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Reachability and Steering of Rolling Polyhedra:
A Case Study in Discrete Nonholonomy

Antonio Bicchi, Yacine Chitour, Alessia Marigo,

Index Terms—Motion Planning, Nonholonomic Systems, Quan- nonholonomic-like behaviours can be recognized in more gen-
tized Control Systems, Reachability Analysis. eral systems, including for instance discontinuities of the dy-

Abstract— Rolling a ball on a plane is a standard example of namics, discreteness of the time axis, and discreteness (e.g.,
nonholonomy reported in many textbooks, and the problemis also  quantization) of the input space.
well understood for any smooth deformation of the surfaces. For Such more general systems with nonholonomic features may
non-smoothly deformed surfaces, however, much less is known.b dt t el f t d
Although it may seem intuitive that nonholonomy is conserved e ‘_Jse 0 represen ;ome very general classes or systems gn
(think e.g. to polyhedral approximations of smooth surfaces), cur- devices of great practical relevance. However, some very basic
rent definitions of “nonholonomy” are inherently referred to sys- control problems such as the analysis of reachability and the
tems described by ordinary differential equations, and are thus synthesis of steering control sequences for such systems still
Inal?lpzlk:(i::gfptec; \S/vuecgtjt)j/;t;rgz:et of positions and orientations that a pose quite challenging problems, to which, despite some deep
polyhedral part can reach by rolling on a plane through sequences analggles that can be showrj to EXISt.WIth continuous no_nholo—
of adjacent faces. We provide a description of such reachable set, NOMIC systems, known solution techniques from the continuous
discuss conditions under which the set is dense, or discrete, or hasdomain do not extend by any trivial means. For these problems
a compound structure, and provide a method for steering the sys- are very hard in general, we focused our initial efforts, reported

fp’glFgaiodnessgeghr‘;icgit:% Cgt‘_fci)%ug?t_ir?g-s?r‘?;i‘:)?rtgssre(':ehvznsestoin this paper, on a practically relevant case-study, from which
icati u ipulati industri , su y's- o : : ;
tem is interesting as a case study illustrating a rather general class some general insight can be inductively gained.

of dynamical systems that can be considered as the discrete-time,
discrete-input counterpart of traditional nonholonomic systems. A, Nonholonomic behaviours in nonsmooth systems

e paper dscusses o whal exert essons eared oM YES252 1, general, cassical nonholonomic constaits come in o
general discrete nonholonomic systems. varieties, kinematic constraints (often due to contact kinemat-
ics, as e.g. in rolling), and dynamic constraints (due to sym-
metries induced by conservation laws, for instance, of angu-
lar momentum) [1], [2]. In this paper we focus on the former

type. Recall the definition of a (smooth) nonholonomic con-

LTHOUGH nonholonomic mechanics has a long historystraint that is familiar from elementary mechanics textbooks: a
dating back at least to the work of Hertz andldgr to- Mechanical system described by coordinates Q, with Q

wards the end of the 19th century, it is still today a very activ@ Smoothn-dimensional manifold, subject ta smooth con-
domain of research, both for its theoretical interest and its appht@intsA(¢)¢ = 0, is nonholonomic ifA(-) is not integrable.
cations, e.g. in wheeled vehicles, robotics, and motion generaAn €quivalent description of such systems is often useful,
tion. In the past decade or so, a flurry of activity has concerndflich uses a basis(q) of the distribution that annihilates(q)
the study of nonholonomic systems as nonlinear dynamic sy8-describe allowable velocitigsc 7, Q as
tems to which control theory methods could be profitably ap- -
) : X ¢ = G(q)u. (1)
plied. As a result, the control of classical nonholonomic me-
chanical Systems such as cars, trucks with tra”ers, rOIIing Sﬂ]anks to Frobenius’ theorem, nonho|0nomy can thus be in-
objects, underactuated mechanisms, satellites, etc., has magdegtigated by studying the Lie algebra generated by the vector
definite progress, and often met a satisfactory level. fields in G(q), or, in other terms, by analyzing the geometry
Systems considered in classical nonholonomic mechanigsthe reachability set of (1). Such simple formulation of kine-
are smooth, continuous-time systems, i.e., they can be dgatic nonholonomic systems is sufficient to illustrate two fun-
scribed by ODEs on a smooth manifold of configurations, olamental aspects of nonholonomy:
which smooth (often analytic) constraints apply. However, 1) elements of: € R~ in (1) play the role of con-
trol inputs in a nonlinear, affine—in—control, driftless
iugp(?" gf’mh'_fC qut}t]rééﬁ '?T IZ()tOl(f“ZO "Rfclsyz'f-R_ E. Piagaio” dynamic system. If the original constraint is non-
ntonlio bicchnl IS wi entro Interdipartimentale di Ricerca . Plaggio’, . . . .
University of Pisa, 56100 Pisa, Italy. Yacine Chitour is with the Universit’ _hmonomlc’ the dimension of Fhe reaChaple man'ml_d
de Paris-Sud, 91405 Orsay, France. Alessia Marigo is with Istituto per le Ap- is larger than the number of inputs. This has moti-
plicazioni del Calcolo “M. Picone”, CNR, 00161 Roma, ltaly. E-mail: bic- vated purposeful introduction of nonholonomy in the
chi@ing.unipi.it, Yacine.Chitour@math.u-psud.fr, marigo@iac.rm.cnr.it . . .
design of mechanical devices, to spare actuator hard-

Submitted to: IEEE Transaction on Automatic Control, November 2000. Re- ) e -
vised and resubmitted, August 2002 ware while maintaining steerability (see e.qg. [3], [4]).

I. INTRODUCTION
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Notice explicitly that for driftless systems, reacha- I I I
bility on a manifold with dimension larger than the N — ~ Q ~——
dimension of the input space is an essentially non- L= < < & .
linear phenomenon, which is altogether destroyed by ,_L'ﬂ-ﬂx g TN \ B o A
linearization, and can be considered as a synonim of l I — '
nonholonomy; - e I - .

2) the effects of different consecutive inputs in nonholo- ey Na 74
nomic systems do not commute. In other words, peri- e T L'»____,_,ﬂ-'—q\\ L:-”’H‘“\
odic inputs may produce net motions of the system in —
directions not belonging to the input distribution eval- [ [ I
uated at the starting point. This observation is crucial ! N ﬂ - '
in the interpretation of the role of Lie-bracketsin de- r— g R <
ciding integrability of the system[5]. RN N q;__,,_.. =

Behaviors that, by similarity, could well be termed “nonholo-

nomic”, may actually occur in a much wider class of Systenﬁjg. 1. A die being rolled between two movable parallel plates. The plates

. . . can be thought of as the jaws of a robotic gripper, manipulating the polyhedron
than mechanical systems with smooth contact constraints {Qeorientation purposes. The sequence illustrates a behaviour which could be
symmetries. Let us refer to general time-invariant dynamic sysualitatively described as nonholonomic.
tems as a quintuplE = (9, 7,U, 2, A), with Q denoting the
configuration set7 an ordered time set/ a set of admissible
input symbols{? a set of admissible input streams (continuougynthesis problem for the linear caseé = Az + Bu, pro-
functions, or discrete sequences) formed by symbalé,iand  viding sufficient conditions and a constructive technique to find
A a state—transition mag : Q x Q — Q. a finite input set/ to achieve a reachability set which is dense

It has been observed that in piecewise smooth (p.s.) systeimsy. The analysis of the reachability set of a QCS with a given
(where time is continuous is a p.s. manifold, andl is @ quantized input sel/, has been considered in [21], [19]. In
p.s. map) with holonomic dynamics within each smooth reahese papers, a complete analysis is achieved for driftless lin-
gion, nonholonomic behaviours can be introduced by switClear systems (while it is pointed out that the problem for general
ing among different smooth regions of the configuration spacnear systems is as though as some reputedly hard problems in
Piecewise holonomic systems have been studied rather extgiimber theory), and for a particular class of driftless nonlinear
sively (see e.g. [6], [7], [8], [9], [10]). A prominent role in systems, namely the exact sampled models-dimensional
the study of p.s. nonholonomic systems is played by tools froghained—form systems ([22]), which can be considered as the
differential geometric control theory (cf. [1], [2]) and from thesimplest nonholonomic system model.
theory of stratified manifolds ([11]). In this paper, we study and solve the reachability and steer-

Nonholonomic behaviors may also be exhibited by discreténg problems for another class of quantized nonholonomic sys-
time systemsT = N). Consider that, iiQ and/ in the system tems, consisting of a polyhedral body rolling on a planar sur-
quintuple represent continuous sets, a classical discrete—tifge. The problem is representative of a more general, and con-
control system is described. For such systems, the reachabitterably more complex, class of nonholonomic systems than
ity problem has been already clarified in the literature (see e ghained form systems, and is thus believed to offer, besides its
[12], [13], [14], [15]). On the other hand, © andl/ are as- own interest in applications such as manipulation of industrial
sumed to be discrete sets, then the system essentially represgaiss, further illustration of the nature of the problems and of
a sequential machine (automaton). Reachability questions f@ssible solution techniques.
such systems are fundamentally equivalent to graph connectiv-
ity analysis, an extensively studied topic.

A particularly stimulating problem arises whé&p has the
cardinality of a continuum, bu¥ is quantized (i.e. finite, or = Manipulation of polyhedra through rolling by means of
discrete with values on a regular mesh). Such systems, whidbotic end—effectors (see e.g. fig.1), was proposed in [23],
will be referred to as quantized control systems (QCS), are dn-an endeavor to generalize to industrial parts with edges and
countered in many applications, due e.g. to the need of usingrtices the manipulation—by-rolling idea that proved effective
finite—capacity digital channels to convey information throughtvith regular bodies ([24], [4]). The goal of manipulation is to
an embedded control loop, or to abstract symbolic informatidiring the part from a given initial configuration to another de-
from too complex sensorial sources (such as video imagessined one: it is desired to know whether this will be possible for
visual servoing applications). As a consequence, several eegiven pair of configurations, and if so, to provide a method
searchers devoted their attention to this type of systems (geesteer the part. The example of a rolling polyhedron, already
e.g. [16], [17], [6], [18]). Itis important to notice that, while mentioned in [19], can be considered as the discrete counter-
inputs are quantized, the system configurations are not a pripért of the well known plate—ball system (see e.g. [25], [26],
restricted to any finite or discrete set: thus, it may happen thaf], [28], [29], [4]). The operation of rolling a polyhedron on
the reachable set has accumulation points, or is dense in thelanar surface is illustrated in fig.1. For this system (to be
whole space, or in some subsets, or nowhere ([19]). defined in more detail later), consider input actions as rotations

Chitour and Piccoli [20] have studied a quantized contr@bout one of the edges of the face lying on the plate, by exactly

B. Rolling polyhedra
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: in the system description. In section V, we turn our attention
= to the generalization of problems and ideas encountered in the
‘ case study, and consider nonholonomic behaviors that in gen-
eral systems with discrete input and time sets. A definition of
nonholonomy that generalizes classical ones to discrete systems
is proposed, along with some related concepts and illustrative
examples. A short conclusion section completes the paper.
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nees " Il. ROLLING POLYHEDRA: MODELING AND MAIN
i NOTATIONS

o We consider manipulation of parts that have a piecewise flat,
closed surface, comprised of a finite number of faces, edges,
. ’ e A and vertices. Observe that actual parts need not be convex, in
\ TR general. However, the finger plates being assumed to be large
w.r.t. the diameter of parts, we need only be concerned with the

Fig. 2. Sets of positions reached by the centroid of different polyhedra @Nnvex hull of parts themselves.
rolling on a plane in all possible sequencesNofturns. Only points lying on  Several kinds of motions for a polyhedron on a plane are

a regular grid can be reached by rolling the cube (a), while points reache ; T At _
rolling the parallelepiped (b) or the polyhedron (c) tend to fill the pIanWasWSSIble’ such as e.g. sliding on a face, pivoting about a ver

grows. Also, consider a line fixed with the polyhedron (not perpendicular §X OF tumbling about an edge. However, we rule out the for-
any face), and the angle formed by its projection on the plane with a fixed axiser two possibilities, and only consider sequences of rotations

2ggée(sc;)£’ggyfedng{;‘;i'“Tﬁéi)ningré?g gg'érg:fvfg_r by multipleso2, while in - 2hout one of the edges in contact, by the amount that exactly
brings another face to ground.

This action on the parts, which will be referred to as an ele-

the amount that brings an adjacent face on the plate. A first ig_entary “turn”, appears to be more reliably executed by robot

portant aspect of the reachability analysis for rolling polyhed ands tga_n S”?ing gr p_ivo;ilngb. Indeed, }'\;E"e slidir:g mar;irr)]glﬁ
is illustrated in fig.2, showing the reachable set in a large bﬂ?n IS obviously undesirable because ot the compliex and highly

finite number of steps as obtained by direct computation. Tchertain model of friction and the risk of loosing the grip on

fact that for some polyhedra the reachable set has a lattice strﬁbe- object, the reason for eXCIl.Jd'r.]g pivoting manipulation is
re subtle, and is illustrated in fig.3. Recall from standard

ture, while for others the set gets denser and denser as manip). tial irv 1301 that th hol ic oh
lation proceeds, is apparent from simulation results. This ph ierential geometry [30] that the nonho Onomic phase asso-
ted with a closed curve on a regular surface is equal to the

nomenon is akin to the one studied in detail for a simpler cla§t | i fth losed ion (the total ture b
of systems in [19]. Rolling polyhedra also exhibit a second int-0 al curvature ot the enclosed region (the otal curvature be-
the integral of the gaussian curvature, which in turn is the

teresting phenomenon which clearly bears some resembla L
with the nonholonomic behavior of the plate—ball system. IrPrOdUCt of the principal curvatpres). . Such phase alsp repre-
deed, consider applying first (through suitable forces appliti?’(?m_S the net effect_ on the object orientation of a ro!llng op-

by the upper plate, possibly resorting to compliance and fri ration, conducted in such a way that the contact point traces

tion) a rotation on the right, hence forward, left and backwarttﬁ1e given closed curve on the object's surface [4]. The same

(see fig.1). While the center of the die after the four action%DIOIies to polyhedral surfaces, provided that the gaussian cur-
{:\ture function is replaced by a distribution which is zero ev-

returns to its initial position, the orientation has changed: inpt\f h Il ol ; ded havi :
actions do not commute. However, the fact that at each confi ywhere (all planar aces and edges naving zero gaussian cur-
ature) except at the vertices, where Dirat®inctions of cur-

uration of a polyhedron, only a finite set of actions is available, ‘ trated. Consid Vot e h h
makes classical definitions of nonholonomy and differential gé(—a ure are concentrated. Consider now pivoting {1.e., have the

ometric approaches to reachability analysis (such as e.g. th%%’@taa point pass through a vertex) with a *practical” polyhe-
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proposed for discrete—time, continuous control systems in [1 ,on W'th somewhqt smoothed (and imprecisely defined) ed_ges
- nd vertices (see fig.3, left). The total curvature of the region
[13], [14], [15]) altogether unapplicable. - ; .
enclosed within the path of the contact point will depend very
) sensitively on the particular path and on the uncertain geometry
C. Paper outline near the vertex, where a large amount of curvature is concen-
In this paper we consider the reachability problem for rollingrated. On the other hand, a sequence of turns through all the
polyhedra as a case study for understanding some fundamfates adjacent to the vertex will achieve a net effect equal to the
tal nonlinear dynamical effects in quantized control systemtotal curvatureat (ideally) ornear (practically) the vertex (see
A mathematical model of the system is provided in section Ifig.3, right), irrespective of those details. It can be easily seen
while section Il presents our results on a classification of tht@at such vertex curvature is equal to the so-cadlefdct angle
structure of the reachable set in relation with the geometry af the vertex, i.e. the difference betweenand the sum of all
the polyhedron. In section IV, the constructive proofs of thesgngles between pairs of coplanar edges adjacent to the vertex
results are exploited to provide a method to steer the polyh@ee fig.4).
dron to any reachable configuration. Of particular interest hereln the rest of this section, we will provide a detailed descrip-
is the discussion of robustness of structural results to toleranties of the elements of the quintuple= (Q, 7, U, 2, A) that



VERSION OF August 30, 2002 103

Fig. 3. lllustrating pivoting and turning operations.

F

Fig. 4. The defect angle at a vertex equals its total curvature. Fig. 5. The developmer®p of a polyhedror on the plandl.

models the rolling polyhedra dynamics. Let us first consid@D cartesian fram@zy fixed onIl. Fix, once for all, a pla-
the configuration seQ. Let P denote a polyhedron rolling on nar development, or “unfolding”, o on II (denotedP p),

a planell, and consisting of a simply connected union oftclosed polygons
e V={wy,...,v,} the set of its vertices; each corresponding to a different face (see fig. 5), such that two
o £={e1,..., e} the set of its edges; polygons are adjacent i only if the corresponding faces are
o F={Fy,...,F.}the set of its faces. adjacent inP (such a development is always possible, though
For a general polyhedron, it holds not unique). Affix to all polygons irPp a 2D cartesian frame
(04, i, y;) obtained by translation of the frandery of II to a
h—k+r=x, (2)

pointo; of the polygon. This choice gives a unigue frame fixed
wherey is the Euler-Poincarcharacteristic of the surface toOn each face of> whenPp, is folded back into the original
which the polyhedron is homeomorphic. We assumefha  Polyhedron. It will be useful to define, for all= 2, ..., r, the
convex and simple, i.e. continuously deformable into a sphefdanar vectorsv; := o; — o1 € Il relative to(o1, z1,y1) (see
hencey = 2 andh > 4. fig. 5).

A generic configuration o could be identified by giving A configuration ofP will henceforth be described by a triple
the index of the face lying on the plane, the position of the prar = (2,6, F;) € Q = R® x S! x F, whereF; indicates the
jection on the plane of an arbitrarily fixed point, and the face currently oril, z € R? the coordinates of the poin;
orientation of the projection of an arbitrarily fixed line fa  with respect to the fram@zy fixed onII, and the orientation
(provided the line is not perpendicular to any face). Hence, tité (0;, z;, ;) W.r.t. Ozy. On this manifold, a distance can be
configuration set can be identified with the stratified manifoldefined as
Q = R? x S! x F. Although such a description of the config- @ ((z1,y1,61, F}) — (22,2, 02, F})) =
uration set is very direct, it does not produce a convenient set /(1 — z2)2 + (y1 — y2)2 + |01 — 02|51 + 6(F, F}),
of coordinates to describe the dynamic evolution of a rollinghere||6; — 6z]|s1 = min{|f; — 6>  (mod 27)|, |62 — 6;
polyhedron, which motivates the introduction of a different defmod 27)|} is the distance induced by the Riemannian metric
scription of Q. on S (inherited from R) and §(F;, F;) = 0if i = j,

A 2D cartesian framéo;, z;,y;) (o; denoting the origin) is 6(F;, F;) = oo if 4 # j.
affixed to each facé’; by the following procedure. Choose a As for the time set7 in X, given the discrete nature of
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input actions for the polyhedron, it is natural to considef;, followed by the transit fron¥; to Fy,i.e.w = wfil.&.wlk
7 = N,. Regarding the admissible input symbols aneith & = wy;.w.wj,' € Q. Recalling the construction of the
stream setsl/ and (2, let us indicate by(F;F;) the elemen- plane development of the polyhedr®y (see fig. 5), and the

tary turn between two adjacent facés and F;. If, for definition of transits, we directly get

n > 2andk = 2,...,n, F}, is adjacent tof;, , we de- 1 10

note by(F, - - - F}, ) the concatenation of the elementary turns A7) (wy; ) = (2 — € w;, 0, F1) (4)
(Fy Fyy), o (B Fy)s -5 (Fy,_, Fy, ). Moreover we call 44

w = (Fj, --- F},) astreamof length n. Aprormy(wir) = (2 + 6J0'wk’9/7pk). (5)

If F'is onll, (F') denotes the lack of turns, i.€’ remains on )
I1. The set of all admissible strearfisis clearly a subset of the N€Xt, observe that the action of the groflp of streams that
alphabet of the words generated by #igs, such that any two start and enq with facg’ on the plane, is clear_ly a subgroup of
consecutiveF’s in a word correspond to adjacent facegraf S £(2), the Lie group of rigid planar motions (indeed, the same
Forw,w' € Q) such that the last face afcoincides with the first helds for@;, 7 =1,...,r). Usual rules for composition of two
face ofw’, the streanw.w’ is defined as the concatenation.of elgmenthll,gg in SE(2) apply: denotingy; = (t;,6;),1; <
andw’. The relationd F; F; F;) = (F,F;) and(F,F;) = (F;) R0 €5, onehas
can be used to reduce words(i.e. to replace a stream with (6)
a shorter one which has the same net effect on the polyhedron. B
For each streamy = (F}, --- F}, ), the strean{F;, --- F;,) is Each elemend € Q, corresponds then to a unique pgire) €
clearly admissible and will be denoted by by !. Using the R?x S', dependingon the polyhedron geometrical parameters,
relations inQ2 we have thatv.w=! = (F},). Furthermore, for and its action o] is:
i,j=1,---,r let

(a)  €;; denote the subset 6f consisting of streams that

g1.92 = (t1 + "1ta, 01 + 62).

Ao p) (@) = (2 + 1,0+ 0, Fy). 7)

start atF; and finish atF;. If ¢ = j, we simply write
Qi = Qi
wi; € §2;; denote a particular stream frof to F,

(b)

called "transit”, which is uniquely defined as follows:

if i = jthenw; = (F;); forl < j < r, wy; con-

tains the ordered sequence of faces encountered when

moving from F; to F; on Pp, without repetitions;
Wij = wil.wlj for i, =1,---,1.
It follows thatw,;' = wj; and, forallk = 1,...,r,
Wij = Wik -Wkj-
As a consequence of these definitions, eag¢lis a group for
the concatenation with identity eleme(it;) and inversey —*

for eachw € Q;. Moreover, recalling that equality among

streams is defined modulo the above relations, one can write
Q = Ulgm‘gr Q;w;; (where, by a common slight abuse o
notation, the action of a stream on a group replaces the
tion on all the elements of the group). Indeed, any strea®

w = (F;- - Fj) can be rewritten.w; ;' .w;;, andw.w;;" € Q;.

Moreover, we hav€; = w;1Q w1;, i.€. everyl,; is conjugate
to ©2;. We then get that

Q = U wilQlwlj.

1<i,j<r

3)

Let [F;] denote the set of configurations with fage in con-
tact, which can be identified with the manifold®R S!. For

In conclusion, using equations (4), (5), and (7), we can write

Agw) = Apo,r) (W @.wik)

5 ~ 8
= (z+ &0 (t —w; + e%wy,), 0 + 0, Fy). ®

I1l. REACHABILITY ANALYSIS
Consider the reachable set @bit) from a configuration =
(2,0, F;), defined as

Ry ={A¢w): w= 9)

Thanks to(3) and(8), and with a little abuse of notation, we
can write

(Fy--- Fy) € Qq}.

Ry = U Ag(win . Q1.w15),

1<j<r

(10)

f
é’te_nce the reachable set frantan be regarded as the union of

opies of the set

RCII = .Aq(wﬂ.Ql), (11)

each copy being translated, rotated and takei'tp by the set

of fixed transitsvy, 1 < j < r. Therefore, regardingl ;(w;1)

as a given element ¢#,] = R? x S* on which(; acts as a
Lie subgroup of5S E(2), the reachability analysis of the rolling
polyhedron system reduce to the following algebraic problem:
study(2; as a subgroup ofSE(2),-), find a set of generators
for ©1, hence decide whethé); is dense inSE(2) or not, and

all ¢ = (2,0, F;) € [F;], the same set of admissible inputs idf not, investigate its structure.

available, namely/, = {(F,; F;) : F; is aface adjacent tf;}.
The set of admisible input streams @t= (z, 6, F;) is then
Qy = U1§j§7~ Qij.

The description of the quintuple for a rolling polyhedron

In this section, we first show th&t; is indeed a finitely gen-
erated free group, and provide explicitly a finite set of gener-
ators along with their actions o@ (subsection IlI-A). Next,
by analyzing the action of2; on S', we reduce the study of

will be now completed by describing the state-transition mag); to that of its normal subgroup;, which is the subgroup

i.e. the state4,(w) that the system reaches frapunderw €
Q.
Letq = (2,0, F;) andw = (F;--- F}) € Q4. Rewrite firstw

as the composition of the transit frof) to F; with a stream in

of translations, and give a general result regarding all possible
structures of the reachable set (subsection IlI-B). Finally, we
end up the section by carefully studying the reachable set when
it turns out to be discrete (subsection IlI-C).
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Fig. 7. A stereographic projection induces a partition of the pldne

Fig. 6. Left: . projects the polyhedron onto a circumscribed sphere. Right:

the induced partitionXs on S. o o o o

A. Sudy of 2
o o Fig. 8. Construction of the dual graghip of the simple planar connected
1) Description of Q; asafinitely generated freegroup: We  graphS(P).
use in this paragraph standard definitions and results of graph
theory (cf. [31]) and algebraic topology (cf. [32]), which are

reported in Appendix for the reader’s convenience. As a consequence of the above result, there is a one-to-one cor-
To a polyhedror we associate a grapip = (Np, Ep) respondence between faces and vertices of. Being the
such that: number of nodes id/» equal tor and the number of faces in
(i)  Np = F (each node iti » corresponds uniquely to a Gp equal toh, by using the Euler relation (2) we also get that
face of the polyhedro®); the number of edges i » is equal tok.

(ii) Ep={(F;,F,)|F,adjacent to F;} (an edge exists __The group of stream@, discussed above can hence be iden-

only between nodes corresponding to adjacent factified with the fundamental group of the graphG'» with base
in P). nodeF;. The classical result reported in Appendix , Proposi-

The following result holds: tion 9, can be rephrased in this context as follows: any element
Proposition 1: For a convex polyhedrof®, the associated of ©; can be rewritten as an integer combination (by concate-
graphGp is a simple planar connected grap;h. nation) of a finite number of generator stream§lin
Proof: Given a convex polyhedroR, consider first the Let us apply Proposition 10 to the dual graph $(P),

simple, planar connected grapti?) which is defined as fol- namelyGp = (S(P»d’ observing first that the numbgtrof

lows (see fig. 6). Let be some pointin the bounded connecte&aces ofthe planar graph is equal to the number of vertic; of
: : : d.e.f:h.AgeneratorseAG ={ax:A=1,---,f—1},is
component of R \ P, let S denote a sphere circumscribed to”; P

_n nxy—1 ; _
P, and consider the mapping of the surface of the polyhedrdVen Byax = a3*.Ci.(a3*)™", whereC), is a cycle encom
onto the sphere defined by passing exactly one bounded faceof.
In terms of our previous notation of input streams, such

a generatora, corresponds to a stream of typR, =
wij, Rawjy1, 1 < A < h — 1. Here, R, is a stream starting
where is the half-line fromr throughp € P. The image of the @nd finishing at some facg);, of the polyhedron adjacent to
edges of the polyhedrom,.(€), produces a partitio s on S. the vertexz)_A, and mclut_jlng a_II faces which are adjacent to Fhe
Such a partition defines a partition on the surface of the sphef@t€xvy, in the order in which they are encountered turning
into connected components (cells), corresponding to the ima@@und the vertex. Note also thai;, is the transit stream from
on the sphere of the faces of the polyhedron. Next, consider tfie 1 £5, in Pp. We finally obtain the following equivalent
stereographic projection of the partitioned sphere from a poiﬁb?raCter'Za“O”S ab,:

Te:P— 8 m(p)— SN,

v e S\ 7.(£) onto a pland] tangent taS ato € S\ 7.(£), i) is a free group generated by — 1 generators
Ry, -+, Rx,_, corresponding t& — 1 distinct ver-
S\ {v} — 10, tices of P;

ii) for all w € Q4, there existsV € N such that
(see fig.7). The partition induced dm by S(P) = m,(Xs) N
is known as the Schlegel map of the polyhedron. Note that = H Ren (12)
S(P) has as many faces, edges and verticeB,aand that the Tk’
unbounded face is the infinite component corresponding to the
cell of S containingu. Regarded as a graph (by identifying its with ji € {A1, -+, Ap—1} andep = £1.
vertices and edges with graph nodes and edges, respectively),
S(P) is a simple planar connected graph. Taking its dual (see2) Action of the generators of £2; on the polyhedron: From
the Appendix), one easily obtaidp, hence the thesis. B the previous definition of2,, it follows that, if P is initially

k=1
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lying on F, , then the effect of?, on Q is a rotation about an B. Structure for reachable sets of a rolling polyhedron
axis perpendicular ttl throughv » (which lies onII throughout 1) Dense structure and virtual vertex: Recall that to each

the action ofR,), by an angle, denoted by, equal to the glement; of 0, there corresponds a unique elemént) of

defect angle aty € P, thatisfy = 2m — >, anjy, Where  gp9) etthena : & € Q1 — (i,6) € SE(2) be the group
the sum runs over alfy such thatF}, is adjacent ta, and homomorphism defined by:

ayj, is the angle between two edges adjacent to the ver{ex
and belonging to the same faég, (see fig.4). The following a(@):R*x §' x {F} - R? x ' x {F}
proposition highlights a useful property of the defect angles of a(@) (2,0, F1) = Ao (@) = (2 + 8,0 + 0,F,).
a polyhedron. o
Proposition2: Let 3y, A = 1,---, h be the defect angles of Let 7, : SE(2) — S be the projection on the second fac-

P. They satisfy tor. Recall thatS' = R/27Z is an Abelian Lie group. Then
h mo IS a Lie group homomorphism, i.e., for evegyg’ € G,

Zm = 4. (13) we havery(g.9’) = m2(g).m=2(g") andmy is continuous. Then
A=1 72(a(1)) is the subgroup of'!, generated by thg,’s, 1 <

Proof: The previous equation can be deduced from thg < 4 — 1. Thanks to equation (13), it is evident thaj is
definition of the defect angle and the Euler relation (2). Wgenerated bysy, A = 1,...,h — 1. Subgroups of' are well

have studied (cf.[33]), and some useful definitions are recalled here.
h Let G be a group and its identity element. We use
ZﬂA =2rmh — Zoww < g1, -+,g9s > to denote the subgroup @ generated by
A=1 Aj g1, -+, gs € G. The order of an elementof G is the smallest

, ) integern € N such thay™ = i. We writeog(g) = n. If no fi-
We have)© ax; =251 7 Wh_ere’Vj = 2aon isthe sumof pieinteger exists such that = i, we letog(g) = +oo. The
inner angles of facé’;. Denoting bye;-"é the number of edges order of a groug is the smallest positive integersuch that
of face F/;, and recalling that;, = (ef — 2)m, we get g" =iq, Vg € G and we writeo(G) = n. If there exists some
g € G such thabg(g) = 400, then we leb(G) = +o0. Oth-
twice, as it belongs to two different faces. Therefor erwise,o(G) = l.c.m.geqog(g) < +oo, wherel.c.m. stands

% ef’or least common multiple.
, 7 = 2k. We conclude that .
25-1 ! All possible structures of2(a(£21)) are captured by the fol-

lowing proposition, which is a direct consequence of a classical
result from the theory of Diophantine approximation (68])
Proposition 3: Letma(a(£2;)) be the subgroup o ! defined

Observe now that irp_’_, ef, each edge oP is counted

h

ZB,\:27T(h—k+7“):47T.

A=t above. Then one of the two following cases occurs:
] (1) If % ¢ Q for atleast one defect angle, thep(a(£21))

Let the 2-vectoP>v, denote the position of the vertex, is gense inst; _
with respect to the reference frarte;, , z;, , y;, ) affixedonto ~ (2.)  If 2> €Q for all the defect angles, then there exists a
face Fj,. Then, simple geometric calculations show that the positive integep such that
action of Ry, is described as an element BE(2) by ((1 — o
) ruy, By), or, equivalently, thatd . o, )(Rx) = (2 + ma(a(Q1)) =< " > .
(1 — ) oy, 0 4 By, Fy,). In case(1.), the following result also holds:

More generally, the action of streams of tyge, = Proposition 4: Assume that% ¢ Q for at least one defect
wij, Rawj, 1, is described by((1 — e’*) 'vy, 8)) € SE(2), angle. Then for every € Q, the reachable set from R, is
or dense inQ.

Proof: If 2> ¢ @, m(a(< Ry >)) is dense inS'. This

Aczo,m)(Ry) = (2 + (1 — P ) Loy, 04 By, F1), (14) implies that the polyhedron can be turned about an axis perpen-
dicular toIl throughw , (the vertex whose defect i$,) so as to

wherel v, is the 2-vector from the origia, of the frame affixed reach as close as desired to any given orientation. On the other
to face F; to the image ofv, as a point off’;, on the planar hand, equation (13) guarantees thaf—rﬁ ¢ @ for some), then

developmenPp, in coordinategol, 1, y1). 22 ¢Qfor some) # \. Therefore the polyhedron can pivot
It should be pointed out explicitly that the actions of bdth  about two different vertices, anduv,, thus achieving arbitrary
and R, are dependent on which fadg, is considered. How- motions in the plane. Proposition 4 readily follows. [ ]

ever, without any loss of generality, we will henceforth regard For the rest of this section, we study c&3g Forl < \ < h,
every vertexv, as associated to one of its adjacent faces, ate can writeg, = 27{'% with 1 < my < p, two coprime
which is equivalent, all copies of each vertex will be removegositive integers. Then eagh, € m»(a(Q1)) is of orderp, and
in the planar development of the polyhedron except for one.

Such an arbitrary choice is tantamount to taking a particular set o(ma(a(1))) = l.e.ma<a<n(pr)-

of generators of the free group;, which is not going to alter

the ensuing study of the group orbit. Letp = l.c.m.(px) (p = 2) and denote, = L-forl <\ <h,
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then we have that any elemeht 74 (a(€21)) can be written

0 = f( Z namady),

1<A<h-1

for arbitraryn, € Z andg = 27“ Since thed,,m)’s are

coprime, we get that,(a(Q1)) =< 8 > i.e.

mo(a()) ={0 =kB (mod 27), ke Z}. (15)
We call 3 the quantization angle and den@e the set of con-
figurations(z, 8, F) € [F1] such tha® = kf.

Fixny € Z,1 < X < h—1,suchthat

E nxmxdy,

1<A<h-1

1=

and defineRo, = [[4_] R%*. Then it holdsR, = (to, 3), for

somet, € R?. Note also that thes,’s do not depend on the

choice of the reference point dry. Let vy € II be defined by

Vo = (]. — ejﬁ)ilt(). (16)
We can thus writek = ((1 — e?)vy, 3). Notice thatR, acts
as if it were a rotation about a point whose projectionfdn
would bev, € F1, in coordinategol, z1,y1). We will refer to
such a pointyg as to thevirtual vertex. Moreover, denoting

Hi1 =A{(t,0) € ()},

the set of translations, we get
Corollary 1. For everyl € Q1, there exist; € Z andT; €
‘H1 such that
| = RI.T;. (17)
Proof: Letl € ;. We havel = (¢;,6;) with 6, = k; 3,
k; € Z. ThenR; ™.l € H,. SettingT; = R, ™.1, we get the
conclusion. |

2) Sructure of the tranglation group H1: In order to fully
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In the sequel, we identif§{; with its projection on the first
factor i.e. with a subset of R We will now give a simple set
of generators ot{;. LetG,,, be defined by

G, = {?Ry™ PRy : 1<A<h—-1,0<u<p —1}.
(19)
We next show that
Proposition 6: The group of translations{; is an Abelian
subgroup of R generated by the elements@f,, .
Proof: LetG, =< G,, >C H;. First note that, for
1<A<h-1,we haveRARO"”*d* is a translation and

R}\Rofm)\d)\ — e_]uOLRofmxde)\,

whereu = —2md, if pis odd oru = —md, if pis even and
thenRy\ R, ™% € G,,,.
According to (12), we can write evefly € H; as

N
=R
k=1
We rewrite the above equation as

N
_ Ermy, dj, —ermj, dj peg
T = H RQ (RO Rjk-,)
k=1

Notice that if T € G, then RYTR," = /T € G, for
all w € Z. Using this fact, we have thaf is equal to the
product of R)'™ with N = Y &,0;, € Z and a finite
number of elements af;. We hence get thaf is congruent,
moduloG, to R)'”. SinceT € H,, we havez,i\[:1 exfBj, =0
andRY™ = (0,0) € H;, hence we have th&t is congruent,
moduloGy,to0i.e. T € Gy,. ThenH; C Gy, and the proofis
complete. ]
Forl1 < XA < h — 1, let z, be the translation vector corre-

sponding toR, "% R,. We have

2= (1= e ) (vo =" u). (20)

determine the structure of the reachable set of a rolling polyhe- o ] )
dron in case2) holds, following from Corollary 1 it remains Then (the projection on the first factor 6%, is generated by

to investigate if the projection on the first factorf; is dense

in R%. For such purpose, we introduce the symmetry angle

a= T e Stwithp' =pif pis odd andy’ = & if pis even.

Such definition is motivated by the next proposition:
Proposition 5: The translation groupt ; is invariant by a ro-

tation of angley, i.e., if (¢,0) € H1, then(e?*t,0) € H;.

Proof: To simplify the notation, we assume here that the

reference point o’} coincides with the virtual vertex,, hence
thatRy = (0,0). LetT = (¢,0) € H;. SinceH; is a group,
~T = (—t,0) € H;. Moreover, for every € Z, +R\TR;"
belongs tdH; . Let

(tl,*v O) = 7RIOTR(TZ7 (18)
with /
- pELif pis odd,
p +1, if piseven

An easy computation shows thiat. = e/“¢.

anz{e]uaz)\v 1§>\§h71a0§u§p/71} (21)

A standard result on the classification of Abelian subgratips
of R? asserts that one of the three possibilities can occur (cf.

33])
(a) Gisalatticei.eG = Ze; @ Zey Wheree; ande,, are
two linearly independent vectors of' R
(b) G = G @ Zey whereG is a dense subgroup ofdR
with e; and e, two linearly independent vectors of
R?;

(¢) GisdenseinR;

More generally, we us€(a, b) to denote the lattice of Rgen-
erated by the pair of vectors b. We say thai(a, b) is nonde-
generate it b are linearly independent.

We will now show that caséb) cannot actually occur. We
first show that ifp’ = 1, i.e. « = 8 = «, then caséa) occurs.
Indeed, sincé > 4, thena = 7, by equation (13) implies that
h = 4, P is a tetrahedron and all th&\’s are equal tar. We
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deduce that the virtual vertex can be actually taken to be anyth | |—§| < % By taking norms, we obtain
existing vertex and- ,, reduces to two elements. Theéh is a %

nondegenerate lattice (see fig.9). Assume nexthat 1 and |2 < (l n 1 + 2cos(a) HtHQ < §u
then0 < o < 7. If case(b) holds, ther{; = H; © Ze, with — 4 4 4

H; a dense ' subgroup of R, e; # 0. By Proposition 5}, By definition of 1, we must have|t — ¢'|| = 0, i.e. t € L.
contalnSeJO‘Hl Sincee; ande’®e; are linearly independent, Sincet is an arbitrary element ¢f;, we conclude.

H; is dense in R and we obtain a contradiction. Therefore we |

have proved that Thanks to equations (10), (11), (21), Proposition 4, and the
Lemma 1: LetH; be the group of translations 6f,. Then two previous lemmas, we are now in a position to state our

eitherH, is dense in R or it is a nondegenerate lattice. main result concerning reachability of rolling polyhedra. Let

Remark 1: Notice that it is now easy to check whettigr is  Us recall from [19] few useful definitions for quantized control
a lattice or not. Indeed, wheh= , this is the case. If < =, Systems (see also fig.2): we say that a QC&pjgroachable
one of thez,’s is not zero, let say,. Thenz; ande’®z, are if closure (R,) = Q, Vg € Q. On the other hand, the
linearly independent, i.e. they define a baBisf R2. We can reachable seR, is discrete if it is nowhere dense, andense

therefore decompose every elementqf, in B. By a classical inasubset Q" C Qif closure (R,) N Q" = Q', Vg € Q.
result of Diophantine approximation, we get tfat is a lattice T0 describe the coarseness of discrete reachable sets, we talk

if and only if every element of,,, is written in 3 with rational ~Of e—approachability of a configurationg’ from g whenever

coordinates. Jw € Qg, such thatl(A,(w), ¢") < e. The set of configurations
A classical result on lattices (c[33]) says that, given a nonde-that aree—approachable from is denoted byR ;. The system
generate lattic&(a, b), we have is said to be—approachable iR = Q, Vg € Q.
p= _inf ||t >0, Theorem1: Letq = (z4,0,,F;,) € Q. The possible struc-
t€H 1,70 tures for the reachable set frayiR , € Q are the following:

(a) if at least one defect angle is irrational with then

and there exists,,;, so that||t,,in|| = n. We call such . . :
Bmin € T ltminll = p R, is dense inQ and the system is approachable,

tmin @ Shortest element df(a, b). We thus have the following

result: i.e. closure (R,) N [F;] = [F], V¢ € Q and
o . . o Vi=1,...,r
|eL;m_m§_ﬂ2' Ajs;r};ﬁé:aﬁl 's alattice with quantization an- (b)  if all defect angles are rational withands = 27” is
gep=p=2 the quantization angle, then either

BeD={mm/2,7/3,27/3}. 22) (b1) Hi is dense in R, henceR, is dense in

Proof: Recall that the symmetry anglte= Z is smaller Qup C Q. 1.e. closure (Ry) N Qus = Qi

thanr. Lett,,;, be a shortest element &f;. By Proposition 5, vq E. Qandvk =1,...,p, or .
ety € Hy and thent — (e — Dty € Hi. Since (b2) M, is a nondegenerate lattice, and hence

=) RI Jis i -
[t} = p¢ = [[tminl| > 0, we must havée’> — 1| > 1. Thenp’ ¢ = Uj=1 Ry, where eaciRz; is isomet

can only take the valuels 2 or 3. Going back to the definition ricto
of a, we get (2). | p—1
We deduce from the previous lemma that U (to(k) + H1 kB, FY),  (24)
Lemma 3: Assume thaf{; is a lattice with quantization an- k=0
gle 8 € D whereD was defined in (22). Lef,,;, be a shortest whereto(o) = 0 andto(k) = to(1 + e +
element off{;. Then eithes = 7 or DBy k=1, . p—1,isthe R
o component ofRk.
Hy = L{tmin, € tmin), (23) Moreover, within caséb- ), we necessarily have that either
anda is equal to% or Z. (bo1) p = 2, and hence aII. theGAs_ are equal tor
Proof: We assume that < =. Lett,,;, be a shortest gnd Pis a tetrahedr_on, in this case the sysiem
element ofH,. We useLy to denotel (tmin, € *tmin). We is e-approachable withe = €51 + ege where
have of cours&, C H; and, by Remark 1, every elementf €s1 = 5 andegz = maX{M7 M}
'H, can be written max{ 12— ”1)+(”3 v ”(”22”3 1}, where thezy’s
- ry and thevy’s are deflned in equation (20) and (14), re-
t = —tmin + —€"min, spectively, or
51 52 (b22) p = 3,4,6, and hence there exists # 0 such that
where Z- and 2 are rational. Let’ € L, such thatt’ = Hy = L(tp,e’5ty) if p=3,6 or Hy = L(ty, €72 1y)
Nitmin T n2e’®t,.., wheren,; andn, are the nearest integers if p = 4. In this case the system &iapproachable
to 2+ and 22 respectively. Then — ¢’ € , and verifies with € = egq1 + eg> whereesi = 7 andeg: =

3|[t, ||, if p = 3,6, 0rege = 2|ty if p=4.
Proof: It only remains to prove (24). We start with an
arbitrary pointg € Q. Using (10) and (11), we leb, ; act

’ /
T T
r "1 2 o
t—t = 7 tmin + 7 e’ Urmin,
Sl 82
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ongq. It is then enough to consider poinjse [F;] given by c
q = (24,04, F1). Since we have

p—1 F,

Ry = UGy +&”(Hy +to(k)). 0, + kB, F), A B

k=0 Tr:F1

we get an exact expressi@;’ by concatenating wity;. W Fy F,
B A
C

C. Discrete Case

It is clear that Theorem 1 is not as precise for the discrefé: 9- Polyhedra whose defect angles are multiple§ of = are tetrahedra
wjth isometric faces, whose plane development is a triangle similar to each

structures as it is for the dense ones. Indeed, to get densitytd&k (left). For such polyhedra, the reachable set is a lattice, irrespective of the
Q, Theorem 1 provides a necessary and sufficient condition édge lengthsG., reduces to two elements, afd is a nondegenerate lattice

terms of a geometric quantity directly related to the polyhedrdﬂght)'
itself. On the other hand, for the discrete case, the discussion

relies on quantities defined dfp, a development of? (cf.  -e-—-—#fmogio il
Remark 1). In this section we describe the relationship betweel K
the structure of the reachable set and such geometric quantitie - - -
associated t@ as lengths of edges, angles at vertices, etc.. /

For the rest of the paragraph, we consider a nondegenera- =- - R
polyhedronP with quantization angles = 27“ p>2and 7 e
we identify 7, with < G,, >c R?. We will also denote ~~~7 Tt
by v, thei—th vertex as a point on the polyhedrBnwhile v » S/ /
denotes its image on the plane developnint For all vertices "~ .7~~~ 77

vV, andvy, suchthatvy,, v, ) and(va,, va,) are edges rig 10, For polyhedra whose edge lengths satisfy (25), and whose defect
of P, let Dy, », andd, »,x, denote the length dv ,, v,,) and angles are multiples g8 = 27/3 (as e.g., the regular octahedron developed

the angle betweer te, , v.,) and (v, va, ), respectively. o 8 o) =3 memoni e s may e, Ths same s
Also, let Tr denote a nondegenerate triangle (i.e. a triangey. the esahedron with equilateral faces developed on the right).
of nonzero area), and usk¥T'r) to denote the triangle whose
vertices are the middle points of the edged of
We start by giving more details on the case whére- . Proposition 8: Assume tha = %, Z or %’T ThenH is a
Recall thatP is a tetrahedron and evep is equal tor. Let nondegenerate lattice if and only if it holds the following “edge-
F; be the face on whictP is lying onII and letPp be the angle rationality” condition
development obtained by unfoldir®galong the streamg'; F;, .
i = 2,3, 4. We next show that Dy, sin(la + Orir2ha ) =0 (25)
Proposition 7: Assume thatP is a nondegenerate polyhe- Dixix sin o
fjron WIFh gquantization anglg = . Then aII_ faces of® are 5, — 0,1 and for all triples of vertice$v x,, v»,, v, ) such
isometric to the nondegggerate trian@le defined byF'; and that(vy,, va,) and(v., , vy, ) are adjacent edges .
Pp is atriangle so thai(Pp) = Tr (see fig.9). Proof: Define for all distinct vertices,, andwvy, such
Proof: The faceF; on Pp, is represented by a trianglethat (v, , vy, ) is an edgewy, », = (1 — e 72)(vy, — vy,).
ABC. Since eveny3, = w, we getPp, is a triangleA’B'C’  LetG,, be the set given by
such that4 belongs to the segmeit’C’ etc. SinceB’A and
C' A represent the same edgef we get thatl (755) =Tr.
By Thales theorem, we then gk/)tain that all the four trianglesndGs =< G,,, >C R? (recall thato is the symmetry angle
defined by the faces @ inside’Pp are isometric. B defined in proposition 5). We first show that
Remark 2: Conversely, if a nondegenerate triandle is Lemma 4. With the above hypothesis(; is a nondegenerate
given, one can build a tetrahedr@ty with quantization angle lattice if and only ifG is.
Bo equal tor and all faces isometric t@'ry. Indeed, consider Proof: Itis enough to show that every element®f,, is
the triangleT'r{, such thatd(Tr}) = Tro. By drawingT'rq in-  written as a linear combination of elementsdf, with rational
sideT'r(,, we define three other triangles inscribed inside, coefficients and vice versa. We can clearly restrict ourselves to
all isometric toTrg. By folding these three triangles alongthe elements of7,,, andG,,,. This simply follows from the
the edges ofl'ry, we get, by using elementary geometric arthree next facts: ,
guments, the polyhedrdn. (aa) foreveryl < A\j, Ao < h—1, 1*{% can be written
Notice explicitly that for such polyhedra the reachable set is dis- ce
crete, irrespective of the lengths of their edges. The remaining
cases are covered by the next proposition which is a translation
of the results of Remark 1 in terms of geometric quantities only 1—e P (1 e ) (1 — e778x)

involving P: 1 — e—98x |1 — e2Px 2 ’

an = {e]law)q)\za 0<1< p/ -1, (V/\Uvz\z) € 5},

as a sum of terms of type’'® wherer € Q andl €
Z. To see that, notice that
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Fig. 11.

/2 are cubes (left) or convex assemblies of identical cubes (right). For the

. . Quantized positions | Yes
‘H; is a square lattice.

Dense positions
and orientations

Quantized positions
Lattice with & € (0,7 /2)

' 1 \ \ 1 —

Quantized positions
Lattice withr = 7 /3

Polyhedra satisfying (25) and with defect angles multiples ef

Quantized positions Yes
Lattice with & = 7 /2

and the denominator of the last expression is always
positive integer with the considered valuesif [ Dense positions |

(bb) foreveryl < Aj, Ay <h-—1,let(vy),l=1,---,N N - , ,
With v, = v, andvy, = v, a sequence of ver- Eclegdr;.z. A flow-chart summarizing the reachability analysis for rolling poly-
tices such that three consecutive vertices in the se-
guence define adjacent edgesfnThen
N-1 IV. STEERINGMOTIONS OFROLLING POLYHEDRA
Uxy — Uy = Z Vkyp1 — Vkys . . .
= It follows from previous results (see figure 12) that condi-
tions upon which density or discreteness of reachable sets de-
(cc)  the virtual vertexy, is either an existing vertex &  pend are given in terms of rationality of certain parameters.
or more generally itis equal to an integral linear comThjs entails that two very similar polyhedra may have qual-
bination of vertices and rotated of angles in the jtatively different reachable sets: indeed, for any polyhedron
sense of equation (16). whose reachable set has a discrete structure, there exists a poly-
We first have fonl < \j, Ao <h —1, hedron with arbitrarily close geometric parameters that gives
1 — o35 density. Lattice structures appear to be non-generic in this

A sense. On the other hand, considering that in practical appli-
cations lengths and angles of physical parts are only known

w =2z, — ————2
A1z Az 1 — e 98

From (aa), wy, », Can be written as a rational combination ofvith a limited accuracy, one is led to question the meaning and

elements of type’“®zy of G,,,. Analougously for/®ws, .. practical applicability of the foregoing analysis. In this section

For the converse, from the definition ofy. . we get " we will show that indeed discrete structures and tools are in-
L] 1172

strumental to deal with questions regarding robustness of the
1—e 7 reachable set analysis and planning.
B |1 — e 75 |2wA1A2' In the study of reachability for smooth dynamical systems,
the problem of constructive reachability, also referred to as

U)\l — Ux,

Thanks to the definition of,, (aa), (bb) and(cc) above we  “steering” or “planning” problem, is usually defined as to find,
conclude. B given an initial and a final configuration, a finite-length stream
Recall Remark 1. Because of the structureof,, it is clear of inputs that takes the system from the former to the lat-
thatG; is a nondegenerate lattice if and only if for evéry<  ter. For a rolling polyhedron system (and more generally for
A1,A2,A3 < h — 1 so0 thatvy,, vy, vy, define two adjacent quantized control systems) our previous analysis clearly shows
edges av,,, and forevery) </ < p’ — 1, one has that the problem should rather be posed as follows: given the

e]la

initial configuration(0,0, 0, F1), a final configurationC'y =

_ 4l l Jo
Wi x5 = o a0 Warde T 03 050,67 WA s (zs,yr,7s, Fr), and a number, determine if there exists a

for some rational number«s&lh& and blxmx . Simplifying finite sequence of turns that brings the part from the former to
3

by wy, »,, We get ann—neighborhood of the latter configuration (in the metric de-
fined in section Il), and, if so, provide one such sequence.
. I so — g(la—6xaora) LT e Dy, We will first discuss planning for the nominal case of poly-
@xxans T 0N A" = € pee 1—e 5% Dy, hedra whose reachable set is a lattice. Secondly, we describe

(26) how one could plan manipulation of exactly modeled polyhe-

(recall thatdy, », s IS the angle between the edges,,,v,,) dra with a dense reachable set. Finally, we discuss extensions
and(vy,,va,)). From(aa) and (26), it is easy to obtain (25). of these results to the general case of polyhedra described with

B limited accuracy. Some of these ideas and the corresponding

The classification of reachable sets for rolling polyhedra thugorithms were first reported in [34], where more details and
far obtained is summarized in fig. 12. proofs can be found.
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A. Planning in discrete reachable sets lattice resolutionA is arbitrarily small. Hence, a feasible solu-

Assume that (15) and (25) hold. Hence, there exists a qué'ﬁm would be obtained by solving a planning problem on this
tization angle3, and, is a 2D lattice generated ov&r by a (arbitrarily fine) lattice by the same techniques used in the pre-
set of N = ¢/(h — 1) generators (see section 11I-B.2, equayiou_s_ paragraph. The c_:ase_in wh?ch the reachable set is d(_ense in
tion (19)). LetT = [t1,ta,...,t5] € szN denote a matrix Positions, but discrete in orientations can be worked out simply

collecting such a set of generators. By computingHileemite based on the same considerations.

Normal Form for the 2D lattice (see e.g. [35], [36]) as

C. Planning with limited accuracy models

X=[X1 X, 0]=TU, _ _
To provide a correct model of the phenomenon of rolling

with U a unimodular integral matrix, two vectals; , X, gener- real polyhedral parts, it is necessary to describe how uncer-

ating the same lattice are obtained. Denoting/pythe element tain quantities are represented in the computer. It can be as-

of U in thei, j position, one has sumend that a geometric length or angle (the latter measured in
5 7 rad units) of nominal value: with tolerancetr, is repre-
¥ Z LU sented by a truncated continued fraction expangienp,/q,
J p v with ¢, = (ra—l/Q], S0 as to match representation accuracy to

tolerance. Tolerances on geometric parameters also reflect di-
LetA = maX{H%H? H%H} denote the half-length of rectly_in a limited meaningful representation accuracy for the
the longest diagonal of the lattice mesh. If the required acc@uantization angl¢ and for the generator sef, ¢ = 1,..., N.
racyn is such that3 > 25, or A > 7, the steering problem The reachable set will be thus described approximately by
is unfeasible for an arbitrarg’;. Otherwise, proceed as fol- the discrete set generated by those representations, and plan-

lows: ning will be addressed again through the solution of the one-

1) Compute(z1,y1,71) such thatoy s : (x1,y1,71, F1) — dimensional and two-dimensional Dioph_antine equations en-
(s, 95,755 Fr)- cgur_ntert_ad above. The rgal reachable s_et is actually an uncertain

2) Let k = arg minneZH"ﬁ — 7. Let kB — distribution about this discrete approximation. Bounds on the

maximum discrepancy between a point reached with a stream
of given length, and the nominal point on the approximated
polyhedron based on description tolerances were given in [34],
along with a discussion of the computational complexity and
bounds on the length of manipulating streams.

mllst = € < n and computgxs,y2) such thatRF :
(72,¥2,0, F1) — (x1,y1,72, F1), where|ya —y1|s1 =
€.
3) Let(k’l, kg) = arg Hlin,.“?,.€2 HK1X1 + Ko Xo — (xg, y2)||
If |k1 X1 + kaXo — (z2,y2)|| > n — ¢, the Planning
Problem has no solution; otherwise, apply the original
generators of the latticey, ..., vy, U; = Usik1 + Uioks V. DISCRETENONHOLONOMY
times each.
A manipulating sequence is thus obtained which consists in
plying the stream correspondingﬁéﬁ, i=1,..,N, R* and
w1y, in this order. A configuratio”; = (z,y,, Fy) is thus
reached such thal(C; — C;) <.

a In this section, we should like to generalize some of the
&articular features encountered in the case study to systems
¥ =(9,7,U,Q,A) of a rather general class, and in partic-
ular to address a definition of nonholonomy which may apply
to non-smooth and quantized systems as well as to classical
o systems.
B. Planning in dense reachable sets As a first lesson from the case-study, we recognize that it is

If equations (15) and (25) do not hold, and if a perfect moddémportant that the input set in the system quintuplés con-
of the polyhedron is available, it is possible to obtain a solutiosidered in general as state—dependent. In other words, different
to the planning problem with arbitrary accuragyTo do so, it sets of inputs may be available at different states, as it is clearly
would suffice to find a rotatio® € Q; of angle3 with g ¢@Q, the case for the polyhedron when lying with different faces on
and an approximatiofi ~ 22, with j large enough so that, for the plarje_..To deal Wllth this problem, let us be more speC|f.|c on

. . P N the definition of the input s€, and assume that there exists
k= argmin, 7 [|k5—0¢[|s:, itholds||k5—0sl[s1 =10 <. 5 multivalued functions : Q — U whered(q) = U, c U
Furthermore, consider any rotatiéh€ 2; with R # R, and s the set of admissible inputs at Consider the equivalence
the set of generators relation onQ given byq, = ¢, iff ¢(¢1) = #(g2), and denote
- . S N TP 9/ ¢ the set of equivalence class@g,the equivalence class of

Hi = {R*.(RR™).(R"R)"".R™"; k,m € Z} C Ha. q./We assume tha® is a manifold@ﬁnd each equivalence class
The N elements of/{; and their projections on the first fac-iS & connected submanifold .~
tor, {f1,...,i5}, are irrationally related and thus generate a Further, let, be the set of admissible input streams for the
dense set over the integers. To find a possible solution of fin#¥Steém being currently in configuratign For eachy < Q, let
length, proceed to approximate the dense set with a lattice, ofy * 24 = Q. WhereA,(w) is the state that the system reaches
tained with the rational representatiofjof the components of from g underw € Q4. Denote by, = {w € Q; : Ay(w) €
t;, i = 1,..., N. The numbetN of generators and their repre-[q]} the subset of input streams steering the system back to the
sentation accuracy can be chosen (in the ideal case) so thatdhme equivalence class of the initial point. kot w, € (Tq the
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stream concatenation .w- is well defined. The notion of kine-
matic (i.e., driftless) systems of the form (1) can be extended in
this context by the assumption thaj contains an identity ele-
ment,0 € Q,, such that4, (0) = ¢, for all ¢ € [g].

The introduction of input equivalence classes induces us
to consider two different types of behaviours which may be
termed “nonholonomic” by analogy with observations made in
paragraph I-A. Loosely speaking, if nonholonomy is associ-
ated with an increase of reachability for a system when suit-
able cyclic controls are applied, then a first, “external” type of Base space
nonholonomy would refer to systems where cyclic switchings
among different equivalence classes add to reachability. A sec-
ond, “internal” type of nonholonomy would instead refer to SYSgig. 13.
tems where the nonholonomic behaviour is obtained by cyclic
paths within the same equivalence class.

More precisely, we propose the following upon the geometry of the path the system traced out, or Berry’s

Definition 1: A system(Q,7,U, ), A) is said to be exter- Phase. In our setting, consider a local decompositio@ of a
nally nonholonomic ay € Q if the setR ¥ reachable frony ~base space3 and afiber spaceF, with B x 7 = Q. Choosing
while remaining withinfg], is strictly contained iR ,(€,) = coordinates; = (¢3,9r) and denoting the canonical projec-
(A (W) : we ﬁq}. tionsIlz(q) = gB., H;(q)f[ ]qp, let B be a maximal codimen-

Describing the second type of nonholonomy requires mofion set such thal (R, (24") (for external nonholonomy), or
work. We need first to give more structure to the §gtof I1#(R4(27) (for internal nonholonomy), are constant. If there
streams acting orlg]. A system is said to be invertible if exists an input stream which would steer the system fydm
for everyq € Q andw € Q,, there existso € Q, such ¢" WithIlz(g) = IIp(¢*) butg # ¢*, then the system is non-
that A,(w.w) and A,(@.w) are both equal tg. Consider holonomicay, and the difference betweéhr(¢*) andIlx(q)

the following relation inQ,: w; = wy if, for all ¢ € [q], is the correspond.ing holonomy phase.
A (w1) = A (ws). Then ond / =, the inverse of each el- Example 1. A first set of elementary examples can be ob-
q - q . ’ q/ —

. ) . L . tained considering the classical Heisenberg-Brockett nonholo-
ement is defined uniquely. Indeed.f, v, are two inverses for nomic integrator ([6])
w € Q4 (henced,(ww;) = Aqg(wiw) = ¢, i = 1,2) then d

Ag(@01) = Ag(@nrwws) = Ag(w2),

Fiber Bundle

lllustrating the definition of nonholonomic systems

1 0
Dq = 0 ur + 1 U2, (27)
i.e. @ = @y. Inthe following, up to taking the quotier?, = Y r
Q,/ =, we will restrict to consider driftless invertible SYSteMSyith ¢ € Q — R?, and[g] = Q. Only internal nonholonomy
where the inverse is defined uniquely, which is tantamount %N obviously apply.
assuming thaf, is a group. We assume th&, is finitely

generated and denote By= {s1,...,s,} a set of generators.
Consider now the subset sifnple input streams oves,

i) Consider first the example in the classical setting, i.e. in
continuous time#(€ 7 = R, Dq := 4¢(t)) and with a con-
. kot ko2 Ko (m) ) tinuous control set € U = R?). We assume, without loss of
@y ={s,0y) So(2) =+ So(n) 7 € S(”.)’ ko) €Z, j = 1,....n}  generality, thaf) is comprised of piecewise constant functions
whereS(n) is the set of permutations ¢1,2,...,n), and let R+, 7/[38]. Internal nonholonomy of this system according
Rq(Q,) andR,(€25) denote the reachable set fropunder to definition (2) can be shown by taking the input construction
input streams irﬁq and in ﬁg , respectively. Definitions we commonly used in textbooks to illustrate “lie-bracket motions”
propose to capture the second type of nonholonomy are then(age e.g. [5]). Namely, le§ = (s1, s2) with s1(t) = (41 0),

follows: t € [tl,tl + 7'1] and SQ(t) = (0 52), t € [tz,tz + ’7'2]
Definition2: A system(Q,7,U,), A) is said to be non- (hences; = —s;, i = 1,2). One easily getgzqo(ﬁs) =
commutative af € Q if ), contains at least two elements  (zo + «, yo + 3, 20 — Yoo + o3 + af), o, € R, while
andw, such that for theicommutator [wy, we] 1= wi.wa.W1.W2 Ay (51.52.51.52) = (z0,Y0,20 + 201027172). Hence
itholds Ay ([w1,w2]) # ¢ Ay ([s1,52]) & Ry, (225). This example (which could be eas-

A system isinternally nonholonomic at ¢ if there exists a set jly generalized to systems as in (1)) shows that the classical no-
of generatorsS andwy,wy € Q7 such thatA,([wi,w2]) &  tion of small-time, local nonholonomy related to the Lie algebra
Rq(Qg). rank condition, is a particular case of internal nonholonomy.

A suggestive geometric interpretation can be given of theseii) Definition (2) equally applies to system (27) when consid-
definitions (see fig.13), which is reminiscent of Berry’s phasered in discrete time, i.d.€ 7 = N, Dq := q(t + 1) — q(¢).
in quantum mechanics [37]. Berry noticed that if a quanturihis can be shown by taking e.g1 = (41 0), s2 = (0 J2),
system evolves in a closed path in its parameter space, afierthatA,, ([s1, s2]) = (o, Yo, 20 + 26192), while R, is as
one period the system would return to its initial state, howeveefore. The continuity of the control set guarantees complete
with a multiplicative phase containing a term depending onlseachability for this system in both the continuous and discrete
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e z ok Y > yol CIearIy,RL‘f,]f"ee ={(z,y,2) € Q: 2 = 2}, for all
’ oo o % % = (20,90, 20) € [q]free, While R,, = R®. The system is
thus externally nonholonomic according to definition (1).
Interestingly enough, however, the system is not internally
nonholonomic as per definition (2). Indeed, to generate the
set(l,,, at least two types of streams must be considered: an
internal type e.g.s; : (zo,¥0,20) — (2,y,20), and an ex-
ternal type (taking the state out @f] ... temporarily), e.g.
Se ¢ (x0,Y0,20) — (2',y,2"). Clearly, simple streams over
this set of generators are sufficient to reach any configuration
®f the system Rq(Qg) = R?), hence internal nonholonomy
does not apply.
Base variables for this example would bheandy, while z

Vibrating
Actuator

X

Fig. 14. A micro-electro-mechanical (M.E.M.) motion rectifier illustrating th
definition of external nonholonomy in a piecewise holonomic system.

time cases. represents the fiber variable. Rectification of motion is obtained
iii) Consider now a finite input set such as by holonomic phase accumulation in succesive cycles. By
U = {(u1,u2)| ur € {0,a,—a}, uz € {0,b,-b}, a,b € R}, changing frequency and phase of the inputs, different directions
and Q = {strings of symbolsiri/}. The restriction on and velocities of the rod motion can be achieved. Note in
controls does not substantially change the analysis Uparticular that input:; need not actually to be finely tuned, as
der continuous time. Indeed, considering(t) = (a0), long as itis periodic, and it could be chosen as a resonant mode

t € [ti,t1 + 7], s2(t) = (00), t € [t2,12 + T2], ON€ gets of the vibrating actuator: tuning only, still guarantees in this
Ago([51,52]) = (20, Y0, 20 + 2abTi72), and both nonholonomy case the (non-local) reachability of the system (cf. [40], [11]).
and complete reachability easily follow from arbitrarity of

T1, T2. Example 3. Rolling polyhedra are both externally and in-
iv) In the discrete input, discrete time case, the input congernally nonholonomic systems. External nonholonomy holds
mutator [s1, sz] with s; = (a, 0), s2 = (0b), produces trivially since the set of controls i/, that leave the system

Aqgo([51,52]) = (20,90, 20 + 2ab). Internal nonholonomy is in the same configuration clagg is the identity element, and
maintained. However, the reachable set from the origin is ontgpresents the behaviour illustrated in fig.1.
comprised of configurations in a discrete sRty = {¢ : Internal nonholonomy according to definition 2 also holds:
r = la,y = mb,z = nab, {,m,n € Z}. The situa- indeed,),, the set of words that bring back the polyhedron
tion is completely different, and density of the reachable seh the same face lying on the plane, is generated by the fi-
is guaranteed, if e.gl/ = {(u1,u2)| u1 € {0,a,—a,c,—c}, nite setS = {Ry, A = 1,...,h — 1}. If 8\/7 € Q for all
ug €{0,b,=b,d, —d}, a,b,c,d € R} with £, %53‘]?_- ~A=1,...,h—1thenQs is afinite set because, i, = oI,

The interpretation of nonholonomy given in fig.13 applle§aix — (0,0). ThereforeRq(ﬁqS) is a finite set. Sincézq(ﬁq)

o all cases above, using coordlnaie@ to describe the base is an infinitely countable set, nonholonomy immediately fol-
space, whilex parameterizes the fiber.

lows. If, otherwise, there existssuch that3, /= ¢ @ then, by
: . , equation (13), there exists another ind€x ' # X for which
Example 2. As an example of a piecewise holonomic SYS: aiso holds3y /« ¢ @. Without loss of generality we can as-
tem, consider the simplified version of one of Brockett's rec- AT ’ 9 y

_ A —
tifiers ([39]) in figure 14. The tip of a piezoelectric or elec—sgme)‘ = 1andA” = 2 and choose the set of— 1 generators

trostrictive element oscillates in the-direction, while an actu- given by B, .... 5. In ord_er 0 prove nonholonmy we havg 0
. . R compare commutators with translatlonsmj . Translations in

ator drives the oscillator support along tiedirection. When ~ _ o2y oo s) Fogny _

y reaches a thresholgh, dry friction is sufficient to push the {2, are written asi 7," R 75" ... R ;). with ky ;) = 0 if

rod in thez—direction. Disregarding dynamics, the rectifier cam_ ., /= ¢@. In other words translations 'ﬁqs have to be gen-

be modeled by a contir;uous—tim_e system with configuratioRgated only by those generators witisuch that3, is irrational

q = (z,9,2) € @ = R°. Assuming that the velocity of the with 7. Now, lett be any translation if25. Then the commu-

support §), and of the oscillator tipi) can be freely chosen, tator|Rs, ] gives a translation af(e ~7?2 — 1) which cannot be
a model for this system congruent with the definitions abo‘@enerated by simple words.

would be
i 0 1 1 VI. CONCLUSIONS
gy l=11]ur+|0 [u+ |0 |us The notions of nonholonomy and reachability are conven-
z 0 0 1 tionally related to differentiable control systems, and are de-
) ] o fined in terms of their differential geometric properties. How-
with the input restrictions ever, these notions apply also to more general systems, includ-
w3 =0 y<yo ing systems with a quantized input set. Althoggh guantized
{ g =0 y>0 control systems can be used to represent very important prac-

tical problems (e.g. in embedded control systems with band-
Two input equivalence classes are thus definedQnas width limitation, or in hybrid systems), very few results have
[qlfree = {g € Q 1 y < yo} and[qlengagea = {g € Q : been obtained so far in their analysis and control.
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In this paper, we have attacked, as a concrete case study,dhg two adjacent faceg;, F» € F' of G. Clearly,G, is also
problem of describing the structure of the reachability set fora simple planar connected graph. A connected graph with no
rolling polyhedron, and of steering the system to desired conycles is a tree. A tree with'# nodes hasvV# — 1 edges. A
figurations. The problem is important in its own right, e.g. irsubgraphl’ of a graphG is a maximal tree ifl" is a tree and it
robotics applications. Moreover, notwithstanding its specificitgontains all the nodes @f.
some lessons can be learned by a careful analysis of the studiix a maximal treel’ of G = (N, E) and let{r\|A =
of this case. 1,---, f — 1} be the set of edges &f which are not inl". It

It turns out that, while the powerful tools of differential geo-obviously holdsf —1 = E# —(N#—1), hence, by the Euler re-
metric control theory have to be abandoned, their role in mangtion (2),f = 2+E# - N# = F#, Also,forA =1,---, f—1,
respects is taken by the theory of groups, and Lie groups liet n¢ andn{ denote nodes connected by. The fundamen-
particular. tal group of G at a nodeny € N is the set of all closed paths

A second important fact is that, in many cases, the reachaltarting and ending im, with the composition law given by
set of systems with quantized inputs has a lattice structure, oicancatenation. With this notation fixed, the following classical
least can be thus approximated. For systems on lattices, prpbsposition allows one to describe a finite set of generators for
lems of steering and planning can be efficiently solved by usirtbe fundamental group of a graph (for a proof, see e.g. [42]):
linear integer programming techniques. Proposition 9: Fix a maximal treel’ of a graphG. The

The combination of such techniques produced a planning @#lindamental group of’ at a nodeng is a free group gener-
gorithm for rolling polyhedra which was in fact more efficientated by f — 1 elements of the generator sét; = {a)|\ =
than existing methods for rolling regular surfaces (the problem. .. f — 1}, whereforA =1,---, f — 1, a is a closed path
from which our interest in rolling polyhedra actually started)on G described by three subpathg = ai.n.a’j\, with
As a practical fallout of research on rolling polyhedra, a bet- - a4 any path orG fromng to n§;
ter algorithm for regular surfaces inspired to quantized control - ag any path orGG from ng to ng.
techniques was generated in [41]. We now give another set of generators for the fundamental

Many problems remain open with discrete nonholonomigroup. We define a bijective map
systems and quantized control, including for instance the im-
plications on stabilization of different structures of the reach- T — Fr (28)

able set. It is our belief that the complete solution of this case

study will be of help in addressing more complex and generilP™ the set of edges outsideto the set of faces ak such that
problems in this field. 7, Is adjacent taF’,,, in the following way. There exists),

such thatl’ U 7, contains a loop enclosing a single fakg,
APPENDIX of G. Indeed ifT" U 75, contains a loop enclosing more than
GRAPH NOTATION AND DEFINITIONS one face, thgn we can choosg enc!oseq |nS|de the loop. Now
) o o TUrty contains a smaller loop and in a finite number of steps we
A graphG = (N, E) is a structure consisting of a finite setcqncjyde. Letr; be the graph obtained by removing, from
N of nodes and a finite séf of edges. A grapli’’ = (N', E') 7 Then(, has one edge and one face less tdaMoreover
is a subgraph oty = (N, E) if N' ¢ N andE' C E. 7 _ ¢ n7Tisamaximal tree of,. We can now choose,,
We denote an edge that joins two nodesandn; € N DY gych tha, U ry, contains a loop enclosing a single fakg, .

(ni,n;) € E or, equivalently, bye;;. An edge joining a node ow, eitherF,, isafaceolGorF, = F, UF,, forsome
to itself is a loop. If two or more edges join the same pair g X2 22 A1 T TAg :
acel’, # F;, ofG. Thenwe proceed recursively removing

; . eF,,
nodes, these edges are called multiple edges. A graph is S|7[n fror112G1 and so on.

ple if it has no loops or multiple edges. A path between tw(q 2 . . b .
nodesn; andn; is a finite sequence of nodes and edges of thc(%/ncggtosmg suitably the pathg; anday in Proposition 9 we
typeni, eia, na, €23, -+, e5-1,5,ns. Note that ifG is simple, N a1
a path is defined by a sequence of nodes. A path between a ay = a3 Ca(ey?) (29)
node and itself is a closed path. A closed path in which all theherea’,* is a path fromn, to a noden, adjacent to the face
edges and nodes (except the first and the last one) are distindtisof equation (28), and’, is a single rotation aroun#, start-
a cycle. A graph is connected if there is a path between eveng frommn .
pair of nodes. A graph is said to be planar if it can be drawn Proposition 10: Let 7" be a maximal tree of a graggh. Then
on a plane so that no two edges intersect except at a node. Thefundamental group @ at a noden is generated by — 1
two-dimensional regions defined by the edges in a planar graplements of the type (29)
are referred to as the faces of the planar graph. In a planar
graph, all faces are bounded by edges, except for exactly one REFERENCES
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