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Abstract— In this paper a novel higher order method for the
resolution of non linear equations is proposed. The particular
application to the mobile robot navigation in an environment
with obstacles is considered. The proposed method is based
on the embedded-relaxed approach in which the dimension of
the resolution space is augmented and a different and faster
direction toward the root is computed. The method is proved
to converge with higher order for the augmented resolution
space of dimension 2 and 3. Finally, the method is applied
to the problem of mobile robot navigation between obstacles
considered as repulsive potentials.

I. INTRODUCTION

The problem of finding numerical solutions of non linear

equations is typical in control problems and arises in several

different applications. A novel higher order method, named

High Order Derivative method (HOD), for the resolution

of non linear equations is herein proposed. The proposed

method is based on the embedded-relaxed approach proposed

in [1] in which the dimension of the resolution space is

augmented and a different and faster direction toward the root

is computed. With higher order methods we refer to methods

with convergence rate larger than two [2]. The proposed

method will be proved to converge with higher order for

an augmented resolution space of dimension 2 (order 3) and

3 (order 4). While a general proof for the dimension n is

still under study.

Between the large number of possible application in which

the proposed approach can be used, the mobile robot nav-

igation problem has been considered. The motion planning

problem based on potential fields is a well known approach

widely used since decades [3], [4]. An extensive explanation

on the potential fields approaches for motion planning can be

found in [5] and [6]. The description of the potential field

approach for robot navigation is out of the scope of this

paper in which the particular problem has been considered

as a simple and intuitive case-study for the proposed HOD

method.

For the particular application several different approaches

based on the same HOD method are described. In particular

a strategy to avoid local non desired minimum in a potential

fields is proposed.

The paper is organized as follows. In section II the Higher

Order Derivative method is described. In section III the order

of convergence is proved for dimensions n = 2 and n = 3.

A. Balestrino is with the Electrical systems and Automation Department,
Faculty of Engineering, University of Pisa, Pisa, Italy.

L. Pallottino is with the Interdepartmental Research Center “E.
Piaggio”, Faculty of Engineering, University of Pisa, Pisa, Italy,
l.pallottino@ing.unipi.it

Comparisons with the Newton methods are also reported in

this section.

The particular case-study application considedered in this

paper is described in section IV. Finally in section V

simulations results have been reported.

II. HIGHER ORDER DERIVATIVE METHOD

The proposed method is inspired by the work of Ger-

mani et al. [1] in which an embedded-relaxed approach is

described. In particular, the problem of finding the solution

of the non linear equation f(x) = 0 is solved by embedding

the equation in the n-equations system


















f(x) = 0
f(x)2 = 0
...

f(x)n = 0,

(1)

whose solutions are the same of the initial scalar equation.

In this paper a similar approach is applied embedding

the equation f(x) = 0 (with f ∈ lC
n

) in the following n-

dimensional system


























f(x) = 0
f(x)f ′(x) = 0

f(x) (f ′(x))
2

= 0
...

f(x) (f ′(x))
n−1

= 0,

(2)

where f ′(x) = df

dx
(x).

The proposed embedding approach is based on the obser-

vation that if we are interested in finding roots of f(x) = 0
we may focus on the minima of f2(x) whose derivative is

given by f(x)f ′(x).
Given system (2) a n-degree Taylor expansion of functions

f(x) (f ′(x))
i
, i = 0, . . . , n − 1 around x̃ is considered.

Let f̃ =
[

f(x̃) f(x̃)f ′(x̃) . . . f(x̃) (f ′(x̃))
n−1 ]T

,

f =
[

f(x) f(x)f ′(x) . . . f(x) (f ′(x))
n−1 ]T

. Fi-

nally, let v =
[

(x̃ − x) . . . (x̃ − x)n
]T

.

System (2) is approximated with

f̃ = f + Av, (3)

where

A =







f (1)(x) . . . 1
n!f

(n)(x)
... . . .

...
(

f(f ′)n−1
)(1)

(x) . . . 1
n!

(

f(f ′)n−1
)(n)

(x)






,

(4)



where h(i)(x) = di

dxi h
∣

∣

∣

x
is the i-th derivative of function h

computed in x. The iterative method is obtained by consid-

ering x = xk and x̃ = xk+1 and imposing f(x̃) = 0. The

relaxation phase is then considered by relaxing constraints

between components of v (powers of (xk+1 − xk)) and

considering the system

A







y1

...

yn






= −f , (5)

By solving the system (5) the first component of y is obtained

and the iteration step is given by

xk+1 = xk + y1(k), (6)

where y1(k) is the first component of the solution of (5) at

k-th iteration.

III. ORDER OF CONVERGENCE

Given the iterative method xk+1 = g(xk) for the solution

of problem g(x) = x we have that

Def. 1: the sequence {xi} is said to converge to α with

order p ≥ 1 if

lim
i→∞

|xi+1 − α|

|xi − α|p
= γ > 0

Furthermore, it is well known that

Theorem 1: Let α ∈ [a, b] be the solution of g(x) = x,

where g ∈ Cp[a, b] with p ≥ 2 ∈ IN. If

g(1)(α) = g(2)(α) = · · · = g(p−1)(α) = 0, g(p)(α) 6= 0

there exist ρ > 0 such that for any x0 ∈ [α − ρ, α + ρ] the

sequence {xi} generated by xk+1 = g(xk) converges to α

with order p.

In our case, the iteration is given by (6), hence g(x) = x+y1.

For n = 2 we have that

A =

[

f1 f2

f2
1 + f0f2 3f1f2 + f0f3

]

,

where for simplicity of notation fi = f (i)(x).
Notice that method proposed in [1] is not applicable when

f ′(x) = 0 while in our case if f ′(x) = 0 we have

A =

[

0 f2

f0f2 f0f3

]

,

with determinant equal to −f0f
2
2 . Hence, when f1 = 0 and

f2 6= 0 our method is still applicable since matrix A is

invertible. The main result of this paper os the following

theorem.

Theorem 2: The Higher Order Derivative method with

n = 2 has at least order of convergence 3 and for n = 3 has

order at least 4.

Proof: For space limitation and technicality of the proof

not all explictic calculations have been reported.

By solving system (5) for n = 2, the iteration function

g(x) is given by

g(x) = x −
f0 (2f1f2 + f0f3)

2f2
1f2 + f1f0f3 − f0f

2
2

.

Let α be a solution of f(x) = f0(x) = 0, notice that

g(α) = α. Let N = 2f1f2+f0f3 and D = 2f2
1 f2+f0f1f3−

f0f
2
2 , g(x) can be written as

g(x) = x − f0
N

D

. Notice that N(α) = 2f1f2, D(α) = 2f2
1 f2, N ′(α) =

2f2
2 + 3f1f3 and D′(α) = 3f1f

2
2 + 3f2

1f3. Hence we have

g′(α) = 1 − f1
N(α)

D(α)
= 1 − f1

2f1f2

2f2
1f2

= 0.

Furthermore,

g(2)(α) = −2f1

(

N

D

)

′

∣

∣

∣

∣

∣

α

− f2
N(α)

D(α)

= −2f1
N ′(α)D(α) − N(α)D′(α)

D′2(α)

= −2f1
−2f2

1f3
2

4f4
1f2

2

− f2
2f1f2

2f2
1 f2

= 0.

It can also be computed that g(3)(α) =
f1f3+3f2

2

2f2

1

. Hence the

proposed method for n = 2 has at least order 3.

For n = 3 we obtain g(α) = α, g′(α) = g(2)(α) =
g(3)(α) = 0 while

g(4)(α) =
3f4

2 + 2f2
1f2

3 + 2f1f
2
2 f3 − f2

1 f2f4

f3
1 f2

.

Hence the proposed method for n = 3 has at least order 4.

Remark 1: Obviously, more complicated results are ob-

tained for larger dimensions n. A general proof that the order

of convergence of the method applied to a n dimensional

system is n + 1 is currently under study.

A. Comparisons with Newton method

Consider the case of a polynomial p(x) = x4+4x3−3x2+
8x−5. The Newton method and the HOD method have been

applied to p(x) with initial condition x0 = 1.5. The iterations

evolution (xk+1 = g(xk)) of the classical Newton method

and the HOD method are reported in figure 1. The blue

line is the function p(x). The green dotted line represents

the Newton method evolution. The Newton method is also

known as the tangent method, indeed the dotted line is

tangent to the curve p(x) in xk. The continuous red line

represents the evolution of the Derivative method. Notice

that, for the given p(x) the Derivative method computes, in

one step, an approximation solution close to the one obtained

with the Newton method in two steps (Newton method is

known to have order of convergence 2).

As mentioned, the proposed method is based on the

embedding-relaxing approach in which a higher dimensional

system is considered in a higher dimensional space. A
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Fig. 1. Comparison of the evolution of the Newton iteration method and the
higher order Derivative method. The blue line is the function p(x), the green
dotted line represents the Newton method evolution and the continuous red
line represents the evolution of the Derivative method.
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Fig. 2. Simulation of the evolution of the two methods in the augmented
space. The Newton method evolution is represented on a plane in the higher
dimensional space while the Derivative method evolves in the whole space.

simulation of the (interpolated) evolution of the two methods

in the 2-dimensional augmented space is reported in figure

2. The Newton method evolution is represented on a plane

in the higher dimensional space while the Derivative method

evolves in the whole space. Notice that the Derivative method

evolves along the intersection of the surfaces f(x) (f ′(x))
i
,

with i = 0, 1, . . . , n.

In particular, steps of the methods in the augmented

space (without interpolation on the intermediate points) are

reported in figure 3.

IV. APPLICATION TO MOBILE ROBOT CONTROL IN

CONSTRAINED ENVIRONMENT

In this section, the particular application to mobile robot

navigation in constrained environment is considered. The

HOD method is applied to allow the robot to navigate
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Fig. 3. Single steps of the Derivative and the Newton methods in the
augmented space.

avoiding obstacles or forbidden sectors. The environment is

a 2-dimensional that we consider as the complex plane in

the following represented by real components x and y or

z = x + iy.

Let zi be the positions of the obstacles centers or points

that the robots may want to avoid for security or safety

reasons. Let us consider the complex function F (z) =
∑n

i=1
1

z−zi

= p′(z)
p(z) where p(z) =

∏n

i=1 z − zi. Hence,

F (z) = d
dz

log p(z). Considering F as a navigation function

we would like the robot to navigate far from the points zi,

i.e. we would like the robot to move where

∣

∣

∣

p′(z)
p(z)

∣

∣

∣
≤ c for

a given value c > 0.

In particular we may want to drive the robot along the

curves

p′(z)p′(−z) = c2p(z)p(−z), (7)

hence we want to solve a problem of the form f(z) =
p′(z)p′(−z) − c2p(z)p(−z) = 0 where z ∈ lC.

With the described method we allow the robot to move

towards a solution of (7) with higher convergence order. By

changing the value of c the robot is able to navigate between

the iso-potential curves as obtained with simulations whose

results are reported and described in next section.

V. SIMULATIONS RESULTS

In this section the simulations results of the Derivative

method and its application to the robot motion planning

problem are reported.

A. Derivative method simulations results

The derivative method has been compared to the Newton

method in section III-A. In this section we report and

comment some simulation results obtained on the HOD

method.

Given f(z) = z3−sin(z), starting from z0 = 4, requiring a

precision of 10−12 we have simulated the Derivative method

for different values n. Simulations results are reported in

the following table in which n represents the dimension



Fig. 4. Relation between the time of execution and the dimension of the
system to be solved for f(z) = z3

−sin(z), starting from z0 = 4, requiring
a precision of 10−12 .

of the augmented space (we conjecture that the method

has order n + 1), T the time of execution expressed in

seconds, Ns the number of steps required to approximate the

solution and f(z̄) is the value of the function f computed

on the approximated solution obtained by the algorithm. The

solution found by the algorithm is in 0.9286.

n Ns T f(z̄)

2 6 0.12 0
3 5 0.18 −1.11 10−16

4 4 0.31 0
5 4 0.61 0
6 3 0.88 −1.11 10−15

7 3 1.3 −6.66 10−16

8 3 2.17 8.88 10−16

9 3 3.26 −6.66 10−16

10 3 4.79 −3.33 10−16

11 3 6.69 0

In figure 4 the relation between the time of execution and

the dimension of the system to be solved are reported in a

graphic. As expected, the computational time increases with

the dimension of the system to be solved (represented by

n). Furthermore, in this case the method applied with n ≥ 6
is able to find an approximation of the solution with the

required precision with 3 steps. Hence, by fixing the number

of steps Ns the best choice is obviously to choose the lowest

order method (in our case n = 6) in order to minimize the

computational time.

B. Simulation of the application to Robot motion planning

In the first group of simulations, we consider a simplyfied

version of of equation (7): we add the factor z−a on the left

hand-side and we remove p′(z) in order to avoid the presence

of multiple local minima. Hence, the new simplified equation

is In particular we may want to drive the robot along the

curves

(z − a) = c2p(z)p(−z), (8)
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Fig. 5. Evolution of the robot in the constrained environment
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Fig. 6. Evolution of the robot in the constrained environment for different
initial configurations

The local minima escape problem will be described at the

end of the section.

In the first group of simulation the polynomial p = z4 −
4iz2 + 8z2 + 12 + 16i and a = 0 have been considered.

The value c of level curves has been decreased of a factor

10 starting from the value at the initial configuration, e.g.

z0 = 1−2i. The evolution of the robot is then forced between

level curves to the origin through the Derivative method that

is re-applied anytime the value c is changed. A representation

of the evolution of the robot in a constrained environment

reported in figure 5.

In another simple environment, different initial configura-

tions have been considered and the corresponding trajectories

are represented with different colors in figures 6.

In figures 7 a more complicated scenario with more obsta-

cles is represented with two different initial configurations.

Another possible application of the method is to consider

a zero that may vary in time. Indeed, by considering a fixed

initial configuration z0 and let the zero varying along a curve,

or a straight line we obtain evolutions as the ones reported

in figures 8. In this case we have considered a fixed initial

configuration z0 = −2 − 2i and a zero varying along a

straight line (z = −2, −1, 0, 1, 2). Every evolution has been

plotted with different colors and it can be noticed that the
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Fig. 7. Evolution of the robot in the constrained environment for different
initial configurations
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Fig. 8. Evolution of the robot in the constrained environment

five evolutions reach the five zeros as required. In figures

8, different points of view of the same scenario have been

represented.

Two different techniques have been described above: the

first is based on the variation of the iso-potential curves value

c that decreases to zero, the second is based on the variation

of the target configuration (zero of the function). This two

techniques may be combined to allow more complicated

trajectories between obstacles. In figure 9 a simulation of the

combined approach applied to the same scenario considered

above is reported: c is decreased of a factor five while the

zero varies along a straight line (zero= −2, −1, 0, 1, 2).
Finally, another example of the combined application for

the robot exploration around obstacles is reported in figure

10. In this case the initial configuration is z0 = −3.5− i, the

value c is scaled of a factor 40 while the zero varies along

the cirumference centered i nthe origin with radius 6 starting

from z = −6i. With this particular approach the robot is

able to navigate between obstacles trying to reach a point

that moves along a circumference containing the obstacles.

C. Escape from local minima

As mentioned at the beginning of previous subsection,

equation (7) have several local minima. In case of c = 0
the minima are the roots of p′(z). Hence, the HOD method
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Fig. 9. Evolution of the robot in the constrained environment with a
combined approach.

−6

−4

−2

0

2

4

6−6 −4 −2 0 2 4 6

0

2

4

6

8

x

y

z

Fig. 10. Exploration of the robot around obstacles with the combined
approach.

may drive the robot in one of the local minimum that may be

different to the zero z = a. In order to avoid this problem,

any time the algorithm find a local minimum different from

the desired one the equation (7) is modified accordingly. In

particular, another peak is added closed to the local minimum

to create a different fictitious environment in which the

current configuration is not a minimum anymore while the

desired configuration is still a zero of the equation.

For example, by considering z1 = 3 + 2i and z2 = 4− 3i

we have

f(z) = (−4z2+48−14i)z+c∗(z4+(−12+12i)z2+323−36i),

starting from z0 = 3 + i and let c decreasing of a factor 10,

the HOD method drive the robot to 3.5− 0.5i that is a zero

of p′(z) = −4z2 +48− 14i as reported in figure 11 and 12.

Choosing the virtual environment as described above the

new evolution is described in figures 13 and 14 and the origin
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Fig. 11. The robot may reach a local minimum different from the desired
one.

−6
−4

−2
0

2
4

6

−5

0

5

0

0.2

0.4

0.6

0.8

1

x
y

z

Fig. 12. The robot may reach a local minimum different from the desired
one (lateral view).

has been reached.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper a novel higher order method for the resolution

of non linear equations has been proposed. An embedded-

relaxed approach in which the dimension of the resolution

space is augmented and a different and faster descent di-

rection to the root is computed has been described. Proof

of convergence and order rate for an augmented resolution

space of dimension 2 and 3 have been reported. A proof of

the general rate of convergence is still under study.

The method has been applied to the problem of mobile

robot navigation between obstacles considered as repulsive

potentials. A strategy to avoid local minima has also been

proposed. Finally, several simulation results have been re-

ported.
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