
Planning Shortest Bounded{Curvature Paths

for a Class of Nonholonomic Vehicles among Obstacles

Antonio Bicchi

Giuseppe Casalino

Corrado Santilli

Dipartimento Sistemi Elettrici e Automazione

Universit�a di Pisa

via Diotisalvi, 2 { 56100 Pisa { Italia

Fax: +39{50{565333 Tel.:+39{50{565328 Email: bicchi@vm.cnuce.cnr.it

Abstract

This paper deals with the problem of planning a path for a robot vehicle
amidst obstacles. The kinematics of the vehicle being considered are of the
unicycle or car{like type, i.e. are subject to nonholonomic constraints. More-
over, the trajectories of the robot are supposed not to exceed a given bound on
curvature, that incorporates physical limitations of the allowable minimum
turning radius for the vehicle. The method presented in this paper attempts
at extending Reeds and Shepp's results on shortest paths of bounded curva-
ture in absence of obstacles, to the case where obstacles are present in the
workspace. The method does not require explicit construction of the con-
�guration space, nor employs a preliminary phase of holonomic trajectory
planning. Successfull outcomes of the proposed technique are paths consist-
ing of a simple composition of Reeds/Shepp paths that solve the problem.
For a particular vehicle shape, the path provided by the method, if regular, is
also the shortest feasible path. In its original version, however, the method
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may fail to �nd a path, even though one may exist. Most such empasses
can be overcome by use of a few simple heuristics, discussed in the paper.
Applications to both unicycle and car{like (bicycle) mobile robots of general
shape are described and their performance and practicality discussed.

1 Introduction

In recent years, there has been a growing interest in motion planning for
nonholonomic vehicles, motivated by both its relevance to applications (au-
tomated factories and highways, assisted parking maneuvering, etc.) and its
theoretical challenges. One of the interesting features of this �eld is that
its background is composed of work done in holonomic motion planning (a
predominantly A.I. area) as well as in nonlinear systems theory and control.

A nonholonomic constraint is a non integrable equation involving the
con�guration parameters and their derivatives (velocity parameters). Such
constraints do not reduce the dimension of the robot con�guration space (like
holonomic constraints do), but reduce the dimension of the velocity space at
any given con�guration. Thus, a kinematic model of a car{like vehicle can
be parked everywhere in a free three{dimensional workspace, although it
only possesses two control inputs. This comes at the price of more complex
planning for maneuvers such as parallel parking. Application of nonlinear
control tools to nonholonomic planning generated elegant methods for steer-
ing robots between arbitrary con�gurations, e.g. by using sinusoidal [Murray
and Sastry, 1993], or multirate [Monaco and Normand{Cyrot, 1992] control
inputs. Although these methods do not consider the presence of obstacles nor
bounds on curvatures, they provide a theoretically sound basis for generaliz-
ing local planning techniques (e.g. potential �elds) to nonholonomic systems.
In the case that obstacles are present, it has been shown (see Laumond [1986],
Barraquand and Latombe [1990]) the non{trivial fact that a car with cur-
vature limitations moving amidst obstacles remains fully controllable, that
is, whenever a free (holonomic) trajectory exists, the existence of a feasible
path is also guaranteed.

The presence of lower bounds on the minimum turning radius involves
curvature constraints on feasible trajectories that deeply a�ect the geome-
try of the problem. The problem of �nding the shortest path between two
con�gurations in the plane with curvature limitations is an interesting ge-
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ometric problem per se, that was solved �rst by Dubins [1957] for smooth
trajectories. Only recently, Reeds and Shepp [1990] solved the geodesic prob-
lem when reversals are allowed. They have shown that a path with shortest
length can always be built by concatenating at most �ve linear or circular
segments, including at most two cusps. The radius of circular segments is
the minimum allowed turning radius, and cusps correspond to reversals. The
same result has recently been derived again by Sussmann and Tang [1991]
and Boissonnat, Cerezo, and Leblond [1992], using Pontryagin's maximum
principle. These theoretical results ignited a new series of methods tending
to �nd nonholonomic paths with bounded curvature amidst obstacles, among
which [Fortune and Wilfong, 1988], [Jacobs and Canny, 1989], [Barraquand
and Latombe, 1989], [Jacobs, Laumond, Taix and Murray, 1991], [Mirtich
and Canny, 1992].

The method presented in this paper is also inspired by Reeds and Shepp's
work, and is reminiscent of several others proposed in the literature as well,
though it does not seem to have been discussed in this form for nonholonomic
vehicles. In particular, the method can be regarded as a generalization of
visibility graph methods, to which it reduces as bounds on path curvature
are lifted. The path resulting is a simple concatenation of linear and circular
segments, the latter having minimum turning radii. For a special type of
nonholonomic vehicle (a circular unicycle of radius h and minimum turning
radius �min � h) moving among polygonal obstacles, it is proved (Theorem 1)
that, if the proposed planner succeeds in providing a regular path (i.e., a path
with no cusps), then that is a shortest feasible path of bounded curvature
for the given problem.

Although the method is not path{complete, a set of a few simple heuris-
tics are presented that are generally capable of �xing most typical deadlocks
of the algorithm. As applied to more general vehicles, the principal worth
retained by the method is perhaps in its simplicity and in the smoothness of
the resulting paths. The planner does not require explicit evaluation of the
con�guration space, nor it employs a preliminary phase of holonomic trajec-
tory planning. Simulation results are reported in this paper that support
such an extension providing very reasonable paths. Experiments have also
been carried out on a TRC Inc. LABMATE vehicle, that showed the feasi-
bility of real{time implementations of the algorithm in medium{complexity
environments.
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Figure 1: A generic car{like robot (a) and a particular unicycle vehicle (b).

2 The proposed planner

Fig.1{a shows a mobile robot, modelled as a two dimensional objectAmoving
in a 2{dimensional workspace.

The con�guration space of the robot isR2�S1, and can be parameterized
by the coordinates x and y of the robot reference point P , and by the angle
� (representing the robot orientation) between the x{axis of the base frame
FS and the main axis of the robot. The robot shape is assumed symmetric
with respect to its main axis, and its half-width is denoted by h. We restrict
ourselves to consider only polygonal obstacles in the workspace, that we
indicate with Oi; i = 1; : : : ; l, while their n vertices are listed in Xj, for
j = 0 to n. A nonholonomic constraint arises because the wheels can roll
and spin but not slip, hence the robot cannot move sidewise. For a unicycle
vehicle such as that shown in �g.1{b, the nonholonomic constraint is written
as

S(q) _q =
h
� sin(�) cos(�) 0

i 264
_x
_y
_�

3
75 = 0

The motion planning problem can be stated as follows:
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Problem 1 Let qs = (xs; ys; �s) and qg = (xg; yg; �g) be respectively the
initial and �nal con�guration of a robot A with minimum turning radius �min

and half-width h. Determine a path �q(�) that minimizes the cost functional

L(�q(�))
def
=

Z 1

0

q
x02(�) + y02(�) d�; (1)

subject to

�q(0) = qs; (2)

�q(1) = qg; (3)

A (�q(�)) \ Oi = ; i = 1; : : : ; l; 8� 2 [0; 1]; (4)

S(�q)�q0 = 0; 8� 2 [0; 1]; (5)

�q(�) 2 C1; and
x0y00 � x00y0

(x02 + y02)3=2
�

1

�min
; (6)

where �q0 = d�q(�)
d�

, x0 = dx(�)
d�

, y0 = dy(�)
d�

, x00 = d2x(�)
d�2

, y00 = d2y(�)
d�2

. In the
above formulation, the cost functional is the length of the path, constraints
(2) and (3) concern initial and �nal conditions of the path, condition (4)
re
ects the obstacle avoidance condition, while (5) and (6) represent the
nonholonomic and limited curvature constraints on the path, respectively.
Finding a solution for this problem is in general quite di�cult. One possible
approach to the study of such optimization problem is through Pontryagin's
\Minimum Principle" [Pontryagin et al., 1962]. However, as it is well known,
the minimum principle only o�ers necessary conditions for the existence of an
optimum solution in general. Moreover, constraints (4) are actually bounds
on the state{space, and these entail a substantial increase in the complicacy of
the analytical formulation of solutions to the problem above (see e.g. [Bryson
and Ho, 1975]). In this paper, rather than pursuing such approach, we follow
a constructive way of proving the optimal properties of a particular class of
paths, which is described in the following algorithm.

Planner Algorithm.

a) Draw n circles with radius � = maxf�min; hg centered in the vertices of
the obstacles. Also draw two circles with radius �min passing through
[xs; ys] and tangent to the line through [xs; ys] with angle �s, and an
analogous pair of circles for the �nal con�guration qg.
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b) Consider the n + 4 circles two at a time, and draw the four linear seg-
ments belonging to the common tangent lines and comprised between
the tangency points. Also consider all arcs on circles that join any two
tangency points. Let a basic path diagram (BPD) be composed of two
directed segments for each of these linear and circular segments.

c) The basic path diagram may contain non{free paths, that is, paths that
cannot be followed by the robot without colliding with obstacles. Di-
rected segments are then tested singularly and those causing collisions
are eliminated from the diagram. In general, a segment may be free
if followed in one sense, but not otherwise. For robots that are sim-
metric with respect to a line through the reference point and normal to
the main axis of the robot, the direction of motion along a path is not
relevant, and a simpler basic path diagram can be considered.

d) A directed graph G is built from the thus emended path diagram (EPD)
as follows:

� the start and goal con�gurations are nodes of G;

� for all points of tangency between a linear and a circular seg-
ment, two con�gurations (corresponding to the possible orienta-
tions aligned with the common tangent direction) are nodes of G;

� two nodes i and j of G are connected with an oriented link from
i to j if the corresponding directed segment on the emended path
diagram exists;

� a cost equal to the length of the corresponding segment is associated
to each link.

e) The directed graph G is searched for a path from the start to the goal
con�guration using the length of the overall path as the cost function.

The above mentioned property of this planner is formalized in the follow-
ing

Theorem 1 For a circular mobile robot A with radius h equal to the mini-
mum turning radius �min moving in a bidimensional polygonal workspace S,
a su�cient condition for a path to be the solution of problem 1 is that it is a
regular output of planner 1.
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Figure 2: Workspace (a) and corresponding 2D con�guration space (b) illus-
trating Theorem 1.

Proof
The con�guration space V associated with a circular robot contains C{
obstacles that are generalized straight cylinders. In this case, the orientation
parameter � does not play a role in verifying holonomic constraints (4), nor
does it in
uence the cost functional (1). Consider a two-dimensional con-
�guration space V 0 where C{obstacles are built by isotropycally growing the
obstacles in S by �. Fig.2 shows the workspace S (a) and the corresponding
2D con�guration space V 0 (b) in a simple example.

Let P denote the set of free paths ( i.e., triples (x(�); y(�); �(�)) satisfying
(4)) in V, and P 0 be the corresponding set of (x(�); y(�)) pairs. Consider the
visibility diagram Vd associated with V 0 (�g.3{a), and the modi�ed diagram
Wd (�g.3{b). The latter di�ers from Vd because two \phantom" circular
obstacles of radius � and tangent to the initial direction at qs, and two anal-
ogous obstacles at qg, are considered (see �g.3{b). Start and goal phantom
obstacles in
uence the visibility between two points only if either point is
qs, respectively qg. Note that paths in Vd but not in Wd do not satisfy the
constraint on curvature (6).

The BPD (and hence the EPD) built by the planner for the circular
robot in S coincides with the modi�ed visibility diagram Wd by construc-
tion. Therefore, if the path obtained on the EPD is regular (i.e., it contains
no cusps), this is also the shortest path onWd, and hence the shortest path in
Vd subject to (6). From the properties of generalized visibility diagrams, the
optimality of this path in P 0 subject to (6) follows. On the other hand, for ev-

ery path in P 0 a corresponding path in P with �(�) = arctan
�
dy(�)
d�

�
dx(�)
d�

��1
�

(where the indeterminacy of the arctan (�) function is solved by continuity)
exists that satisfy the nonholonomic constraint (5). Such path is the optimal
solution to Problem 1, and corresponds to the path obtained by the proposed
planner. 2
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Figure 3: Extended visibility diagram without (a) and with \phantom" ob-
stacles (b) for the example of �g. 2.

Figure 4: Impossibility to maneuver with too few obstacles.

3 Discussion

Theorem 1 is one of the �rst attempts in literature at solving the global op-
timal path planning problem (1). However, it only provides su�cient results
for a particular vehicle. In this section we list some of the pitfalls of the
proposed method along with simple heuristics that may help in applying the
planner to more realistic robots.

Remark 1.
Note that only su�ciency results have been established because of two facts:

� If the planner results in a path that contains reversals, visibility graph
arguments can not be applied in the proof. Piecewise optimality of
paths between reversals can still be argued, but global path optimality
remains unsolved;

� The method is not path{complete. For the circular robot of concern
in theorem 1, incompleteness may be caused by the impossibility for
the algorithm to maneuver in free space, except near the start and goal
con�gurations. Consider for instance the case depicted in �g. 4, where
the robot cannot reverse its direction along any path of the EPD, nor
at the start and goal con�gurations (because of space limitations).

A simple heuristic solution to this problem is to �nd a cell in free space
where a Reeds/Shepp inversion pattern (see �g. 5{a) can be accomo-
dated for, and to consider the corresponding additional pair of circles
in the algorithm.
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Figure 5: A Reeds/Shepp inversion pattern (a) can be introduced to solve
the deadlock of �g 4 (b).

In building the Reeds/Shepp inversion pattern, existing circles are con-
sidered �rst, as this usually requires less clearance. In �g. 5{b, the
problem in �g. 4 is solved. Notice that introduction of auxiliary cir-
cles produces a graph G0 that includes the original graph G, hence
the search on G0 provides a path whose length is at least equal to the
shortest path on G.

In fact, a characteristic of the proposed planner is its suitability to
highly cluttered environments, where it accomplishes its best perfor-
mance. The method's weaknesses are more evident when the scarce-
ness of obstacles does not o�er support to enough circles and, therefore,
maneuver possibilities. An instance of such a problem is put into evi-
dence by the parallel parking problem. In fact, the proposed algorithm
can park a circular robot of radius R if the clearance is larger than
three times R, while from the above mentioned controllability results
we know that parking is theoretically possible in slots just larger than
2R. There is probably no easy �x to this problem, as its solution is only
possible by approximating a non{feasible trajectory with a very high
number of nonholonomic maneuvers (this is actually what the method
of Jacobs et al. [1990] does in this case). In cases when the proposed
algorithm fails to �nd a path in narrow spaces, it is conceivable to em-
ploy it in a preliminary phase of \gross" planning, and switch to more
time{consuming, path{complete planners for �ne adjustements of the
con�guration.

Remark 2.
If �min 6= h, the circular segments of BPD are drawn with radius � =
maxf�min; hg. If �min < h, the algorithm is applied similarly, except for
circles at the start and goal, that are drawn with radius �min. The optimal-
ity properties of algorithm 1 are still retained in this case. Also Reeds/Shepp
inversion patterns can be introduced, if necessary, using circles of radius �min.
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Figure 6: A possible deadlock for the algorithm

Figure 7: Modi�cations to the method to �x the deadlock in �g. 6

If �min > h, path{completeness of the method is further reduced in cases
such as that depicted in �g. 6,

where the vertex{to{vertex distance L is such that 2 � h < L < h+ �min.
An heuristic �x to this problem consists in replacing the circle drawn at each
vertex with three circles of the same radius �min. The center of the �rst circle
lies on the bisector of the angle between the edges concurring in Xi, at a dis-
tance D = �min� h from the vertex (see �g. 7{a). The centers of the second
and third circles lie on the lines normal in Xi to the obstacle edges, at a dis-
tance D = �min�h (�g. 7{b). The rationale behind this heuristic is that the
three circles approximate the envelope to the family of paths that \graze"
the obstacle vertex. In fact, such envelope provides the shortest path on
the extended visibility diagram (not necessarily the shortest bounded curva-
ture path). Although such heuristic solution can not guarantee success in all
cases, simulations showed that it can be usefully exploited in most situations.

Remark 3.
Remark 3.
For a vehicle of general shape, application of the proposed algorithm and
heuristics does not guarantee a priori neither completeness nor optimality
of paths. However, for polygonal vehicles whose aspect ratio is not too high
(i.e., approximately \square" vehicles), qualitatively good results have been
obtained in a number of simulations and experiments (see section 4). Note
that the reference point for planning non{circular vehicles is assumed to be
at the geometric center of its projection onto the plane. Consider for instance
the simple planning problem for a Labmate in the environment depicted in
�g. 8. The EPD obtained assuming �min = h is reported in �g. 8{a. Note
that, due to the axial simmetry of the Labmate, all segments in EPD can be
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Figure 8: Planning the path of a Labmate with di�erent turning radii. a)
EPD for �min = h; b) corresponding path; c) path corresponding to �min =
1:5h.

Figure 9: EPD (a) and �nal path (b) for the parallel{parking maneuver of a
car{like vehicle.

followed either way. In �g. 8{b the corresponding shortest path on the EPD
is shown. Finally, �g. 8{c shows the path resulting from application of the
heuristic discussed in remark 2 in the case that �min = 1:5h. Note that, in
spite of the considerable increase of the minimum turning radius, the path
is still very close to the intuitive optimum. The described path planner can
also provide a solution for car{like robots, i.e. vehicles whose nonholonomic
constraint equation involves the steering angle � and is of the form

S(q) _q =

"
� sin(�) cos(�) 0 0

� sin(� + �) cos(� + �) w cos(�) 0

#
2
66664

_x
_y
_�
_�

3
77775 = 0

The EPD of a parallel parking maneuver is reported in �g. 9{a (orientation of
segments is not shown). The parking maneuver provided seems very natural,
as shown in �g. 9{b. More complex planning problems for a car{like vehicle
are shown in �g. 10 and �g. 11. Note that, as compared to most current path
planners, the proposed method behaves particularly well in much cluttered
environments.

4 Experimental

Experimental veri�cation of the practical feasibility of the proposed planner
has been carried out in our laboratory using a LABMATE robot of Transi-
tion Research, Inc.. The LABMATE kinematics are those of a unicycle, and
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Figure 10: EPD (a) and resulting path (b) for a car{like vehicle in a cluttered
environment.

Figure 11: EPD (a) and resulting path (b) for a car{like vehicle in a corridor
maze.

its driving inputs are the torques applied to two independent wheels. The
shape of the vehicle is loosely square, centered in the middle of the wheel
axle. The vehicle on{board control system implements tracking of lines and
circles with su�cient accuracy if the velocity pro�le is smooth enough (errors
are due mainly to odometric measurement inaccuracies caused by slippage
at the wheels). The trajectories generated by our planner can thus be fol-
lowed with ease by using LABMATE primitives. In order to accurately track
planned trajectories, a Lyapunov{based closed loop control scheme has been
employed, as described by Aicardi et al. [1994].

The goal of our experiments was to verify the preliminar feasibility of an
\automatic valet parking" of car{like vehicles in both a front and parallel
parking lot. To this purpose, the shape of the LABMATE has been modi�ed
to resemble that of a car (in scale, approx. 80 � 160cm), and software has
been written to implement a bound on the minimum turning radius of the
vehicle (set to 40 cm). Detection of obstacles has been realized by using a
set of US detectors available with the vehicle. US images are pre{processed
and sent to the host computer (an Intel{486 based PC), via a radio serial
link at 9600 baud. The host computer builds a simple 2D depth map of the
scene and updates it while the vehicle moves down the parking lot corridor
looking for a vacant slot. When room enough to maneuver the vehicle into is
found, the planner process is started on the salient features of the map, and
the resulting plan is executed directly after. In �g. 12 an experiment on front
parking is described by the temporal sequence of phases. The updating of
the experimental depth map superimposed to a picture of the actual environ-
ment con�guration is shown in �g. 12 (a) through (c). It can be noted that
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sensor readings are rather accurate, except for a certain number of outliers,
which have been taken care of by suitable processing. Fig. 12 (d) illustrates
the construction of the EPD, while �g. 12 (e) shows the resulting parking
maneuver. In �g.12 (f) the tracking error between the planned path and the
trajectory actually followed by the Labmate is reported. Fig. 13 represents
an analogous sequence for a parallel parking maneuver. The planning phase
of these experiments took less than 2 seconds, while the complete parking
detection, planning, and execution took about 2 minutes. This was mainly
due to the necessity of proceeding very slowly in the detection phase to avoid
excessive errors from the US sensors, and also slippage of wheels. The senso-
rial equipment of the vehicle resulted as one of the most critical components
in the experiment. On the overall, the above reported experimental results
con�rmed the suitability of the proposed planner to real{time applications
in near{future intelligent cars.

5 Conclusion

In this paper we have discussed a planning algorithm for nonholonomic,
bounded curvature path planning among obstacles whose output is the short-
est feasible regular path for a particular vehicle. Although the proposed
method is not complete, nor its optimality properties are trivially carried
over to more general vehicles, very reasonable paths are generated by using
only a few additional simple heuristics.

As compared with other methods known in the literature, the proposed
planner does not need to build a supporting free path by means of con�gu-
ration space methods nor does it require discretization of the con�guration
space. Paths generated by our method are typically very simple concatena-
tions of Reeds/Shepp paths. An important quality of the proposed method
is that it can be easily implemented even in cluttered workspaces, where the
method actually performs comparatively best.
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Figure 12: Sequence describing an experimental automated front parking
maneuver. (a), (b), (c): US sensor signals are used to build a depth map of
the parking lot as the vehicle scans the row; (d): Emended Path Diagram
built by the planner; (e): parking maneuver; (f): planned path (solid) and
actual trajectory (dashed).
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4. Impossibility to maneuver with too few obstacles.

5. A Reeds/Shepp inversion pattern (a) can be introduced to solve the
deadlock of �g 4 (b).

6. A possible deadlock for the algorithm.

7. Modi�cations to the method to �x the deadlock in �g. 6.

8. Planning the path of a Labmate with di�erent turning radii. a) EPD for
�min = h; b) corresponding path; c) path corresponding to �min = 1:5h.

9. EPD (a) and �nal path (b) for the parallel{parking maneuver of a
car{like vehicle.

10. EPD (a) and resulting path (b) for a car{like vehicle in a cluttered
environment.

11. EPD (a) and resulting path (b) for a car{like vehicle in a corridor maze.

12. Sequence describing an experimental automated front parking maneu-
ver. (a), (b), (c): US sensor signals are used to build a depth map of
the parking lot as the vehicle scans the row; (d): Emended Path Dia-
gram built by the planner; (e): parking maneuver; (f): planned path
(solid) and actual trajectory (dashed).

13. Sequence describing an experimental automated parallel parking ma-
neuver. (a), (b), (c): US sensor signals are used to build a depth map
of the parking lot as the vehicle scans the row; (d): Emended Path Di-
agram built by the planner; (e): parking maneuver; (f): planned path
(solid) and actual trajectory (dashed).
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