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Abstract

The nonholonomic nature of rolling between rigid bod-
ies can be exploited to achieve dextrous manipulation of
industrial parts with minimally complex robotic e�ectors.
While for parts with smooth surfaces a relatively well devel-
oped theory exists, planning for parts with only piece{wise
smooth surfaces is largely an open problem.

The problem of arbitrarily displacing and reorienting a
polyhedron by means of rotations about edges belonging to
a �xed plane is considered. Relevant theoretical results are
reviewed, and a polynomial time algorithm is proposed that
allows planning such motions. The e�ects of �nite accuracy
in representing problem data, as well as the operational and
computational complexity of the method are considered in
detail.

I. Introduction

A recent trend of research in Robotics tends to meet in-
dustry needs of economy and reliability in the design of
manipulation devices, by investigating minimally complex
hardware systems for a given manipulation task (see e.g.
[1]). To this end, the nonholonomic behaviour of some
systems has been exploited to achieve dexterous manipu-
lation with simple mechanical design. In fact, one of the
characteristics of nonholonomic systems is that, by means
of cyclic paths of some of their state variables, a controlled
change in other variables can be produced. Bicchi and
Sorrentino [2] designed and implemented a dexterous hand
using only three motors. Such hand is able to arbitrarily
change the position and orientation of the manipulated ob-
ject by rolling it between the �ngertips, provided that its
surface is convex and regular (see [3]).

In order to approach more genuinely industrial problems,
in this paper we consider a similar style of manipulation as
applied to parts with only piece{wise regular surface, and
particularly polyhedral parts. The rolling of a polyhedron
on a plane is itself a nonholonomic phenomenon, as it can
be checked by rolling a die on a table along cyclic paths
(see e.g. �g. I). However, a completely di�erent set of
tools are necessary to analyze and plan rolling motions of
polyhedral parts than those of regular surfaces, the latter
being mostly a problem of di�erential geometry, while the
former is intermingled with discrete mathematics.
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Fig. 1. A parallel{jaw gripper with three d.o.f. can manipulate
polyhedral parts. Plates are covered by compliant, high{friction
pads. Vertical motion is passively controlled so as to accomodate
for the changing height of parts while keeping suitable grasping
forces.

Previous work on graspless manipulation of polyhedral
parts by rolling in the robotics literature include that of
Sawasaki, Inoue and Inaba [4], Inoue and Aiyama [5], and
Erdmann and Mason [6]. In [7], a theoretical analysis of the
set of con�gurations a polyhedron can reach by rolling was
presented. Such analysis showed that such set may have
a rather complex structure, exhibiting radically di�erent
behaviour (such as density or discreteness in the con�gu-
ration space), depending in a very sensitive fashion on the
geometric parameters of the polyhedron.

In this paper we tackle the problem of manipulat-
ing polyhedral parts by rolling from a more application{
oriented viewpoint. Firstly, we want to provide an algo-
rithm for planning such manipulation, i.e., given an initial
and �nal con�guration pair, to �nd a sequence of simple
rolling motions that brings the part from the former to the
latter. Given that not always such path may exist, and the
sensitivity of the existence conditions to part parameters,
we must study this problem in connection with tolerances

on parameters and speci�cations. In order for this style
of manipulation to be viable in practice, bounds on the
number of rolling motions necessary to reach the goal con-
�guration to within a prescribed error must be provided.
We call the study of such bounds operational complexity
analysis. On the other hand, a computational complexity
analysis is also performed in terms of time occupation by
the planning algorithm.

II. Theoretical Analysis

A. Background

Manipulated parts are considered that have a piecewise

at, closed surface, comprised of a �nite number of faces,
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edges, and vertices. Observe that actual parts need not
be convex, in general. However, the �nger plates being
assumed to be large w.r.t. the diameter of parts, we need
only be concerned with the convex hull of parts themselves.

We also restrict to motions of a polyhedron on a plane
which are given by sequences of rotations about one of the
edges in contact, by the amount that exactly brings an
adjacent face to ground. This action on the parts, which
will be referred to as an elementary tumble (tumble for
short), appears to be more reliable than slipping or pivoting
about the vertices. By a�xing labels to the faces of the
polyhedron, a sequence of tumbles can be described by the
sequence of labels of the faces in turn contacting the plane.
Observe that not all the sequences of indices are admissible
as any two consecutive labels must correspond to adjacent
faces.

The con�guration space of a polyhedron rolling on a

plane is denoted by fM = IR2 � S1 � fF1; :::; Flg, where
the set fF1; :::; Flg is the set of faces of the polyhedron
and S1 is the unit sphere of dimension 1. Thus a point

(x; y; �; Fi) 2 fM describes the face Fi in contact with the
plane, the angle � 2 S1 between two reference systems �xed
respectively on the plane and on face Fi, and (x; y) 2 IR2

are the coordinates of the origin of the reference system
�xed on face Fi. Observe that the state space is the union
of l copies of IR2 � S1. The subset of reachable con�gura-
tions from some initial con�guration (which, without loss
of generality, will be henceforth taken as (0; 0; 0; F1)), is
given by the set of points reached by applying all admis-
sible sequences of tumbles to the initial con�guration. We
will denote by R1 the reachable set.

Notice that the set of all sequences is an in�nite but
countable set while the con�guration space is a �nite dis-
joint union of copies of a 3{dimensional variety. Thus, the
set of reachable points is itself countable. Therefore, in-
stead of the more familiar concept of \complete reacha-

bility" (corresponding to R1 = fM) , it will only make
sense to investigate a property of \dense reachability" de-

�ned as closure(R1) = fM . In other words, rolling a
polyhedron on a plane has the dense reachability prop-
erty if, for any con�guration of the polyhedron and ev-
ery � 2 IR+, there exist a �nite sequence of tumbles that
brings the polyhedron closer to the desired con�guration

than �. We refer in particular to a distance on fM de�ned as
k(x1; y1; �1; Fi)� (x2; y2; �2; Fj)k =
= max

np
(x1 � x2)2 + (y1 � y2)2; j�1 � �2j; 1� �(Fi; Fj)

o
:

The following notation is introduced for further conve-
nience:
Let P denote the convex polyhedron rolling on a plane
P , and let V = fV1; : : : ; Vmg be the set of vertices, E =
fE1; : : : ; Ekg the set of edges, and F = fF1; : : : ; Flg the
set of faces of P : Let Dlk denote the length of the edge
incident to vertices Vl and Vk: Also, for each face Fj and
each vertex Vi belonging to such face denote �ij the angle
between the two edges on face Fj incident at vertex Vi. of
face Fj at vertex Vi: For each vertex Vi, the defect angle

�i is de�ned as the complement to 2� of the sum of an-

Fig. 2. Slightly di�erent polyhedra may reach dramatically di�erent
sets of con�gurations by rolling

gles �ij for all j such that face Fj is adjacent to Vi; i.e.
�i = 2� �Pj �ij .

The geometric structure of the reachable set for a poly-
hedron rolling on a plane has been thoroughly investigated
in [8], where the following theorem is proved:

Theorem 1: The set of reachable con�gurations for a

polyhedron rolling about its edges is dense in fM if and
only if there exists a vertex Vi of the polyhedron whose
defect angle is irrational with �, i.e., i� 9�i : �i� 62 Q.

Remark 1. Observe that in the above reachability theo-
rem the conditions upon which the density or discreteness
of the reachable set depends are in terms of rationality
of certain parameters and their ratios. This entails that
two very similar polyhedra may have qualitatively di�erent
reachable sets. This is for instance the case of �g. 2, where
the projection on IR2 of the reachable set is illustrated for
a unit cube (giving a square lattice), and for a truncated
pyramid obtained from the cube by slightly shrinking its
upper face, which gives a dense set. In fact, for any poly-
hedron whose reachable set has a discrete structure, there
exists an arbitrarily small perturbation of some of its ge-
ometric parameters that achieves density. In view of this
remark, and considering that in applications the geometric
parameters of the parts will only be known to within some
tolerance, i.e., a bounded neighborohood of their nominal
value, a formulation of the planning problems such as

\Given a polyhedral part P and a �nal con�guration Cf ,

�nd a sequence of tumbles that brings P in Cf"

is clearly ill-posed.

To provide a correct model of the phenomenon of rolling
polyhdral parts, it is necessary to deal with the represen-
tation of toleranced quantities in the computer. A certain
parameter of nominal value â is given with tolerance �a,
and written â� �a, if its true (unknown) value a satis�es

â� �a � a � â+ �a:

In this paper, for the number a we will consider the ra-
tional representation �a = pa

qa
with pa; qa integers, such that

j�a� âj � �a, can be found by using the continued fraction
expansion of â which is recalled here for convenience:

�a =
pa
qa

= n0 +
1

n1 +
1

n2+
1

���+ 1
nN

where ni are positive integers such that n0 is the inferior
integer part of â, n0 = bâc, n1 = b 1

â�n0
c, n2 = b 1

1
â�n0

�n1
c,
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and so on. For such truncated representation, it holds

jâ� pa
qa
j � 1

q2a
:

Therefore, a representation of a � �a is given by a trun-
cated continued fraction expansion �a = pa=qa such that
qa � �a

�1=2. In order to avoid nonsensical excess in rep-
resentation accuracy, we assume qa = d�a�1=2e (this is ob-
tained in at most N = qa steps). For an angular parameter
the same representation applies, proviso angles are mea-
sured in � rad units.
As a consequence of such rational representation of poly-

hedra, the structure of the reachable set will always be dis-
crete. The study of the lattice of discrete reachable sets is
therefore crucial to the developments of this paper. As a
�nal observation, it must be pointed out that in the execu-
tion of a rolling manipulation plan, the actual con�guration
�nally reached by the polyhedron will depend on the true
values of the geometric parameters, and hence will di�er
from the planned one by an error propagating through ma-
nipulation.

B. Problem Statement and Method of Solution

In view of the above discussion, a correct formulation of
the planning problem can be given as follows:

The Planning Problem. Given a polyhedron P with

known geometric parameters and tolerances, a desired �-

nal con�guration Cf , and an accuracy �, decide whether a

sequence of tumbles reaching a con�guration Ĉf such that

kĈf � Cfk � � exists; if so, provide one such sequence.

A brute force approcah to the solution of the planning
problem is a graph search. The con�guration graph size
for sequences of length N is l(l � 1)N�1. The complexity
of the search can not be bounded as a bound on N can not
be given a priori.
The method we propose exploits a particular group

structure that can be recognized in a subset of all ma-
nipulation sequences. The generators of such group will
be used to provide a de�nite answer to the solvability part
of the planning problem, and to provide a solution if one
exists. A bound on the length of the solution sequence will
also be provided, although no optimality claim is made on
the proposed solution. The fundamentals of such group{
theoretical technique are described in this section.

Denote by PD a plane development of the polyhedron P
on the plane, i.e. any planar connected union of l poly-
gons, each one a copy of a distinct face of P , such that two
polygons are adjacent only if the corresponding faces of the
polyhedron are adjacent. The copy of the reference face F1
coincides with F1.
Label the polygons with the same indices of the corre-

sponding faces of the polyhedron. De�ne for each i 6= 1
the sequence Li of indices such that Li is a path on PD
from polygon F1 to polygon Fi through adjacent polygons.

Fig. 3. An octahedron and its development on the plane. Circled
numbers refer to hidden faces.

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

1

4
5

6

3

4

1C

Fig. 4. For the development on the plane of a octahedron, the se-
quence (1; 4; 5; 6; 3; 4; 1) produces a rigid rotation of an angle 2�=3
about point C.

We call fLi; i = 2; :::; lg the set of transit paths. Observe
that a transit path Li can be naturally associated with a
sequence of tumbles of the polyhedron that brings face Fi
in contact with the plane P:

Consider a vertex Vj of P : Let Fj1 ; Fj2 ; :::; Fjkj be all the
faces of P sharing vertex Vj : Up to reordering labels, we can
suppose Fjr and Fjr+1 are adjacent for all r = 1; :::; kj�1
and Fj1 is adjacent to Fjkj . Consider the polygon in PD
corresponding to Fj1 , and let Cj be the vertex on it corre-
sponding to Vj . Consider for all j = 1; :::;m the sequences
Sj = (j1; j2; :::; jkj ; j1) and Rj = Lj1SjL

�1
j1
, where by L�1

we mean the sequence L followed inversely. In the sequel,
we will occasionally refer to such composition of sequences
of tumbles as a concatenation of strings. Observe that the
new string Rj produces a rigid rotation of the polyhedron
by an angle �j about an axis through Cj and perpendicular
to P (�g.II-B).

The set of all admissible sequences starting and ending
with face F1 in contact with the plane, together with a com-
position law given by concatenation of sequences, forms a
group R modulo the equivalence relation wich is de�ned
below. Any sequence in R can be written in its reduced
form by eliminating trivial (palindromic) substrings, corre-
sponding to vane manipulations, which may appear in the
sequence. Any two sequences are equivalent if their reduced
form are equal. It can be proved (see [8]) that a �nite set
of generators for R is given by R = fRj ; j = 1; :::;m� 1g.
The group R is therefore referred to as the group of planar
rotations of the polyhedron.

Recalling that all angles are represented as rationals in �
radians unit, the defect angles of P are given (in radians)
by �i =

pi
qi
�. We de�ne the greatest common divisor of the
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defect angles as �� = GCD(�j ; j = 1; :::;m� 1) = p
q�. By

an iterated version of the extended Euclidean algorithm [9]
we can then �nd integers nj such that

�� =
m�1X
j=1

nj�j (mod 2�):

Also de�ne the angle � = �
q . Observe that the smallest

angle of rotation, i.e. the smallest feasible change of ori-
entation, is � if p is odd and 2� if p is even. The element
of the group of planar rotations that performs a rotation
(about a point �C) of �� is �R =

Qm�1
j=1 R

nj
j . The element

that produces the smallest possible rotation has the form
�Rk, with k � q for p odd or k � 2q for p even.
Consider now the set of all sequences starting and ending

with face F1 in contact with the plane such that the �nal
con�guration of polyhedron is only translated. This set,
with the composition by concatenation, forms a subgroup
T � R. It can be proved (see [8]) that a �nite set of
generators for T is given by

T = ftjk = �R�k
�
�RhjR�1j

�
�Rk ; j = 1; :::;m� 1;

k 2 Z such that � q + 1 � k � q � 1g: (1)

where hj are the integers such that hj �� = �j . The group T
is referred to as the group of translations of the polyhedron.
Translations tjk correspond to strings of tumbles, whose
trivial substrings have been purged.
Remark 2. For all j = 1; :::;m � 1, the generators tjk

can be seen as 2q�1 copies of tj0, rotated of � with respect
to each other.

III. Planning Algorithm

The model of the polyhedral part is stored in the form
of a list of faces whose items contain a list of the edges
of the face. Each item of the edge list in turn contains a
pair of vertices. Finally, each element of these pairs points
to a three dimensional vector containing the cartesian co-
ordinates of the corresponding vertex. The defect angles
�i = pi

qi
� are then computed for each vertex, and their

value attached to the vertex list.
The polyhedron is developed on the plane by the follow-

ing steps:
Step 1. Place the polygon corresponding to F1 in position
(0; 0) with orientation angle 0;
Step 2. If l polygons have been drawn then stop, else draw
a new polygon adjacent to one already drawn (see �g.II-B),
and repeat Step 2.
One fundamental step of our algorithm is the computa-

tion of the angle �� by the formula

��=� =
p

q
= GCD(

pi
qi
; i = 1; :::;m� 1)

and the computation of a set of integers ni = 1; :::;m such
that

p

q
=

m�1X
i=1

ni
pi
qi
: (2)

Although �nding the smallest such nj 's would be inter-
esting for the sake of reducing the amount of tumbles to
obtain a given rotation, this problem is notoriously a hard
one in integer programming, which may add signi�cantly to
the algorithm complexity. Instead, we �nd a set of integers
by applying the Extended Euclidean Algorithm (EEA), and
take their values modulo 2qj (otherwise there would exist
n0j � 2qj such that nj

pj
qj
� � n0j

pj
qj
� (mod 2�)). By these

means, we also provide a bound on the nj 's.
These computations are done by using the well{known

Euclidean Algorithm (EA) and its Extended version
(EEA). To �nd p = GCD(pi�qi; i = 1; :::;m � 1), where
�qi =

q
qi
; q = lcm(qi; i = 1; :::;m � 1), the basic EA step

�nding the GCD of two integers is applied recursively as
p = GCD(pm�1�qm�1;GCD(pm�2�qm�2; : : :GCD(p3�q3;GCD(p2�q2; p1�q1)) : : :))

The EEA is �rst applied to �nd coe�cients (n02; n
0
1) solv-

ing
GCD(p2�q2; p1�q1) = n02 p2�q2 + n10 p1�q1;

then to �nd coe�cients (n13; n
1
2) for the pair

(p3�q3;GCD(p2�q2; p1�q1)):

The triple of coe�cients (n13; n
1
2n

0
2; n

1
2n

0
1) is thus obtained

solving

GCD(p3�q3; p2�q2; p1�q1) = n13 p3�q3 + n12n
0
2 p2�q2 + n12n

1
0 p1�q1:

By iterating this procedure, we get the m � 1 coe�cients
ni as

nm�1 = nm�3m�1;
nm�2 = nm�3m�2n

m�4
m�2;

nm�3 = nm�3m�2n
m�4
m�3n

m�5
m�3;

...

n1 =
Qm�1

i=1 ni�1i

Next fundamental part of the algorithm is the computa-
tion of the set T of generators of translations, de�ned in
eq.1. By some simple computations, the analytic expres-
sion for the generators is obtained as

tjk = (Cj � �C)(ei�j � 1)eik
��

for j = 1; :::;m�1 and k 2 Zsuch that�q+1 � k � q�1,
where point �C is given by

�C =

m�1Y
j=1

R
nj
j e�i

�� :

Remark 3. The group of possible translations of the
polyhedron is given by all integer combinations of the gen-
erators tjk . To simplify notation, we will denote hence-
forth these generators by a single index, i.e. let T =
fv1; : : : ; vNg; N = 2q(m � 1). Assume that vi, vj are the
two linearly independent generators. Any generator vk can
be expressed as the sum of its components along vi and vj ,

vk = akivi + akjvj ;
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with [aki akj ]
T = [vi vj ]

�1vk. The span of vi; vj ; vk over
the integers can be more e�ciently represented as the span
of v1; v2 over the smallest �eld (Q or IR, Q � IR) where
aki and akj take values, respectively. The group gener-
ated by vectors in T is therefore dense in IR2 if and only
if there exists a triple of vectors vi; vj ; vk such that both
aki 2 IR nQ and akj 2 IR nQ; discrete if and only if for all
triples vi; vj ; vk, both aki 2 Q and akj 2 Q. The group will
consist of the union of a countable number of disjoint dense
monodimensional subspaces if neither condition applies.

In the same spirit of the observation made in Remark 1,
even when the density condition of Remark 3 is veri�ed, it
will be most expedient to replace the original generators vk
by an approximation ~vk such that

~vk =
rik
sik
vi +

rjk
sjk
vj

where the rational approximations of the real coe�cients
are obtained through use of the continued fraction expan-
sion such that ����rlkslk � akl

���� � �g l = i; j: (3)

Representing all generators in terms of two of them by ra-
tional coe�cients entails that the group of translations of
the polyhedron is reduced to the set of integer combinations
of the two basic generators, i.e. a discrete set, namely a
two{dimensional lattice. Notice that, if the original group
is dense, the lattice mesh can be chosen as small as desired
by setting a small bound �g on the approximation error. If
the original group is discrete, an approximation can still be
introduced of a rational coe�cient with another one, whose
denominator is smaller. Such lattice approximation of the
actual set of reachable positions (the accuracy of which
is under control by the parameter �g) is one key idea in
the solution we give to the solvability part of the planning
problem, and is also instrumental in devising an e�cient
planner.

Motivated by the arguments in Remark 3, we consider
henceforth a lattice structure in the group T, generated
by ~T = f~v1; : : : ; ~vNg. Recall that a set of lattice genera-

tors in IRd is a set of d vectors in IRd such that any lattice
node can be expressed uniquely as an integer combination
of the lattice generators. We obtain a pair of lattice gen-
erators X1; X2 by using the well{known Hermite Normal

Form algorithm (see e.g. [9]),

X =
�
X1 X2 0

�
=
�
~v1 ~v2 : : : ~vN

�
U = eVU

where U is a unimodular integral matrix. We refer in par-
ticular to the algorithm variant by [10]. In algebraic form,
denoting by Uij the element of U in the i� j position, one
has

Xj =
NX
i=1

viUij :

Also let � be the determinant of the Hermite matrix
X , i.e. the area of the mesh of the lattice generated by
~v1; : : : ; ~vN . From Minkowski's convex body theorem, an �{
neighborhood of an arbitrary point in the plane contains a
lattice point if ��2 � 4�. Recall that � can be controlled
by the accuracy of approximation �g .

Given the initial con�guration (0; 0; 0; F1) and a �nal
con�guration Cf = (xf ; yf ; 
f ; Ff ), consider the algorithm
(illustrated in �g. III):

Planning Algorithm.

1. If � > 2� or 2
q

�
� � �, the Planning Problem is not solv-

able for a generic Cf (if the following steps are performed,
a solution may or may not ensue).
2. Compute (x1; y1; 
1) such that Lf : (x1; y1; 
1; F1) 7!
(xf ; yf ; 
f ; Ff ). Observe that Lf (0; 0; 0; F1) = (xf �
x1; yf � y1; 
 � 
1; Ff ), which fact provides the equation
for computing (x1; y1; 
1):
3. Let k = arg min� j��� � 
1j (mod 2�=��). If jk �� � 
1j
(mod �) > �, the Planning Problem has no solution | exit;
otherwise compute (x2; y2) such that �Rk : (x2; y2; 0; F1) 7!
(x1; y1; 
2; F1), where j
2 � 
1j < �. Observe that �Rk :
(0; 0; 0; F1) 7! (x1 � x2; y1 � y2; 
2; F1) which fact provides
the equation for computing (x2; y2):
4. Let (k1; k2) = arg min�1;�2 k�1X1 + �2X2 � (x2; y2)k.
If kk1X1 + k2X2 � (x2; y2)k > �, the Planning Prob-
lem has no solution | exit; otherwise, apply the original
generators of the lattice, v1; :::; vN , Ui = Ui1k1 + Ui2k2
times each. A point (x3; y3) is thus reached such that
k(x3; y3)� (x2; y2)k � �.
5. Manipulate the object by applying (after purging all
trivial substrings) the string of tumbles corresponding to
vUii ; i = 1; :::; N , �Rk, LF , in the order.

This algorithm provides a complete solution to the Plan-
ning Problem for polyhedral parts whose geometric de-
scription is not a�ected by uncertainties (�a = 0), and
whose translation generators have not been approximated
(�g = 0).

For more general polyhedra, the algorithm is applied un-
changed, but the computed solution may not satisfy the
required accuracy �. A test on the possibility of guarantee-
ing accuracy in the general case will be discussed shortly.

A. Accuracy of Solution

As already mentioned, by applying the proposed algo-
rithm to general polyhedral parts with toleranced dimen-
sions, it can not be guaranteed that their manipulation
will actually lead to satisfy the planning problem. To an-
swer this question, a detailed analysis of how measurement
and approximation errors propagate and a�ect the con�g-
uration reached upon manipulation according to the above
algorithm.

We start by explicitly calculating bound on errors on
geometric parameters based on tolerances on input data
for our problem, which are in our case the coordinates in
space of the vertices of the polyhedron. Let �V denote the
tolerance on the position of vertices Vi of the polyhedron,
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Fig. 5. Given the initial ((0; 0; 0; F1)) and the �nal ((xf ; yf ; 
f ; F6))
con�gurations the sequences of tumbles T �RL6 are performed.

i.e.
kV̂i � Vik1 � �V ; i = 1; : : : ;m:

Quantities to be computed that are a�ected by the error
of measure are the length of edges Djk incident at ver-
tices Vj and Vk; and the defect angles �i. A bound on
the error on the edge length is clearly �D = 2�V . The
computation of defect angles may lead to errors bounded

by �� = 2(l�1)
dmin

�V ; where dmin = minj;k jDjkj, i.e. by the
error on the angle between two edges incident at vertex Vi
times the number of faces vertex Vi belongs to.
In the computation of ��, the GCD of defect angles, it is

assumed that a rational representation pi
qi
� of defect angles

�i is taken such that

j�i � pi
qi
�j � �� ; i = 1; :::;m� 1

Based on

�� =

m�1X
i=1

ni�i (mod 2�);

we can write

j�� � p

q
�j � ��

m�1X
i=1

ni � 2q(m� 1)�� (mod 2�)

In the manipulation sequence, rotations �R appear at
most 2q times in step 2 of the algorithm, and Uihi times
in step 3. While from de�nition in eq.1 one has directly
hi � 2q, a bound on Ui can be given by bounding the en-
tries of matrix U and the projection of the �nal reached
point on the basis X1; X2 for the lattice.
The Domich{Kannan{Trotter algorithm [10] brings the

matrix of vectors ~v1; : : : ; ~vN , in polynomial time (2Nd2max),
in the Hermite Normal Form and the entries of the �-
nal Hermite matrix X are bounded by d2Nmax with dmax =
maxj;k jDjk j. By the algorithm the transforming unimod-

ular matrix U such that X = eVU is easily computed and
a bound on its entries is given by d8N

2�2

max .
Let Cf the desired �nal con�guration (with orientation

invaried with respect to the initial one) at distance df from

the origin. Let Ĉf = ~k1X1 + ~k2X2 the point reached such

that kĈf�Cfk �
q

�
� . Then, in matricial form, (k1k2)

T =

(X1X2)
�1Ĉf and the in�nity norm of the vector (k1k2), i.e.

the biggest of the two coe�cient representing the number
of times the generatorsX1; X2 are employed, is bounded by
the in�nity norm of the matrix (X1X2)

�1 times df . Then

k1; k2 are bounded by df
d2Nmax

� .
At last a bound on Ui is given by

Ui � 2df
d2Nmax

�
d8N

2�2

max = 2df
d
2N(1+4N�2)
max

�
: (4)

Based on these computations, a bound on the error by
which the orientation of the �nal con�guration is reached
can be provided as

��f � 2q

�
1 + 2df

d2N(1+4N�2)
max

�

�
(2q(m� 1)��) =

= 2q

�
1 + 2df

d2N(1+4N�2)
max

�

��
2q(m� 1) 2(l�1)dmin

�V

�
:

(5)

It follows that reaching a �nal con�guration at a distance
df within some error � in the orientation is possible only
if ��f � �. Conversely, an estimate of the necessary accu-
racy in �V and �, i.e. �g , can be obtained for given � and
df .

Next the computation of the generators of translations
is considered. From the theory reported above, we can
express the generators as vectors of length equal to the
distance between some �xed point �C and the point Ci of
the plane development of the polyhedron representing the
vertex Vi. This length is a�ected by the error of the mea-
sure of the coordinates of the vertices magni�ed through
computation of the plane development. We can bound this
error by l (number of faces) times the error of measure
�V . The direction of the generators is given by the line
connecting the �xed point with the vertices on the plane
development and then rotated of angles k� + �i

2 , for some
i = 1; : : : ;m � 1, with k = 1; ::; q if p is even, or k � 2q
otherwise. Hence, the direction of the generators is a�ected
by an error bounded by �gen = �� [

1
2 + (2q)2(m� 1)].

The Hermite Normal Form for V is computed and the
error in the computation and approximation to rationals
of the coordinates of vectors vi propagate through the al-
gorithm.
In particular let v̂i be the computed generator and �v̂i be

a vector such that the true generator of translation vi can
be written as vi = v̂i + �v̂i where k�v̂ik � l�V + dmax�gen

In fact, jkv̂ik � kvikj � l�V and the absolute value of the
angle between vi and v̂i is such that

j6 (v̂i; vi)j � �gen:

Let also ~vi the vector whose components are rational
numbers approximating the coordinates of vector v̂i. Then
for vi it holds: vi = v̂i + �v̂i + �~vi with �~vi the vec-
tor representing the approximation error. Observe that
k�~vik �

p
2�g .
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The Hermite Normal Form is computed on matrix ~V =
V � � ~V � �V̂ with � ~V and �V̂ are the matrices whose
columns are respectively the vectors �~vi and �v̂i. Then
the basis for the lattice is computed up to an error given

by
�
� ~V + �V̂

�
U. An upper bound on these errors is eas-

ily computed recalling the upper bounds on the euclidean
norm of the columns of matrices � ~V and �V̂. The ex-
pression E = Nd8N

2�2

max

�
l�V + dmax�gen +

p
2�g
�
is thus

obtained.
It is clear that the error on the computation of X1; X2 is

magni�ed when these two vectors are applied for steering
the polyhedron in the desired con�guration. Being then
Cf the desired �nal con�guration at distance df from the

origin and Ĉf = ~k1X1+~k2X2 the computed reachable point

such kĈf � Cfk �
q

�
� , for the point

�Cf reached through

actual manipulation it holds

k �Cf �Cfk � k �Cf � Ĉfk+ kĈf �Cfk �
r

�

�
+2Edf

d2Nmax

�

We obtain that a positioning precision of � can be ob-
tained if

�Cf =

r
�

�
+ 2Edf

d2Nmax

�
� � (6)

Thus, based on (5) and (6), a �nal step of the proposed
algorithm should be applied for polyhedra with uncertain
geometric description as
Planning Algorithm (continued).

5. If jk �� � 
1j (mod �) + ��f � � and kk1X1 + k2X2 �
(x2; y2)k +�Cf � �, the algorithm succeeded in �nding a
solution to the Planning Problem.
If either checks in Step 5 of the algorithm fail, a di�erent

choice of some parameters in the algorithm may lead to
success. In particular, reducing tolerances �V is obviously
of great help, whenever possible. Another less trivial possi-
bility is that of reducing the representation accuracy of the
generators of translations, by increasing the lattice mesh
area �. Although this decreases the lattice resolution, it
also a�ects the number of times each generator is employed
in manipulation, hence the accumulation of geometrical er-
rors. The latter e�ect is dominant on the former for very
small � (see (6)).
As a conclusion, we claim the following
Proposition 1: With respect to the Planning Problem as

stated in this paper, the proposed Planning Algorithm is
� complete if the geometric description of the polyhedron
is exact (�V = 0) and if the polyhedron satis�es the dis-
creteness condition of Remark 3;
� resolution complete if �V = 0;
� not complete in the most general case (an optimization in
the size of the lattice mesh might be necessary to conclude).

IV. Complexity of the Algorithm

In this section the analysis of the complexity of the algo-
rithm previously described will be made. The total com-
plexity is given by a time complexity of some parts of the
algorithm and the number of tumbles (needed for �nding a

solution to the planning problem) times the time complex-
ity of a single ET (which we denote for the moment with
r). The total time complexity is comprised of two parts:
one part which refer to the computation of the generators
of rotations and translations and of the planning path for a
given polyhedron and another one relative to the manipu-
lation part. The complexity relative to the computation of
the generators of translations and rotations is comprised of
the computation of the polyhedron description and devel-
opment, defect angles, approximation to rational of defect
angles, ��, the set T , the lattice and the planning. For the
second part we will consider the cost in terms of tumbles
that are necessary for manipulating the part through the
tumbles planned by the planning part of the algorithm.

A. Computational Part Complexity

For the computation of the geometrical parameters of
the polyhedron the time running of the algorithm is valued
in terms of number of edges, vertices and q which is the
denominator of GCD(�i=�) whose size is controled in order
to obtain a certain accuracy in the orientation of the �nal
con�guration of the polyhedron. The computation of the
lengths of the edges of the polyhderon is clearly linear with
lk, i.e. the number of faces times the number of edges
of polyhderon. In fact, for this computation stored data
relative to the polyhedron parameters have to be explored:
in particular, by the way datas are stored, the list of the
faces has to be scanned and for each face the list of edges
belonging to the faces has to be scanned. The polyhedron
development is in turn linear with the number of faces l.
The computation of defect angles also depends strictly on
data storage. For each of them vertices at most l faces have
to be scanned and for each of the incident faces (which are
in the worst case l�1) at most k edges have to be scanned in
order to �nd the pair incident at some vertex. For all pairs
of edges incident at the vertices and belonging to the same
face the angle comprised has to be computed. The total
complexity is given by that for the exploration which is at
most mlk and that for the computation of the sum of the
angles which is linear with ml then we have the comlexity
for this part of O(mlk).

Another important step is that of the approximation
through the continued fraction expansion of defect angles.
The number of iterations in the algorithm is such that the

error of approximation is bounded by �� = 2(l�1)
dmin

�V . As

we have already observed this number is at most
q

1
��

.

For the computation of �� and for the computation of the
coe�cients for the expression of �� as in equation 2, the
Euclidean Algorithm has to be repeated recursively m� 2
times. Each time it is repeated its running time is at most
log10(pq), i.e. the number of digits of the smallest num-
ber whose GCD is computed. The total complexity is then
of order O(m log10(pq)). The coe�cients necessary for the
computation of those of equation 2, are stored in the for-
ward steps of the Euclidean Algorithm, and their running
time computation is contained in that of the computation
of ��.
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Next (m� 1)q generators of the translations have to be
computed. Recall that the remaining (m � 1)q generators
are exactly the inverse of the �rsts and their computation
is trivial. For analysing the running time for the computa-
tion of each of these generators, recall that it is important
the knowledge of the point �C of the plane about which �R
rotates face F1 of angle ��. Clearly the complexity of the
computation for each of the generators is then given by
the number of tumbles necessary for �R: We suppose for
each tumble a time running cost as for the product of a
3{dimensional square matrix applied to the space coordi-
nates of the m vertices in order to update the position on
the plane of the polyhedron. Actually the matrix product
is su�cient to be applied to only 3 of the m vertices and
update all the others, in terms of relative position with re-
spect to some �xed reference system, when the �nal tumble
has been simulated. Then the simulation of a single tumble
has constant complexity.
The number of tumbles �N that �R requires can be esti-

mated by its expression in terms of product of rotations
Rj 's: �R =

Qm�1
j=1 R

nj
j where nj are the integers such thatPm�1

j=1 nj�j =
p
q�. We have then �N =

Pm�1
j=1 njNj where

Nj is the number of tumbles needed for the execution of a
single rotation Rj . In turn Nj is given by twice the num-
ber of tumbles needed for the transit path Lj1 (where Fj1
is one of the face to which Vj belongs to) plus those needed
for rotating about all the edges incident at vertex Vj : Then
Nj � 2(l� 1) + (l � 1) = 3(l � 1):

It follows immediately �N =
Pm�1

j=1 njNj � (m �
1)(2q)3(l � 1) and �N = O(qlm). At last for the whole
set of generators, we have a computational cost of

rq(m� 1) ((m� 1)(2q)3(l� 1)) ;

i.e. of order O(q2m2l).
Next step is the lattice generators computation which

is done by bringing the matrix of translation in Hermite
Normal Form which requires 2Nd2max steps in each of
which only elementary matrix operation are done. Then
the complexity of the algorithm can be supposed of order
O(2Nd2max).
Next step in the computation of the complexity of the

algorithm concerns the computation of a solution. Re-
calling the steps of the planning algorithm it is necessary
to implement a path Lf for step 1., and a path �Rk for
some k � 2q for step 2. Then this part of the algorithm
has a running time cost bounded by r

�
(2q) �N + (l � 1)

� �
9(l�1) �(2q)2(m� 1)3 + 1

�
Then this part of the algorithm

has complexity of order O(q2ml).
In this part of the algorithm integers k1; k2 such that

(�xf ; �yf ) = (X1 X2)

�
k1
k2

�
(7)

is veri�ed with k(�xf ; �yf ) � (xf ; yf )k �
q

�
� , the nearest

point from the �nal desired con�guration is (�xf ; �yf ) and is
reached in k1+k2 � 2Max(k1; k2) times the generators X1

and X2. Recalling the bound found in the previous section

Max(~k1; ~k2) � df
d2Nmax

� .

B. Manipulation Complexity

The number of tumbles planned by the algorithm are
performed. In order to provide their total number we recall
the following bounds we have found above:

i Number of tumbles for Lf is at most l � 1
ii Number of tumbles for �Rk is at most (2q)2(m�1)3(l�1)
iii Number of tumbles for t = k1X1 + k2X2 with
(X1X20) = VU. Then

t = VU

2
4 k1k2
0

3
5 :

Each vector vi is of type �Rs
�
�RhjR�1j

�
�R�s. A bound on

the tumbles that each vector of translation requires is given
by Ni � (2q)(m�1)3(l�1)(2s+hj)+3(l�1) � 3(l�1)(1+
2(m� 1)(2q)2). We can brie
y say that each generator of
translation is of O(q2ml). The number Ui = k1Ui1+ k2Ui2
of time each of them is applied has been already estimated
in the previous section (see equation 4). Then we have a
total number of tumbles for the translational part which is

given by
PN

i=1NiUi = O

�
q2mldf

dN
2�2

max

�

�
.

V. Conclusions

We studied the problem of displacing and reorienting a
polyhedral part rolling on a plane to the purposes of robotic
manipulation. One contribution of this paper is to provide
a correct statement of this problem, that takes into ac-
count the mathematical structure of the system as well as
practical considerations on �nite{acuuracy measurements
of bodies. We also proposed an algorithm, and discussed
its properties in relation to its completeness and computa-
tional complexity.
The manipulation sequences generated by the planner

are in general rather long, and by no means optimal in the
sense of minimizing the number of tumbles. Further work
in that direction is envisioned in the next future.
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