Rq) ∩ Q′ = Q′, ∀q ∈ Q.
To describe the coarseness of discrete reachable sets, we talk
of ε–approachability of a configurationq ′ from q whenever
∃ω ∈ Ωq, such thatd(Aq(ω), q′) < ε. The set of configurations
that areε–approachable fromq is denoted byR ε

q. The system
is said to beε–approachable ifRε

q = Q, ∀q ∈ Q.

Theorem 1: Let q = (zq, θq, Fjq) ∈ Q. The possible struc-
tures for the reachable set fromq,Rq ∈ Q are the following:

(a) if at least one defect angle is irrational withπ, then
Rq is dense inQ and the system is approachable,
i.e. closure (Rq) ∩ [Fi] = [Fi], ∀q ∈ Q and
∀i = 1, . . . , r;

(b) if all defect angles are rational withπ andβ = 2π
p is

the quantization angle, then either
(b1) H1 is dense in IR2, henceRq is dense in

Qkβ ⊂ Q, i.e. closure (Rq) ∩Qkβ = Qkβ

∀q ∈ Q and∀k = 1, . . . , p, or
(b2) H1 is a nondegenerate lattice, and hence

Rq =
⋃r

j=1 Rj
q, where eachRj

q is isomet-
ric to

p−1⋃
k=0

(
t0(k) + H1, kβ, F1

)
, (24)

wheret0(0) = 0 andt0(k) = t0(1 + eβ +
· · ·+ e(k−1)β), k = 1, . . . , p− 1, is the IR2

component ofRk
0 .

Moreover, within case(b2), we necessarily have that either
(b21) p = 2, and hence all theβλ’s are equal toπ

and P is a tetrahedron; in this case the system
is ε–approachable withε = εS1 + εIR2 where

εS1 = π
2 and εIR2 = max{ ‖z1+z2‖

2 , ‖z1−z2‖
2 } =

max{ ‖(v2−v1)+(v3−v1)‖
2 , ‖(v2−v3)‖

2 }, where thezλ’s
and thevλ’s are defined in equation (20) and (14), re-
spectively, or

(b22) p = 3, 4, 6, and hence there existstp �= 0 such that
H1 = L(tp, e π

3 tp) if p = 3, 6 or H1 = L(tp, e π
2 tp)

if p = 4. In this case the system isε–approachable
with ε = εS1 + εIR2 whereεS1 = π

p and εIR2 =
√

3
3 ‖tp‖, if p = 3, 6, or εIR2 =

√
2

2 ‖tp‖, if p = 4.
Proof: It only remains to prove (24). We start with an

arbitrary pointq ∈ Q. Using (10) and (11), we letω jq1 act
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on q. It is then enough to consider pointsq ∈ [F1] given by
q = (zq, θq, F1). Since we have

R1
q =

p−1⋃
k=0

(zq + eθq(H1 + t0(k)), θq + kβ, F1),

we get an exact expressionRj
q by concatenating withω1j .

C. Discrete Case

It is clear that Theorem 1 is not as precise for the discrete
structures as it is for the dense ones. Indeed, to get density in
Q, Theorem 1 provides a necessary and sufficient condition in
terms of a geometric quantity directly related to the polyhedron
itself. On the other hand, for the discrete case, the discussion
relies on quantities defined onPD, a development ofP (cf.
Remark 1). In this section we describe the relationship between
the structure of the reachable set and such geometric quantities
associated toP as lengths of edges, angles at vertices, etc..

For the rest of the paragraph, we consider a nondegenerate
polyhedronP with quantization angleβ = 2π

p , p ≥ 2 and

we identify H1 with < Gn2 >⊂ IR2. We will also denote
by vλ thei–th vertex as a point on the polyhedronP , while vλ

denotes its image on the plane developmentPD. For all vertices
vλ1 ,vλ2 andvλ3 such that(vλ1 ,vλ2 ) and(vλ1 ,vλ3) are edges
ofP , letDλ1λ2 andδλ1λ2λ3 denote the length of(vλ1 ,vλ2) and
the angle between the(vλ1 ,vλ2) and(vλ1 ,vλ3 ), respectively.
Also, let Tr denote a nondegenerate triangle (i.e. a triangle
of nonzero area), and used(Tr) to denote the triangle whose
vertices are the middle points of the edges ofTr.

We start by giving more details on the case whereβ = π.
Recall thatP is a tetrahedron and everyβλ is equal toπ. Let
F1 be the face on whichP is lying on Π and let P̃D be the
development obtained by unfoldingP along the streamsF 1Fi,
i = 2, 3, 4. We next show that

Proposition 7: Assume thatP is a nondegenerate polyhe-
dron with quantization angleβ = π. Then all faces ofP are
isometric to the nondegenerate triangleTr defined byF1 and
P̃D is a triangle so thatd

(
P̃D

)
= Tr (see fig.9).

Proof: The faceF1 on P̃D is represented by a triangle
ABC. Since everyβλ = π, we getP̃D is a triangleA′B′C′

such thatA belongs to the segmentB ′C′ etc. SinceB′A and
C′A represent the same edge ofP , we get thatd

(
P̃D

)
= Tr.

By Thales theorem, we then obtain that all the four triangles
defined by the faces ofP insideP̃D are isometric.

Remark 2: Conversely, if a nondegenerate triangleTr0 is
given, one can build a tetrahedronP0 with quantization angle
β0 equal toπ and all faces isometric toTr0. Indeed, consider
the triangleTr′0 such thatd

(
Tr′0

)
= Tr0. By drawingTr0 in-

sideTr′0, we define three other triangles inscribed insideTr ′
0

all isometric toTr0. By folding these three triangles along
the edges ofTr0, we get, by using elementary geometric ar-
guments, the polyhedronP0.
Notice explicitly that for such polyhedra the reachable set is dis-
crete, irrespective of the lengths of their edges. The remaining
cases are covered by the next proposition which is a translation
of the results of Remark 1 in terms of geometric quantities only
involvingP :

Fig. 9. Polyhedra whose defect angles are multiples ofβ = π are tetrahedra
with isometric faces, whose plane development is a triangle similar to each
face (left). For such polyhedra, the reachable set is a lattice, irrespective of the
edge lengths.Gn2 reduces to two elements, andH1 is a nondegenerate lattice
(right).

Fig. 10. For polyhedra whose edge lengths satisfy (25), and whose defect
angles are multiples ofβ = 2π/3 (as e.g., the regular octahedron developed
on the left),H1 is a rhomboidal lattice with small angleπ/3. The same holds
for polyhedra satisfying (25) and with defect angles multiples ofβ = π/3 (as
e.g. the esahedron with equilateral faces developed on the right).

Proposition 8: Assume thatβ = π
2 , π

3 or 2π
3 . ThenH1 is a

nondegenerate lattice if and only if it holds the following “edge-
angle rationality” condition

Dλ1λ3

Dλ1λ2

sin(lα + δλ1λ2λ3)
sinα

∈ lQ (25)

for l = 0, 1 and for all triples of vertices(vλ1 ,vλ2 ,vλ3) such
that(vλ1 ,vλ2) and(vλ1 ,vλ3) are adjacent edges inP .

Proof: Define for all distinct verticesvλ1 andvλ2 such
that(vλ1 ,vλ2) is an edge,wλ1λ2 = (1 − e−βλ2 )(vλ1 − vλ2).
Let Gn3 be the set given by

Gn3 = {elαwλ1λ2 , 0 ≤ l ≤ p′ − 1, (vλ1 ,vλ2) ∈ E},

andG3 =< Gn3 >⊂ IR2 (recall thatα is the symmetry angle
defined in proposition 5). We first show that

Lemma 4: With the above hypothesis,H1 is a nondegenerate
lattice if and only ifG3 is.

Proof: It is enough to show that every element ofGn2 is
written as a linear combination of elements ofGn3 with rational
coefficients and vice versa. We can clearly restrict ourselves to
the elements ofGn2 andGn3 . This simply follows from the
three next facts:

(aa) for every1 ≤ λ1, λ2 ≤ h−1, 1−e
−βλ2

1−e
−βλ1

can be written

as a sum of terms of typerelα wherer ∈ lQ andl ∈
ZZ. To see that, notice that

1 − e−βλ2

1 − e−βλ1
=

(1 − e−βλ2 )(1 − e−βλ1 )
|1 − eβλ1 |2

,
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Fig. 11. Polyhedra satisfying (25) and with defect angles multiples ofβ =
π/2 are cubes (left) or convex assemblies of identical cubes (right). For these,
H1 is a square lattice.

and the denominator of the last expression is always a
positive integer with the considered values ofβ;

(bb) for every1 ≤ λ1, λ2 ≤ h−1, let
(
vkl

)
, l = 1, · · · , N

with vk1 = vλ2 andvkN = vλ1 a sequence of ver-
tices such that three consecutive vertices in the se-
quence define adjacent edges onP . Then

vλ1 − vλ2 =
N−1∑
l=1

vkl+1 − vkl
;

(cc) the virtual vertexv0 is either an existing vertex ofP
or more generally it is equal to an integral linear com-
bination of vertices and rotated of angleskβ in the
sense of equation (16).

We first have for1 ≤ λ1, λ2 ≤ h − 1,

wλ1λ2 = zλ2 −
1 − e−βλ2

1 − e−βλ1
zλ1 .

From (aa), wλ1λ2 can be written as a rational combination of
elements of typeeuαzλ of Gn2 . Analougously forelαwλ1λ2 .
For the converse, from the definition ofwλ1λ2 we get

vλ1 − vλ2 =
1 − e−βλ2

|1 − e−βλ2 |2
wλ1λ2 .

Thanks to the definition ofzλ, (aa), (bb) and(cc) above we
conclude.
Recall Remark 1. Because of the structure ofGn3 , it is clear
thatG3 is a nondegenerate lattice if and only if for every1 ≤
λ1, λ2, λ3 ≤ h − 1 so thatvλ1 ,vλ2 ,vλ3 define two adjacent
edges atvλ2 , and for every0 ≤ l ≤ p′ − 1, one has

elαwλ1λ3 = al
λ1λ2λ3

wλ1λ2 + bl
λ1λ2λ3

eαwλ1λ2 ,

for some rational numbersal
λ1λ2λ3

andbl
λ1λ2λ3

. Simplifying
by wλ1λ2 , we get

al
λ1λ2λ3

+ bl
λ1λ2λ3

eα = e(lα−δλ1λ2λ3 ) 1 − e−βλ3

1 − e−βλ2

Dλ1λ3

Dλ1λ2

,

(26)
(recall thatδλ1λ2λ3 is the angle between the edges(vλ1 ,vλ2)
and(vλ1 ,vλ3)). From(aa) and (26), it is easy to obtain (25).

The classification of reachable sets for rolling polyhedra thus
far obtained is summarized in fig. 12.

Fig. 12. A flow-chart summarizing the reachability analysis for rolling poly-
hedra.

IV. STEERING MOTIONS OFROLLING POLYHEDRA

It follows from previous results (see figure 12) that condi-
tions upon which density or discreteness of reachable sets de-
pend are given in terms of rationality of certain parameters.
This entails that two very similar polyhedra may have qual-
itatively different reachable sets: indeed, for any polyhedron
whose reachable set has a discrete structure, there exists a poly-
hedron with arbitrarily close geometric parameters that gives
density. Lattice structures appear to be non-generic in this
sense. On the other hand, considering that in practical appli-
cations lengths and angles of physical parts are only known
with a limited accuracy, one is led to question the meaning and
practical applicability of the foregoing analysis. In this section
we will show that indeed discrete structures and tools are in-
strumental to deal with questions regarding robustness of the
reachable set analysis and planning.

In the study of reachability for smooth dynamical systems,
the problem of constructive reachability, also referred to as
“steering” or “planning” problem, is usually defined as to find,
given an initial and a final configuration, a finite-length stream
of inputs that takes the system from the former to the lat-
ter. For a rolling polyhedron system (and more generally for
quantized control systems) our previous analysis clearly shows
that the problem should rather be posed as follows: given the
initial configuration(0, 0, 0, F1), a final configurationCf =
(xf , yf , γf , Ff ), and a numberη, determine if there exists a
finite sequence of turns that brings the part from the former to
anη–neighborhood of the latter configuration (in the metric de-
fined in section II), and, if so, provide one such sequence.

We will first discuss planning for the nominal case of poly-
hedra whose reachable set is a lattice. Secondly, we describe
how one could plan manipulation of exactly modeled polyhe-
dra with a dense reachable set. Finally, we discuss extensions
of these results to the general case of polyhedra described with
limited accuracy. Some of these ideas and the corresponding
algorithms were first reported in [34], where more details and
proofs can be found.
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A. Planning in discrete reachable sets

Assume that (15) and (25) hold. Hence, there exists a quan-
tization angleβ, andH1 is a 2D lattice generated overZZ by a
set of N̄ = q′(h − 1) generators (see section III-B.2, equa-

tion (19)). LetT = [t1, t2, . . . , tN̄ ] ∈ lQ2×N̄ denote a matrix
collecting such a set of generators. By computing theHermite
Normal Form for the 2D lattice (see e.g. [35], [36]) as

X =
[

X1 X2 0
]

= TU,

with U a unimodular integral matrix, two vectorsX1, X2 gener-
ating the same lattice are obtained. Denoting byU ij the element
of U in thei, j position, one has

Xj =
N̄∑

i=1

tiUij .

Let ∆ := max{‖X1+X2
2 ‖, ‖X1−X2

2 ‖} denote the half-length of
the longest diagonal of the lattice mesh. If the required accu-
racy η is such thatβ > 2η, or ∆ > η, the steering problem
is unfeasible for an arbitraryCf . Otherwise, proceed as fol-
lows:

1) Compute(x1, y1, γ1) such thatω1f : (x1, y1, γ1, F1) �→
(xf , yf , γf , Ff ).

2) Let k = arg min
κ∈ZZ ‖κβ − γ1‖S1 . Let ‖kβ −

γ1‖S1 = ε ≤ η and compute(x2, y2) such thatR̄k :
(x2, y2, 0, F1) �→ (x1, y1, γ2, F1), where‖γ2 − γ1‖S1 =
ε.

3) Let(k1, k2) = arg minκ1,κ2 ‖κ1X1 +κ2X2 − (x2, y2)‖.
If ‖k1X1 + k2X2 − (x2, y2)‖ > η − ε, the Planning
Problem has no solution; otherwise, apply the original
generators of the lattice,v1, ..., vN̄ , Ui = Ui1k1 + Ui2k2

times each.
A manipulating sequence is thus obtained which consists in ap-
plying the stream corresponding tovUi

i , i = 1, ..., N , R̄k, and
ω1f , in this order. A configuratioñCf = (x, y, γ, Ff ) is thus
reached such thatd(C̃f − Cf ) ≤ η.

B. Planning in dense reachable sets

If equations (15) and (25) do not hold, and if a perfect model
of the polyhedron is available, it is possible to obtain a solution
to the planning problem with arbitrary accuracyη. To do so, it

would suffice to find a rotation̂R ∈ Ω1 of angleβ̂ with β̂
π �∈ lQ,

and an approximation̂β ≈ 2π
p̂ , with p̂ large enough so that, for

k = arg min
κ∈ZZ ‖κβ̂−θf‖S1 , it holds‖kβ̂−θf‖S1 = η0 ≤ η.

Furthermore, consider any rotationR ∈ Ω1 with R �= R̂, and
the set of generators

Ĥ1 = {R̂k.(RR̂m).(R̂mR)−1.R̂−k; k, m ∈ ZZ} ⊂ H1.

The N̂ elements ofĤ1 and their projections on the first fac-
tor, {t̂1, . . . , t̂N̂}, are irrationally related and thus generate a
dense set over the integers. To find a possible solution of finite
length, proceed to approximate the dense set with a lattice, ob-
tained with the rational representationst̂′i of the components of
t̂i, i = 1, ..., N̄ . The numberN̄ of generators and their repre-
sentation accuracy can be chosen (in the ideal case) so that the

lattice resolution∆ is arbitrarily small. Hence, a feasible solu-
tion would be obtained by solving a planning problem on this
(arbitrarily fine) lattice by the same techniques used in the pre-
vious paragraph. The case in which the reachable set is dense in
positions, but discrete in orientations can be worked out simply
based on the same considerations.

C. Planning with limited accuracy models

To provide a correct model of the phenomenon of rolling
real polyhedral parts, it is necessary to describe how uncer-
tain quantities are represented in the computer. It can be as-
sumend that a geometric length or angle (the latter measured in
π rad units) of nominal valuea with tolerance±τa is repre-
sented by a truncated continued fraction expansionā = p a/qa

with qa = �τa
−1/2�, so as to match representation accuracy to

tolerance. Tolerances on geometric parameters also reflect di-
rectly in a limited meaningful representation accuracy for the
quantization angleβ and for the generator sett i, i = 1, ..., N̄ .
The reachable set will be thus described approximately by
the discrete set generated by those representations, and plan-
ning will be addressed again through the solution of the one-
dimensional and two-dimensional Diophantine equations en-
countered above. The real reachable set is actually an uncertain
distribution about this discrete approximation. Bounds on the
maximum discrepancy between a point reached with a stream
of given length, and the nominal point on the approximated
polyhedron based on description tolerances were given in [34],
along with a discussion of the computational complexity and
bounds on the length of manipulating streams.

V. DISCRETENONHOLONOMY

In this section, we should like to generalize some of the
particular features encountered in the case study to systems
Σ = (Q, T ,U , Ω,A) of a rather general class, and in partic-
ular to address a definition of nonholonomy which may apply
to non-smooth and quantized systems as well as to classical
systems.

As a first lesson from the case-study, we recognize that it is
important that the input set in the system quintupleΣ is con-
sidered in general as state–dependent. In other words, different
sets of inputs may be available at different states, as it is clearly
the case for the polyhedron when lying with different faces on
the plane. To deal with this problem, let us be more specific on
the definition of the input setU , and assume that there exists
a multivalued functionφ : Q → U whereφ(q) = Uq ⊂ U
is the set of admissible inputs atq. Consider the equivalence
relation onQ given byq1 ≡ q2 iff φ(q1) = φ(q2), and denote
Q/φ the set of equivalence classes,[q] the equivalence class of
q. We assume thatQ is a manifold and each equivalence class
is a connected submanifold ofQ.

Further, letΩq be the set of admissible input streams for the
system being currently in configurationq. For eachq ∈ Q, let
Aq : Ωq → Q, whereAq(ω) is the state that the system reaches
from q underω ∈ Ωq. Denote byΩ̃q = {ω ∈ Ωq : Aq(ω) ∈
[q]} the subset of input streams steering the system back to the
same equivalence class of the initial point. Forω1, ω2 ∈ Ω̃q, the
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stream concatenationω1.ω2 is well defined. The notion of kine-
matic (i.e., driftless) systems of the form (1) can be extended in
this context by the assumption thatΩ̃q contains an identity ele-
ment,0 ∈ Ω̃q, such thatAq(0) = q, for all q ∈ [q].

The introduction of input equivalence classes induces us
to consider two different types of behaviours which may be
termed “nonholonomic” by analogy with observations made in
paragraph I-A. Loosely speaking, if nonholonomy is associ-
ated with an increase of reachability for a system when suit-
able cyclic controls are applied, then a first, “external” type of
nonholonomy would refer to systems where cyclic switchings
among different equivalence classes add to reachability. A sec-
ond, “internal” type of nonholonomy would instead refer to sys-
tems where the nonholonomic behaviour is obtained by cyclic
paths within the same equivalence class.

More precisely, we propose the following
Definition 1: A system(Q, T ,U , Ω,A) is said to be exter-

nally nonholonomic atq ∈ Q if the setR[q]
q reachable fromq

while remaining within[q], is strictly contained inRq(Ω̃q) =
{Aq(ω) : ω ∈ Ω̃q}.

Describing the second type of nonholonomy requires more
work. We need first to give more structure to the setΩ̃q of
streams acting on[q]. A system is said to be invertible if
for every q ∈ Q and ω ∈ Ω̃q, there exists̄ω ∈ Ω̃q such
that Aq(ω.ω̄) and Aq(ω̄.ω) are both equal toq. Consider
the following relation inΩ̃q: ω1 ≡ ω2 if, for all q ∈ [q],
Aq(ω1) = Aq(ω2). Then, onΩ̃q/ ≡, the inverse of each el-
ement is defined uniquely. Indeed ifω̄1, ω̄2 are two inverses for
ω ∈ Ω̃q (henceAq(ωω̄i) = Aq(ω̄iω) = q, i = 1, 2) then

Aq(ω̄1) = Aq(ω̄1ωω̄2) = Aq(ω̄2),

i.e. ω̄1 ≡ ω̄2. In the following, up to taking the quotient̃Ωq =
Ω̃q/ ≡, we will restrict to consider driftless invertible systems
where the inverse is defined uniquely, which is tantamount to
assuming that̃Ωq is a group. We assume that̃Ωq is finitely
generated and denote byS = {s1, . . . , sn} a set of generators.

Consider now the subset ofsimple input streams overS,
Ω̃S

q = {skσ(1)

σ(1) s
kσ(2)

σ(2) . . . s
kσ(n)

σ(n) , σ ∈ S(n), kσ(j) ∈ ZZ, j = 1, . . . , n}
whereS(n) is the set of permutations of(1, 2, . . . , n), and let
Rq(Ω̃q) andRq(Ω̃S

q ) denote the reachable set fromq under

input streams iñΩq and in Ω̃S
q , respectively. Definitions we

propose to capture the second type of nonholonomy are then as
follows:

Definition 2: A system(Q, T ,U , Ω,A) is said to be non-
commutative atq ∈ Q if Ω̃q contains at least two elementsω1

andω2 such that for theircommutator [ω1, ω2] := ω1.ω2.ω̄1.ω̄2

it holdsAq([ω1, ω2]) �= q.
A system isinternally nonholonomic at q if there exists a set
of generatorsS and ω1, ω2 ∈ Ω̃S

q such thatAq([ω1, ω2]) �∈
Rq(Ω̃S

q ).
A suggestive geometric interpretation can be given of these

definitions (see fig.13), which is reminiscent of Berry’s phase
in quantum mechanics [37]. Berry noticed that if a quantum
system evolves in a closed path in its parameter space, after
one period the system would return to its initial state, however
with a multiplicative phase containing a term depending only

Fig. 13. Illustrating the definition of nonholonomic systems

upon the geometry of the path the system traced out, or Berry’s
Phase. In our setting, consider a local decomposition ofQ in a
base spaceB and afiber spaceF , with B × F = Q. Choosing
coordinatesq = (qB , qF ) and denoting the canonical projec-
tionsΠB(q) = qB , ΠF (q) = qF , letB be a maximal codimen-

sion set such thatΠF (Rq(Ω̃
[q]
q ) (for external nonholonomy), or

ΠF (Rq(Ω̃S
q ) (for internal nonholonomy), are constant. If there

exists an input stream which would steer the system fromq to
q
 with ΠB(q) = ΠB(q
) but q �= q
, then the system is non-
holonomic atq, and the difference betweenΠF (q
) andΠF (q)
is the corresponding holonomy phase.

Example 1. A first set of elementary examples can be ob-
tained considering the classical Heisenberg-Brockett nonholo-
nomic integrator ([6])

Dq =


 1

0
−y


u1 +


 0

1
x


u2, (27)

with q ∈ Q = IR3, and[q] = Q. Only internal nonholonomy
can obviously apply.

i) Consider first the example in the classical setting, i.e. in
continuous time (t ∈ T = IR+, Dq := d

dtq(t)) and with a con-
tinuous control set (u ∈ U = IR2). We assume, without loss of
generality, thatΩ is comprised of piecewise constant functions
IR+ �→ U [38]. Internal nonholonomy of this system according
to definition (2) can be shown by taking the input construction
commonly used in textbooks to illustrate “lie-bracket motions”
(see e.g. [5]). Namely, letS = (s1, s2) with s1(t) = (δ1 0),
t ∈ [t1, t1 + τ1] and s2(t) = (0 δ2), t ∈ [t2, t2 + τ2]
(hences̄i = −si, i = 1, 2). One easily getsRq0(Ω̃

S) =
(x0 + α, y0 + β, z0 − y0α + x0β + αβ) , α, β ∈ IR, while
Aq0(s1.s2.s̄1.s̄2) = (x0, y0, z0 + 2δ1δ2τ1τ2). Hence
Aq0([s1, s2]) �∈ Rq0(Ω̃S). This example (which could be eas-
ily generalized to systems as in (1)) shows that the classical no-
tion of small-time, local nonholonomyrelated to the Lie algebra
rank condition, is a particular case of internal nonholonomy.

ii) Definition (2) equally applies to system (27) when consid-
ered in discrete time, i.e.t ∈ T = IN, Dq := q(t + 1) − q(t).
This can be shown by taking e.g.s1 = (δ1 0), s2 = (0 δ2),
so thatAq0 ([s1, s2]) = (x0, y0, z0 + 2δ1δ2), while Rq0 is as
before. The continuity of the control set guarantees complete
reachability for this system in both the continuous and discrete
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Fig. 14. A micro-electro-mechanical (M.E.M.) motion rectifier illustrating the
definition of external nonholonomy in a piecewise holonomic system.

time cases.
iii) Consider now a finite input set such as

U = {(u1, u2)| u1 ∈ {0, a,−a}, u2 ∈ {0, b,−b}, a, b ∈ IR} ,
and Ω = { strings of symbols inU}. The restriction on
controls does not substantially change the analysis un-
der continuous time. Indeed, considerings1(t) = (a 0),
t ∈ [t1, t1 + τ1], s2(t) = (0 b), t ∈ [t2, t2 + τ2], one gets
Aq0([s1, s2]) = (x0, y0, z0 + 2abτ1τ2), and both nonholonomy
and complete reachability easily follow from arbitrarity of
τ1, τ2.

iv) In the discrete input, discrete time case, the input com-
mutator [s1, s2] with s1 = (a, 0), s2 = (0 b), produces
Aq0([s1, s2]) = (x0, y0, z0 + 2ab). Internal nonholonomy is
maintained. However, the reachable set from the origin is only
comprised of configurations in a discrete set,R0 = {q :
x = �a, y = mb, z = nab, �, m, n ∈ ZZ}. The situa-
tion is completely different, and density of the reachable set
is guaranteed, if e.g.U = {(u1, u2)| u1 ∈ {0, a,−a, c,−c},
u2 ∈ {0, b,−b, d,−d}, a, b, c, d ∈ IR} with a

c , b
d �∈ lQ.

The interpretation of nonholonomy given in fig.13 applies
to all cases above, using coordinatesx, y to describe the base
space, whilez parameterizes the fiber.

Example 2. As an example of a piecewise holonomic sys-
tem, consider the simplified version of one of Brockett’s rec-
tifiers ([39]) in figure 14. The tip of a piezoelectric or elec-
trostrictive element oscillates in thex–direction, while an actu-
ator drives the oscillator support along they–direction. When
y reaches a thresholdy0, dry friction is sufficient to push the
rod in thez–direction. Disregarding dynamics, the rectifier can
be modeled by a continuous–time system with configurations
q = (x, y, z) ∈ Q = IR3. Assuming that the velocity of the
support (̇y), and of the oscillator tip (̇x) can be freely chosen,
a model for this system congruent with the definitions above
would be

 ẋ
ẏ
ż


 =


 0

1
0


u1 +


 1

0
0


u2 +


 1

0
1


u3

with the input restrictions{
u3 = 0 y < y0

u2 = 0 y ≥ 0 .

Two input equivalence classes are thus defined inQ as
[q]free = {q ∈ Q : y < y0} and [q]engaged = {q ∈ Q :

y ≥ y0}. Clearly,R[q]free
q0 = {(x, y, z) ∈ Q : z = z0}, for all

q0 = (x0, y0, z0) ∈ [q]free, while Rq0 = IR3. The system is
thus externally nonholonomic according to definition (1).

Interestingly enough, however, the system is not internally
nonholonomic as per definition (2). Indeed, to generate the
set Ω̃q0 , at least two types of streams must be considered: an
internal type e.g.si : (x0, y0, z0) �→ (x, y, z0), and an ex-
ternal type (taking the state out of[q]free temporarily), e.g.
se : (x0, y0, z0) �→ (x′, y′, z′). Clearly, simple streams over
this set of generators are sufficient to reach any configuration
of the system (Rq(Ω̃S

q ) = IR3), hence internal nonholonomy
does not apply.

Base variables for this example would bex andy, while z
represents the fiber variable. Rectification of motion is obtained
by holonomic phase accumulation in succesive cycles. By
changing frequency and phase of the inputs, different directions
and velocities of the rod motion can be achieved. Note in
particular that inputu2 need not actually to be finely tuned, as
long as it is periodic, and it could be chosen as a resonant mode
of the vibrating actuator: tuning onlyu2 still guarantees in this
case the (non-local) reachability of the system (cf. [40], [11]).

Example 3. Rolling polyhedra are both externally and in-
ternally nonholonomic systems. External nonholonomy holds
trivially since the set of controls inUq that leave the system
in the same configuration class[q] is the identity element, and
represents the behaviour illustrated in fig.1.

Internal nonholonomy according to definition 2 also holds:
indeed,Ω̃q, the set of words that bring back the polyhedron
on the same face lying on the plane, is generated by the fi-
nite setS = {Rλ, λ = 1, . . . , h − 1}. If βλ/π ∈ lQ for all
λ = 1, . . . , h−1 thenΩ̃S

q is a finite set because, ifβλ = 2π mλ

pλ
,

Rpλ

λ = (0, 0). ThereforeRq(Ω̃S
q ) is a finite set. SinceRq(Ω̃q)

is an infinitely countable set, nonholonomy immediately fol-
lows. If, otherwise, there existsλ such thatβλ/π /∈ lQ then, by
equation (13), there exists another indexλ ′, λ′ �= λ for which
it also holdsβλ′/π /∈ lQ. Without loss of generality we can as-
sumeλ = 1 andλ′ = 2 and choose the set ofh − 1 generators
given byβ2, ....βh. In order to prove nonholonmy we have to
compare commutators with translations inΩ̃S

q . Translations in

Ω̃S
q are written asR

kσ(2)

σ(2) R
kσ(3)

σ(3) . . . R
kσ(h)

σ(h) , with kσ(j) = 0 if

βσ(j)/π �∈ lQ. In other words translations iñΩS
q have to be gen-

erated only by those generators withλ such thatβλ is irrational
with π. Now, let t be any translation iñΩS

q . Then the commu-
tator[R2, t] gives a translation oft(e−β2 − 1) which cannot be
generated by simple words.

VI. CONCLUSIONS

The notions of nonholonomy and reachability are conven-
tionally related to differentiable control systems, and are de-
fined in terms of their differential geometric properties. How-
ever, these notions apply also to more general systems, includ-
ing systems with a quantized input set. Although quantized
control systems can be used to represent very important prac-
tical problems (e.g. in embedded control systems with band-
width limitation, or in hybrid systems), very few results have
been obtained so far in their analysis and control.
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In this paper, we have attacked, as a concrete case study, the
problem of describing the structure of the reachability set for a
rolling polyhedron, and of steering the system to desired con-
figurations. The problem is important in its own right, e.g. in
robotics applications. Moreover, notwithstanding its specificity,
some lessons can be learned by a careful analysis of the study
of this case.

It turns out that, while the powerful tools of differential geo-
metric control theory have to be abandoned, their role in many
respects is taken by the theory of groups, and Lie groups in
particular.

A second important fact is that, in many cases, the reachable
set of systems with quantized inputs has a lattice structure, or at
least can be thus approximated. For systems on lattices, prob-
lems of steering and planning can be efficiently solved by using
linear integer programming techniques.

The combination of such techniques produced a planning al-
gorithm for rolling polyhedra which was in fact more efficient
than existing methods for rolling regular surfaces (the problem
from which our interest in rolling polyhedra actually started).
As a practical fallout of research on rolling polyhedra, a bet-
ter algorithm for regular surfaces inspired to quantized control
techniques was generated in [41].

Many problems remain open with discrete nonholonomic
systems and quantized control, including for instance the im-
plications on stabilization of different structures of the reach-
able set. It is our belief that the complete solution of this case
study will be of help in addressing more complex and general
problems in this field.

APPENDIX

GRAPH NOTATION AND DEFINITIONS

A graphG = (N, E) is a structure consisting of a finite set
N of nodes and a finite setE of edges. A graphG ′ = (N ′, E′)
is a subgraph ofG = (N, E) if N ′ ⊂ N and E ′ ⊂ E.
We denote an edge that joins two nodesni andnj ∈ N by
(ni, nj) ∈ E or, equivalently, byeij . An edge joining a node
to itself is a loop. If two or more edges join the same pair of
nodes, these edges are called multiple edges. A graph is sim-
ple if it has no loops or multiple edges. A path between two
nodesn1 andns is a finite sequence of nodes and edges of the
typen1, e12, n2, e23, · · · , es−1,s, ns. Note that ifG is simple,
a path is defined by a sequence of nodes. A path between a
node and itself is a closed path. A closed path in which all the
edges and nodes (except the first and the last one) are distinct is
a cycle. A graph is connected if there is a path between every
pair of nodes. A graph is said to be planar if it can be drawn
on a plane so that no two edges intersect except at a node. The
two-dimensional regions defined by the edges in a planar graph
are referred to as the faces of the planar graph. In a planar
graph, all faces are bounded by edges, except for exactly one
unbounded face. Denoting byF the set of faces (including the
unbounded one), and byS # the cardinality of a finite setS, the
Euler relation (2)for any connected planar graph is written as
N# − E# + F# = 2.

Let G = (N, E) be a simple planar connected graph andF
the set of its faces. The dual graph ofG is defined asGd =
(Nd, Ed) whereNd = F and e ∈ Ed if e = (F1, F2) for

any two adjacent facesF1, F2 ∈ F of G. Clearly,Gd is also
a simple planar connected graph. A connected graph with no
cycles is a tree. A tree withN# nodes hasN# − 1 edges. A
subgraphT of a graphG is a maximal tree ifT is a tree and it
contains all the nodes ofG.

Fix a maximal treeT of G = (N, E) and let {τλ|λ =
1, · · · , f − 1} be the set of edges ofG which are not inT . It
obviously holdsf−1 = E#−(N#−1), hence, by the Euler re-
lation (2),f = 2+E#−N# = F#. Also, forλ = 1, · · · , f−1,
let na

λ andnb
λ denote nodes connected byτλ. The fundamen-

tal group of G at a noden0 ∈ N is the set of all closed paths
starting and ending inn0 with the composition law given by
concatenation. With this notation fixed, the following classical
proposition allows one to describe a finite set of generators for
the fundamental group of a graph (for a proof, see e.g. [42]):

Proposition 9: Fix a maximal treeT of a graphG. The
fundamental group ofG at a noden0 is a free group gener-
ated byf − 1 elements of the generator setAG = {αλ|λ =
1, · · · , f − 1}, where forλ = 1, · · · , f − 1, αλ is a closed path
onG described by three subpathsαλ = αa

λ.τλ.αb
λ, with

- αa
λ any path onG from n0 to na

λ;
- αb

λ any path onG from nb
λ to n0.

We now give another set of generators for the fundamental
group. We define a bijective map

τλ �→ Fτλ
(28)

from the set of edges outsideT to the set of faces ofG such that
τλ is adjacent toFτλ

, in the following way. There existsτλ1

such thatT ∪ τλ1 contains a loop enclosing a single faceFτλ1

of G. Indeed ifT ∪ τλ1 contains a loop enclosing more than
one face, then we can chooseτλ′ enclosed inside the loop. Now
T∪τλ′ contains a smaller loop and in a finite number of steps we
conclude. LetG1 be the graph obtained by removingτλ1 from
G. ThenG1 has one edge and one face less thanG. Moreover
T1 = G1 ∩ T is a maximal tree ofG1. We can now chooseτλ2

such thatT1 ∪ τλ2 contains a loop enclosing a single faceF̃τλ2
.

Now, eitherF̃τλ2
is a face ofG or F̃τλ2

= Fτλ1
∪Fτλ2

for some
faceFτλ2

�= Fτλ1
of G. Then we proceed recursively removing

τλ2 from G1 and so on.
By choosing suitably the pathsαa

λ andαb
λ in Proposition 9 we

can set
αλ = αnλ

λ Cλ(αnλ

λ )−1 (29)

whereαnλ

λ is a path fromn0 to a nodenλ adjacent to the face
Fλ of equation (28), andCλ is a single rotation aroundFλ start-
ing fromnλ.

Proposition 10: Let T be a maximal tree of a graphG. Then
the fundamental group ofG at a noden0 is generated byf − 1
elements of the type (29)
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