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Abstract— The cerebellum is a crucial brain structure in
enabling precise motor control in animals. Recent advances
suggest that the timing of the plasticity rule of Purkinje cells, the
main cells of the cerebellum, is matched to behavioral function.
Simultaneously, counter-factual predictive control (CFPC), a
cerebellar-based control scheme, has shown that the optimal
rule for learning feed-forward action in an adaptive filter
playing the role of the cerebellum must include a forward model
of the system controlled. Here we show how the same learning
rule obtained in CFPC, which we term as Model-enhanced least
mean squares (ME-LMS), emerges in the problem of learning
the gains of a feedback controller. To that end, we frame a
model-reference adaptive control (MRAC) problem and derive
an adaptive control scheme treating the gains of a feedback
controller as if they were the weights of an adaptive linear
unit. Our results demonstrate that the approach of controlling
plasticity with a forward model of the subsystem controlled can
provide a solution to a wide set of adaptive control problems.

I. INTRODUCTION

The cerebellum is arguably the brain structure whose
study has had a deeper impact on the robotics and control
communities. The seminal theory of cerebellar function by
Marr [15] and Albus [1] was translated by the latter into
the cerebellar model articulation controller (CMAC) in the
early seventies [2], which up until today is used both in
research and applications. A decade later, Fujita [8] advanced
the adaptive filter theory of cerebellar function based on
the work by Widrow et al. [20]. Later, in the late eighties,
Kawato formulated the influential feedback error learning
(FEL) model of cerebellar function [13], in which the cere-
bellum, implemented as an adaptive filter, learned from, and
supplemented, a feedback controller. Unlike CMAC, FEL
had a strong impact within the neuroscientific community as
a theory of biological motor control [22]. Within the robotics
and control communities, FEL has been studied in terms
of performance and convergence properties [16]. Later, the
adaptive filter theory of cerebellar function was revived by
Porrill and colleagues [5], proposing alternatives to FEL that
have been applied to the control of bio-mimetic actuators,
like pneumatic or elastomer muscles [14], [21].
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More recently, the counterfactual predictive control
(CFPC) scheme was proposed in [10], motivated from neuro-
anatomy and physiology of eye-blink conditioning, a behav-
ior dependent on the cerebellum. CFPC includes a reactive
controller, which is an output-error feedback controller that
models brain stem or spinal reflexes actuating on peripheral
muscles, and a feed-forward adaptive component that models
the cerebellum and learns to associate its own inputs with
the errors that drive the reactive controller. CFPC proposes
that the learning of adaptive terms in the linear filter should
depend on the coincidence of an error signal with the output
of a forward model implemented at the synaptic level, repro-
ducing the dynamics of the downstream reactive closed-loop
system. We refer to that learning rule as a model-enhanced
least-mean squares (ME-LMS) rule to differentiate with the
basic least-mean squares (LMS) rule that is implemented in
previous models of the cerebellum, such as CMAC and FEL.
In agreement with the theoretical insight of CFPC, recent
physiological evidence in [19] shown that the timing of the
plasticity rule of Purkinje cells is matched to behavioral
function. That suggests that Purkinje cells, the main cells
implied in learning at the level of the cerebellum, have
plasticity rules that reflect the sensorimotor latencies and
dynamics of the plants they control.

However, in the context of CFPC, the ME-LMS rule was
derived as a batch gradient-descent rule for solving a feed-
forward control task in discrete time. In that sense, it can
be interpreted as providing a solution to a iterative-learning
control scheme, an input design technique for learning to
optimize the execution of a repetitive task [4]. Hence, it
remained open the question as to whether a similar learning
rule could support the acquisition of well-tuned feedback
gains. That is, whether ME-LMS could be applied in an adap-
tive feedback control problem. Here we answer that using
the model reference adaptive control (MRAC) frame [3]. In
that frame, we first show that the biologically-inspired ME-
LMS algorithm can be derived from first principles. More
concretely, we show that the ME-LMS rule emerges from
deriving the stochastic gradient descent rule for the general
problem of updating the gains of linear proportional feedback
controllers actuating on a LTI system. Finally we test in
simulation the effectiveness of the proposed cerebellum-
inspired architecture in controlling a damped-spring mass
system, a non-minimum phase plant and, finally, closing the
loop with the biology, a biologically-based model of a human
limb.



II. DERIVATION OF THE ME-LMS LEARNING RULE

In the next we derive a learning rule for learning the
controller gains for both state and output-error feedback con-
trollers. The generic architectures for a full-state-feedback
and a proportional (P) controller are shown in Fig. 1. To de-
fine the model-reference adaptive control (MRAC) problem,
we set a reference model whose output we denote by rrm.
The error in following the output of the reference model,
erm = rrm − y, drives adaptation of the feedback gains.
But note that in the proportional error feedback controller,
e = r − y is the signal feeding the error feedback gain.

A. ME-LMS for state-feedback
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Fig. 1. Adaptive architecture for the full state feedback (left) and output-
error proportional (P, right) control cases. Abbreviations: C, feedback
controller, P, plant; RM, reference model; r, reference signal; r, reference
signal outputted by the reference model; y, plant’s output; e, output error;
erm, output error relative to the reference model; x, state of the plant;
u, control signal; kr , reference gain; K, state feedback gains; and kp,
proportional error-feedback gain.

For the derivation purposes we assume that the adaptive
control strategy is applied to a generic LTI dynamical system

ẋ = Ax+Bu
y = Cx

(1)

where A ∈ RN×N , B ∈ RN×1 and C ∈ R1×N are the usual
dynamics, input and output matrices, respectively; x ∈ RN

is the state vector; and u and y, both scalars, are the input
and output signals.

The control signal will be generated according to the
following state-feedback law

u = Kx+ krr (2)

where r is the reference signal, K ∈ R1×N is the (row)
vector of state feedback gains and kr the reference gain.
Both K and kr are here time-dependent and will be updated
by the learning rule controlling adaptation.

Substituting the control law within the dynamics equation,
we obtain the closed-loop system description

ẋ = (A+BK)x+Bkrr (3)
y = Cx (4)

We set the L-2 norm of the error as the cost function to
minimize

J =
1

2
e2rm

For convenience, we write now the control law as u =
K̃Tx̃ with K̃ ∈ RN+1 ≡ [k1, . . . , kN , kr]

T and x̃ ∈ RN+1 ≡
[x1, . . . , xN , r]

T. To derive the gradient descent algorithm for
adjusting the vector of gains, K̃, we need the gradient of J
withe respect to K̃:

∇K̃J =
∂erm

∂K̃
erm = − ∂y

∂K̃
erm (5)

Now we will consider each of the gains individually,
treating separately the state and the reference gains. Let
ki denote the feedback gain associated with the i-th state
variable. We have that

∂y

∂ki
= C

∂x

∂ki
(6)

We compute the partial derivative of the state vector x with
respect to ki applying the partial derivative to the differential
equation that governs the closed-loop dynamics:

∂

∂ki
ẋ =

∂

∂ki
((A−BK)x+Bkrr) (7)

Using the substitution zi ≡ ∂x
∂ki

and applying the product
rule in the derivation we obtain

żi = (A−BK)zi +Bxi (8)

Introducing hi ≡ Czi, we get

∂J

∂ki
= hierm

Note that this has solved the problem of obtaining the partial
derivative for all state feedback gains.

In the case of the reference gain, with zr ≡ ∂x
∂kr

, we obtain

żr = (A−BK)zr +Br (9)

And introducing hr ≡ Czr,

∂J

∂kr
= hre

We will refer to the quantities hi and hr as eligibility
traces. We can write the vector of eligibility traces as follows:
h̃ = [h1, . . . , hN , hr]

T.
With this we can solve for the gradient of the cost function

as follows
∇K̃J = −h̃erm

And consequently derive a learning rule for the gains that
will follow a gradient descent:

˙̃K = ηh̃erm (10)

Note that this rule is similar to the classical Widrow-Hoff
or least mean squares (LMS) rule. However, in the standard
LMS, the rate of change is obtained multiplying the error
with the input signals of the filter ( ˙̃K = ηx̃erm) whereas in
the rule we have derived the error multiplies the quantities in
h̃, which are obtained after passing the input signals through
a forward model of the controlled system. For this reason, we
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Fig. 2. Schematic of the implementation of the LMS (left) and the ME-
LMS (right) rule at the level of a single adaptive weight. Note that since ki
is a gain of the controller C, this scheme is implicitly recursive: as the ki
gain changes (together with the other adaptive gains of the controller) the
forward that it utilizes to drive plasticity, changes as well.

refer to the learning rule in equation 10 as model-enhanced
least mean squares (ME-LMS). Moreover, h̃i is the eligibility
trace associated to the input x̃i because, at the time that a
particular error signal comes, it codes how much x̃i could
have contributed to canceling that error.

B. ME-LMS for output Error Proportional Control

The control law of an output-error proportional controller
is u = kpe = r−y = r−Cx. The corresponding closed-loop
system becomes

ẋ = (A−BCkp)x+Bkpr (11)
y = Cx (12)

Following a derivation analogous to the previous one,
we obtain the following expression for computing eligibility
trace of the proportional gain (hp).

żp = (A−BCkp)zp +Br (13)
hp = Czp (14)

hence, in this model, plasticity will be implemented by the
rule k̇p = ηhpe.

C. Model-enhanced least mean-squares vs. least mean
squares rule

The differences between LMS and ME-LMS care summa-
rized as follows: In LMS, the change of the adaptive gain ki
is determined based on the temporal coincidence of a global
error signal erm and the local input xi (Fig. 2 left). In ME-
LMS (Fig. 2 right) the change in the gain is controlled by the
output of a gain-specific forward model FMi, whose output
hi facilitates an eligibility trace for ki. The term eligibility
trace implies that hi marks how much the input xi could
have contributed to decrease the current error. In that sense,
it is a trace as long as to be generated hi takes into account
the history of xi with a time-span implicitly determined by
the dynamics of the forward model.

III. APPLYING ME-LMS TO A LINEAR DAMPED
SPRING-MASS SYSTEM

We evaluate here the performance of the proposed algo-
rithm in controlling a standard damped-spring mass system:
mq̈ + cq̇ + kq = u, with m = 1Kg, c = 0.5 Ns

m , k = 0.5 N
m .

A. Output error P-control

For this problem we use a reference model built as
chain of two leaky integrators with identical relaxation time
constants (τ =

√
0.5s). The impulse response curve of

this reference model corresponds to a normalized double-
exponential convolution that peaks at 0.5s. Finally, we use
as reference the following superposition two sinusoidal func-
tions r = sin(5t/7) + sin(5t/11). We first examine the
cost function as a function of the feedback parameter, kp
varying it logarithmically from 0.01 to 100.0. Within that
range, the cost function is convex and has minimum in the
near kp = 0.815 (Fig 3 above-left). At this point we check
whether the ME-LMS converges to the optimum value for kp.
For comparison we also run the test with using the standard
LMS rule, and a heuristically motivated alternative algorithm
wherein we use a model of the open-loop system to generate
the eligibility trace. We test two starting values each one at
a different side of the minimum and we observe that in both
cases the ME-LMS converges around the optimal kp (Fig
3 above-right) while the alternative algorithms convergence
to different equilibrium points which are non-optimal in cost
terms. The difference in performance can also be appreciated
by seeing how the different algorithms track rrm at the end
of the training period (1h of simulated time) (Fig 3 below-
left). Indeed, only the ME-LMS algorithm is in-phase with
rrm. Finally, in cost terms, only ME-LMS converges rapidly
to the minimum value (Fig 3 above-right).
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Fig. 3. Damped-spring mass system with P-control. Above left. Cost
as a function of kp. Above right. Convergence of kp for three different
models. Below left. Output trajectories and reference signals. Below right.
Evolution of the error in mean-square error (MSE) units. In all panels:
WH: standard LMS rule; OL: LMS with eligibility trace derived from the
open-loop system; CL: ME-LMS with eligibility trace derived from the
closed-loop system.

In summary, this result shows that even for the simplest



feedback learning scenario, a LMS-like learning rule con-
verges to the optimal gain only if it uses the eligibility trace
generated by a forward model that reproduces the dynamics
of the closed-loop system.

B. Full state feedback control

Here we use the ME-LMS algorithm in a full state
feedback controller, keeping the same reference model and
reference signal as in the previous example. This problem
is harder in that now there are three parameters to adjust;
the two feedback and a feed-forward gain but, in contrast to
the previous example, here it is guaranteed that there exist
optimal gains allowing the closed-loop system to exactly
match the reference model.
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Fig. 4. Damped-spring mass system with FSF-control. Left: evolution of the
error for the three algorithms. The color code is an in Fig. 3 Right Evolution
of the two feedback gains and the reference gain for the ME-LMS.

In contrast with the previous examples where all the three
algorithms succeeded in controlling the plant to some extent,
in this case the pure LMS algorithm fails completely to im-
prove performance (Fig. 4 Left). In contrast both algorithms
enhanced with a model of either the open or the closed-loop
system rapidly reduce error even though, only ME-LMS is
still decreasing the error after 30 minutes of simulated time
(Fig. 4 Left). Indeed, running a total of 24 hours of simulated
time with the ME-LMS model, we observe that the adaptive
gains converge the optimal ones (Fig. 4 Right).

IV. APPLYING ME-LMS TO A NON-MINIMUM PHASE
PLANT

A. Full state feedback control

In this section we apply ME-LMS to a non-minimum
phase system, which is a system with zeros in the right-
hand side of the complex plane. Acting to reduce an error in
such a system requires foresight in that before minimizing
an error one has to steer the plant in the direction that
increases it. That property of the system, namely that errors
cannot be reduced instantaneously, disqualifies the use of
the standard LMS algorithm for the problem of adaptively
tuning feedback gains. On the contrary, ME-LMS, as it takes
explicitly into account the dynamics of the controlled system
to control plasticity, can in principle appropriately adjust the
gains of a feedback controller even when it is applied to a
non-minimum phase system.

As a non-minimum phase system, we use the following a
linearized model of a balance system (e.g., a self-balancing
robot):

A =

 0 0 1
m2l2g/µ −cJt/µ −γlm/µ
Mtmgl/µ −clm/µ −γMt/µ


B =

 0
Jt/µ
lm/µ

 ,C =
[
0 1 0

]
where µ = MtJt −m2l2. The values, chosen to mimic the
ones of a custom made prototype, are Mt = 1.58Kg, m =
1.54Kg, l = 0.035, Jt = 1.98×10−3, γ = 0.01 and c = 0.1.
As an added difficulty, the plant is unstable in open loop. To
deal with that, we set boundary conditions to our simulation.
That is, whenever the system reaches a threshold velocity
of 0.5m/s or and inclination in absolute value above 22.5
degrees the simulation re-starts and the system is brought
back to the initial rest position. In that sense, the system is
not fully autonomous but assisted by an external agent that
makes it regain the balanced position.

In practice, the control problem consisted in following a
low amplitude and slow velocity reference signal constructed
as a sum of sinusoidals 0.05(sin(πt/70)+sin(πt/110)). We
used the same reference model as in the previous section.

For this system the problem of adjusting the velocity to
a particular reference signal is under-constrained as there
are two possible strategies: keeping the error in the linear
velocity equal to zero while the angular position diverges
or keeping that error equal to zero while maintaining the
angular position stable. In order to bias the system towards
the second solution we set the starting gains already tuned
towards the right solution. However, that initial set of gains
keep the robot balanced for less than 200ms. Hence, we can
divide this particular problem in two stages: first stabilizing
the plant, and next make the controlled system converge to
the dynamics of the reference model.

ME-LMS requires approximately 10 seconds for reaching
a set of gains that stabilizes the plant following fifteen falls
(Fig. 5 top row). Standard LMS fails as it converges to a
solution that controls for the linear velocity but ignores the
angular position (Fig. 5 middle row). Indeed, by the end
of the 30 seconds of training, standard LMS has reduced
the errors in velocity but the speed at which the plant
loses balance remains unchanged. Regarding the learning
dynamics, we observe how the feedback gains of the ME-
LMS change rapidly until the robot maintains balance (Fig.
5 below left). After that, the change is gradual but sufficient
to achieve following closely the target velocity by the end
of the 10 mins training (Fig. 5 below right).

V. DISCUSSION

The cerebellum is a crucial brain structure for accurate mo-
tor control. It is phylogenetically old and conserved through
evolution in all vertebrates [9]. Much of the interest that the
cerebellum gathered in the machine learning, robotics and
adaptive control communities stemmed from its remarkable
anatomy [7], with a general connectivity layout that resem-
bles very closely the one of a supervised learning neural
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Fig. 5. ME-LMS applied to a Self-Balancing system. Top row refers to
the ME-LMS algorithm and middle row to the standard LMS. Left panels
show the velocity traces (red) and the reference signal (black). Right panels,
show the angular position traces. Bottom left: gains of the ME-LMS system
during the first 30 seconds of simulation. Bottom right: velocity trace the
last minute of 10 mins training of the ME-LMS system.

network, such as a Perceptron [17]. However, here we have
drawn inspiration for a recent insight regarding cerebellar
physiology that has emerged simultaneously at both the
theoretical [10] and experimental [19] domains. That is, that
in order to solve appropriately the problem of motor control,
neurons from a same type (i.e., the cerebellar Purkinje cells)
might display different learning rules in different areas of
the cerebellum, matched to the particular behavioral needs
[6]. From a control theory perspective those behavioral needs
correspond to the transport latencies and response dynamics
associated to the controlled sub-system.

Here we have shown that the model-enhanced least-mean-
squares (ME-LMS) learning rule can be easily derived for the
task of learning the optimal feedback gains of a fully known
plant. Second, we have shown hat the ME-LMS learning rule
converges in a series of tasks in which conventional LMS
would fail, as is the case of a non-minimum phase plant.

Regarding the derivation of ME-LMS presented here, it
is worth noting that although a similar result was originally
obtained in [10] using a cerebellar-based control architecture,
the derivation presented here applies to two very general
control architectures, namely proportional full-state-feedback
and proportional error-feedback control. Hence, in that sense,
the current derivation is cerebellar-independent.

Here we have revisited the LMS learning rule in the
context of the control of dynamical systems. In this context,
given the temporal correlation between control and output

signals introduced by the dynamics of the plant, a learning
algorithm has to deal with delayed error feedback informa-
tion [18], [11]. That is, the effects of an action are spread in
time (according the impulse response curve) and conversely,
a particular effect (e.g., an error in performance) is caused
by the recent history of actions (convolved with the same
impulse response). Such a non-locality in time introduces
the so-called temporal credit-assignment problem [18]. That
is, to avoid that current errors repeat in the future, one has
to identify which where the correct past actions that should
have been taken. In the machine learning literature, there
are two main strategies to deal with that problem: back
propagation through time in neural networks [12], and the
use of eligibility traces in the reinforcement learning, as for
instance, in the temporal-differences learning algorithm [18].
Our results here add to the ones in [10] in suggesting that
in learning to control a plant with known dynamics through
gradient descent, one can solve the temporal credit assign-
ment problem generating eligibility traces with a forward
model of the controlled system. With that, we have translated
into model reference adaptive control a bio-inspired machine
learning technique.

VI. CONCLUSION AND FUTURE WORK

In this work we proposed a control algorithm in which a
linear feedback action is combined with an adaptation rule
for the control gains inspired from cerebellar learning in an-
imals. The controller is also analytically derived as gradient
descent estimation of feedback gains for LTI systems.

We tested the effectiveness of the algorithm in three
different simulation scenarios, including the control of a
model of human upper limb, closing the loop with the
biological inspiration. The algorithm presented better per-
formance w.r.t. the classic LMS rule. In future work we plan
to experimentally test it on bio-inspired robotic systems.

Although the algorithm presented in practice a stable
behavior, to analytically prove the stability of the closed loop
system is a challenging task. This is due not only to the non-
linearities introduced by the possibility of adapting control
gains (common in the context of adaptive control), but also to
the strong interplay between the three dynamics involved: the
system, the eligibility trace, and the control gains. However
we consider this step very important for the full formalization
of the proposed learning rule, and so we depute this study
to future works.
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