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On the Mobility and Manipulability
of General Multiple Limb Robots

Antonio Bicchi, Claudio Melchiorri, and Daniele Balluchi

Abstract—In this paper, the analysis of the differential kinemat-
ics and manipulability measures of robotic systems comprised of
multiple cooperating limbs is considered. The goals of this study
can be articulated in four points. First, to enumerate the degrees
of freedom of the manipulation system (mnobility analysis). Second,
to describe analytically all possible first-order differential motions
of the system at a given configuration (kinematic analysis). Third,
to evaluate in the velocity domain the functionality of a manipu-
lation system, with respect to the task it is required to perform
(velocity manipulability analysis). Finally, to calculate the bounds
for the velocities achievable by the system, given bounds on the
capabilities of joint actuators (velocity workspace analysis). The
assumptions made on the robotic system are quite general, so
that many complex devices (e.g., dextrous hands, legged vehicles,
whole-arm manipulators etc.) can be dealt with in a unified and
convenient framework.

I. INTRODUCTION

ANY of the most promising and challenging future
Mapplications of robotics are expected to involve systems
with more complex kinematics than current serial-linkage
robot arms. In that broader class of robotic devices fall for
example multiple robotic arms used for the coordinated ma-
nipulation of objects, and multi-limb robots such as dexterous
hands, walking machines, etc. Several researchers addressed
the specific problems of some of these systems; see for
example [1]1-[3] for cooperative arms, [4]-[6] for dextrous
hands, and [7], [8] for legged vehicles. The general underlying
structure of such systems is clearly the same, and as such it
has been treated e.g. by [9].

In general, a manipulation system can be regarded as a
collection of links and joints, each with given geometric
description. Among the joints, there is a distinction between
active joints (those that can be actuated directly), and passive
joints (typically incorporated by kinematic constraints arising
from contact). One of the links (the “object”) is considered as
the reference member. The aim of this paper is to study the
relationship between differential motions of the active joints
and those of the object, that plays the role of the end-effector of
the manipulation systems, and whose motions are the ultimate
control objective.
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In detail, the goals of this study can be articulated in four
points. First, to enumerate and classify the degrees of freedom
of the manipulation system (mobiliry analysis). Second, to de-
scribe analytically all possible first-order differential motions
of the system at a given configuration (kinematics analysis).
Third, to evaluate the functionality of a manipulation system,
in a given configuration, with respect to the tasks it is required
to perform in the velocity domain (manipulability analysis).
Finally, to calculate the bounds for the velocities achievable
by the system, given bounds on the velocities of joint actuators
(velocity workspace analysis).

The analysis of these problems has not been solved, to
our knowledge, in the general setting that is considered here.
In particular, the kinematic analysis of cooperating robotic
systems has been based on the assumption that every single
arm has as many degrees of freedom as necessary to achieve
arbitrary position/orientation in its task space. However, this
assumption is not always verified in practical applications
of cooperating manipulation. Such is the case, for instance,
when common industrial manipulators with 3 or 4 joints
are used together for tasks involving heavy loads or ac-
curate positioning. A more recently developed application
of cooperation between devices with “defective” kinematics
is encountered in the analysis of whole-limb manipulation.
This style of manipulation, that uses any link (in particular,
including proximal links) of the limbs, is very common in
nature, since it can provide more robust hold or more versatile
motion in animal grasping and locomotion. The concept has
been recently borrowed by roboticists: examples of such
devices are the Whole-Arm Manipulator “WAM” developed at
MIT, [10], the “DIGIT” system of Ohio State University, [11],
or the whole-hand system “UB Hand-1I” of the University of
Bologna, [12].

The paper is organized as follows. In Section II, after
introducing the notation and basic equations, the mobility and
kinematics analysis of cooperating multi-limb manipulation is
described, following the approach presented in [13]. In Sec-
tion 111 this approach is applied for extending manipulability
indices to general multiple robots, while Section IV describes
the cooperative velocity workspaces. Section V discusses some
case studies, and concluding comments are reported in Section
VL

[I. MOBILITY AND DIFFERENTIAL KINEMATICS ANALYSIS

We consider a general cooperating system, consisting of
an arbitrary number of limbs and of an object that may be
in contact with some or all of the links of the limbs. No
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distinction is made whether the contacting links are at the
extremities of the limb or not. Different contact models may
be used to describe the interactions that take place between
the limbs and the object [4]. Among these, the most important
probably are the point-contact-with-friction model (or “hard-
finger”), where only forces can be exerted at the contacts;
the “soft-finger” model, that also allows torques about an
axis normal to the surfaces to be applied; and the complete-
constraint model (or “very-soft-finger”), where both forces and
arbitrary torques can be applied. The kinematic constraints
imposed by the ith contact can be explicited in terms of the
relative velocities of two reference frames “C; and " C; both
having the origin at the ith contact point c;, and fixed to the
object and to the robot link, respectively. Let w be the angular
velocity of the manipulated object, and v the linear velocity
of a reference point fixed with the object, both expressed in
base frame. Choose the object reference point to coincide with
the origin of base frame at the instant being considered. The
linear and angular velocity (expressed in base frame) of °C;
can be written as

°¢; = v+wxc;:

w; = Ww.

o (1
or, juxtaposing all such expressions for the n contact points
in matrix notation, as

°x = GTu, 2)
where 1 is a 6-dimensional “twist” vector, °x is a 6n-vector of
velocities of the °C; frames, and G is the 6 X 61 grasp matrix.
Explicit definition of these quantities is given in Appendix A.
Analogously, the linear and angular velocities of frame ™ C;
corresponding to joint velocities g can be written in compact
form as

"x = Jq. (3)
where q is an r-vector of joint coordinates, "'x is a 6n-vector
of velocities of the " C; frames, and J is the 6n x r, “Jacobian”
matrix (see Appendix A).

Assuming a rigid-body model of the object and links of
manipulators, the kinematic constraints imposed by contacts
can be expressed as

H(°x-"x)=0 “
where H is a selection matrix of suitable size (¢ x 6n) that
takes into account the type of contact and whose construction
is described in Appendix A. It is worth pointing out that
(4) models bilateral constraints, although unilateral or conic
contact constraints are usually in effect for, e.g., the hard and
soft finger contact models. This simplification is permitted,
however, in the assumption that the system of forces grasping
the object is force closure, ensuring that grasping forces can
always be exerted on the object such that both balance equa-
tions and contact force constraints are not violated. A method
for controlling grasping forces so as to avoid the violation
of contact constraints in general cooperating mechanisms has
been discussed in [14].

Substituting (2) and (3) in (4), directly we have

HGTu-HIJq=Q m =0, 5)

where Qdéf [HGT — HJ] is a ¢t x (6 + r) matrix. Let C

be a (6 + r) x m matrix whose columns form a basis of
the m-dimensional null space of Q, and partition it as C =
[CT CT]T, where C;, and C, are 6 X mn, and r X m blocks,
respectively.

The columns of C; span the subspace of all possible
rigid first-order differential motions of the object that do not
break the contact constraints, and the columns of C, span
the corresponding subspace of joint motions. A complete
description of the input-output relationship of a multiple-arm
system can be obtained based on the two matrices C; and C,.
In fact, by applying column operations only and partitioning
appropriately (see Appendix B), it is always possible to put
the matrix C in the following form:

Ci|_ [Ch Ci2 O )
Co| | O Cp Cy

where the columns of [Cy; Ci2]| form a basis of the range
space of C;, denoted with R(C,), and the columns of
[Co2 Ca3] form a basis of R(C;). Therefore, we have
that there exist some coefficient vectors X;, X2, and X3
(whose dimensions vary with the problem at hand) such
that every possible pair of object velocities 1 and joint
velocities ¢ complying with the first-order kinematic and
contact constraints of the multiple arm system can be written
parametrically as

u=Cpx; +Cpxz )
q = Corxa + Cazxy.

A. Mobility Analysis

The mobility analysis of a cooperating manipulation system
consists of the enumeration of the degrees of freedom of the
overall mechanism and of its significant subsystems. In par-
ticular, we are interested in the evaluation of the connectivity,
redundancy and indeterminacy of the system. The connectivity
number N.. of cooperating linkages manipulating a common
object has been defined in [4] as the minimum number of pa-
rameters required to specify the position and orientation of the
object with respect to the base frame, subject to the kinematic
and contact constraints of the system. The redundancy number
N, is defined as the minimum number of parameters required
to specify the position and orientation of every link of the
mechanism, when considering the object as fixed. The sum of
the connectivity and redundancy numbers is the mobility N,
in the strict sense, [4]. Finally, the indeterminacy number N; of
a cooperating manipulation system is defined as the minimum
number of parameters required to specify the position and
orientation of the manipulated object with respect to the base
frame, when all joints are locked.

Equation (7) and the structure of the block matrices in (6)
contain the desired information on the mobility and kinematics
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of general cooperating arms. Mobility analysis results can be
summarized as follows:

« The mobility of the system is equal to the rank of the C
matrix, i.e. N,, = rank(C);

» The connectivity of the system is equal to the rank of the
C; block, N. = rank(C;) (and hence to the sum of the
number of columns of C;; and C»);

» The indeterminacy of the system is equal to the number
of columns of Ci1, N; = rank(Ci1);

+ The redundancy of the system is equal to the number of
columns of Co3, N, = rank(Cay).

With respect to previous results on the subject, by this method
kinematic singularities of the linkages can be taken into
account, thus providing exact results whereas the well-known
formula of Kutzbach [15] (otherwise credited to Griibler {4])
would provide inequality relationships. More importantly, the
proposed method allows not only the enumeration of the
degrees of freedom, but also their kinematic description, as
discussed below.

B. Differential Kinematics Analysis

More detailed kinematic information can also be elicited
from (6):

e R(Cs;) is the redundancy subspace of joint velocities
that do not affect object velocities, but only modify
the configuration of the manipulator limbs. Note that
R(Cay) = N(HJ).

» R(Cy11) is the indeterminacy subspace of object veloc-
ities that are left free by contact constraints. Note that
R(Cy;) = NHGT).

o In the case that both C,3 and C); result empty (N; =
N, = 0), there is a one-to-one correspondence be-
tween joint velocities in R(Cy2) and object velocities
in R(C12), that can be written in parametric form as

u= 012X

{q = Cnx gy e N 8)

¢ In the case N; = 0 and N, > (0, any desired velocity
of the object in the feasible subspace R(Ci2) can be
obtained by means of infinitely many combinations of
joint velocities. From (7) we obtain

q = ngCfﬁZu + ngy. Yuae R(Clg) 9)

where y € RV is a free coefficient vector. Any velocity
u ¢ R(Ci2) can not be achieved by the system without
breaking contact constraints. Note however that second-
or higher-order differential motions in a forbidden direc-
tion may still be possible, see e.g. [16].

e In case N; is not zero (Cy; is not empty), the object
velocity corresponding to a given joint velocity is not
uniquely determined by the quasistatic analysis presented
in this paper. In fact. from (7),

i1=CCLa+Cny. YqeR(Cxn).  (10)

where y € R is a free coefficient vector. The indeter-
minacy can be solved or even exploited by taking into

account the dynamics of the object, in a fashion similar
to that presented by [17] for under-actuated mechanisms.
This problem however falls beyond the scope of the
present paper.

Example 1 (Part a): As an example of this technique,
consider the simple case shown in Fig. 1, where a two-
limb, four-link robot manipulates a spherical object. Note
that a contact occurs between the object and the innermost
link of the second limb, that only has one degree-of-freedom:
hence, this is an instance of kinematically defective, whole-
limb manipulation. Relevant dimensions and matrices are
reported in Appendix C. Assuming hard-finger conditions at
both contacts, and applying the above methods, for a generic
configuration as that depicted in Fig. 1(a) we obtain the blocks
of the partition (7) as
— 0

0
—Lesin(yy — ga3) — wesin(g +q2 — q3)
C, = —L(1y sin gy +usin(qr+q2))
L+ cosgs—1y cosqr —ucos(q +q2)
esingy =1y singy —usin{g +q2)

L 0 J

Cio=
— L(Iy sin gy 4w sin(qy +q2) ) sin g Ty sin g sin g
L(l cosqi+ucos(qi+g2))osingy  —(L+vcosgs Yy sin gy
0 0
0 0
0 0
Liosin(gy —gs)turesin(gy +g2—qs) 1w sin g2
Toesin(qr —qa)Fuesin(g +q2 — qz) + Lesings
0
C. = L(1) sin gy +usin(qy +q2))+hesin(gr — gs)
S sin(qr g2 — q3)
0
Tyusingo —wesin(qr+q2—q3) — Lusin(qr +q2)
LIy sin gy +usin(qr+q2))+ 1 esin(qr—qs)
G sin(gr g2 — gz )
0
0
0
0
Co= 0
1
For g9 # vm, v = 0.1,2,..., the redundancy of the system
is N, = 1 (corresponding to the second link of the right limb
not touching the object), and indeterminacy is N; = 1. in

fact, the object may instantaneously rotate, without violating
contact constraints, about the axis through the contact points.
Connectivity of the system is N,. = 3, and mobility is N,, = 4.

If either contact is soft-finger (i.e., rotations about the
normal direction to the contact surface are prevented by
friction), the indeterminacy is eliminated. In this case, Cy;
results empty while other blocks are unchanged, so that N; =
0, N, =1, N. =2, and N,, = 3. If contacts are complete-
constraint, the C matrix results empty. There are no possible
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(a) (b)

Fig. 1. Two limbs of a robot manipulating a spherical object. The limb on the
right uses its inner phalanx to envelope the object. (a) generic configuration;
(b) singular configuration.

motions for the robot in this case (as far as the rigid body
model is maintained), as can be easily seen by inspection.
Singular configurations occur for ¢o = () or integer multiples
of 7, where the block C;, looses rank, see Fig. 1(b). With
respect to the block description above, in the singular case C,»
and C,5 reduce to the first column, while the second column
of Cy; enters the block Cy3. Accordingly, the connectivity
of the object is reduced to N. = 2 (V. = 1 for soft-fingers),
while one redundant degree-of-freedom is gained in singular
configurations beyond the trivial motion of joint 4 (N, = 2).

11I. MANIPULABILITY VELOCITY ELLIPSOIDS

The motivation that led roboticists to develop manipulability
analysis tools such as those considered in this section was
to identify the configurations of the manipulation system that
are more suitable for executing specific tasks, and to give a
performance measure of the manipulation system in a given
configuration. Salisbury and Craig [18]} proposed to choose
the configurations of the fingers of a robotic hand on the basis
of their “isotropy,” i.e. their ability to control forces in any
direction with the same accuracy. The isotropy performance
criterion can be conveniently expressed in mathematical terms
using the condition number of the manipulator Jacobian ma-
trix. Yoshikawa [19]-[21] extended the concept to a general
description of the kineto-static capabilities of a single-arm
robot by introducing the notion of manipulability ellipsoids.
The velocity manipulability ellipsoid, for instance, defines
the set of velocities (expressed in the task reference frame)
that the end-effector can attain, when the joint velocities
belong to a given subset of their space (in particular, to the
unitary ball centered in the origin). The direction in task space
corresponding to the longest axis of the velocity ellipsoid
corresponds to the maximum amplification (or *“mechanical
advantage™) of joint velocities. Analogous definitions are valid
in the force domain. The isotropic condition is achieved
when the ellipsoids are spherical. The ellipsoid approach
provides a deep insight in the structure of the joint space/task
space mappings, and allows the evaluation of the suitability
of proposed robot configurations for a given task by direct
comparison with a target “task ellipsoid” [6].

In its original version, the manipulability ellipsoid method
can be applied to single-arm robots that have at least as
many degrees of freedom as necessary to achieve arbitrary
configurations in their task space. In this case, the mapping
between joint space and task space velocities is defined by
u = Jq. An inverse mapping can be expressed in terms
of a generalized inverse of the Jacobian as q = J*u. The
unit ball in joint velocity space, ¢7¢ < 1, is mapped in the
ellipsoid 1TJ*TJ 1 < 1 in task space. Analogously, in the
force domain, the mapping 7 = J7w is considered: the unit
ball in the joint torque space, 7/ 7 < 1, is mapped in the
task space wrench ellipsoid w7 JJ7w < 1. It should be noted
that, in general, it is necessary to introduce weighting of the
input and output variables to preserve physical consistency
of the expressions above [22]. The two ellipsoids share the
same set of principal directions, while the lengths of their
axes are reciprocal. Such directions and lengths are computed
by means of a singular value decomposition of the Jacobian,
J = &3 V: the principal axes of the velocity ellipsoid are given

Due to its potential usefulness in applications, attempts to
extend the concept of manipulability ellipsoids to muitiple-
arm systems have been recently made. In [23] and [24] two
different techniques are proposed, aimed at characterizing the
kinetostatic capabilities of cooperating mechanisms in per-
forming force/velocity targets in the task space. In particular,
in [23] a manipulability velocity ellipsoid of a dual-arm system
is defined by intersecting the ellipsoids pertaining to each arm
considered as a single robot. In [24], a global approach is
proposed that uses the grasp matrix G to define a composite
“Jacobian” matrix for the whole system. Although useful in
some cases, these two approaches fail when applied to systems
with less than six degrees of freedom per cooperating limb.
For a related discussion, see [25], [26] and the first case study
in Section V.

As mentioned in the introduction, we are interested in
extending the velocity manipulability analysis to a broader
category of manipulation devices. Similarly to the classical
approach proposed by Yoshikawa, our approach is based on
an efficiency index defined as the ratio of an input effort and an
output performance, for the robot in a given configuration. In
fact, the input effort function for the system can be defined as
a norm of the joint velocity vector, ||q||, and, analogously, the
output performance function as a norm of the object’s velocity
vector, |[0f|. Therefore, the performance-to-effort ratio

R, Ihall

Al

may be used as a measure of the efficiency of the system in
a particular configuration. In accordance with the nature of
manipulability ellipsoids, we specialize the norms above in
weighted 2-norms as

lali = /a"W,q:
lall = VaTW .

(11
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where W, and W, are constant, symmetric, positive definite
weighting matrices of suitable size and physical dimensions.
Let us first reconsider the standard case of a single, nonredun-
dant robot arm, for which the relation 1 = Jq holds. Equation
(11) may be rewritten as

qTITW ,Jq

‘Z .

R.(q) 4TW,q
As it is well known, the maximum (minimum) value of
the Rayleigh quotient in (12) corresponds to the maximum
(minimum) eigenvalue of the pencil JTW,J — AW . Ac-
cordingly, the directions (in the joint space) in which a
maximum (minimum) efficiency is obtained are given by
the generalized eigenvectors corresponding to the maximum
(minimum) eigenvalues of the pencil. Details on the efficient
computation of generalized eigenvalues are reported e.g. in
[28]. If Ajax is the maximum eigenvalue and §,ax the corre-
sponding eigenvector, the corresponding direction in the task
space is given by JQumax. In the following we show that this
simple reformulation of Yoshikawa’s manipulability ellipsoids,
associated with the mobility analysis discussed in Section II-A,
lends itself to a very straightforward generalization to multiple
manipulation systems.

Nonredundant Systems: Assume at first that the submatri-
ces C;; and Ca3 are empty, see (8). Although the system
may not have full mobility in task space, there is a one-to-one
relation between the motions of the joints and of the object,
i.e. there is neither indeterminacy nor redundancy. In this case,
the performance-to-effort ratio is defined as

R2 _ ﬁTW(,il _ XTC’{QWUCIQX

v qTW,,q XTCg-ZWqCQQX '

The maximum value of R, corresponds to the maxi-

mum eigenvalue M., of the symmetric-definite pencil

CLW,Cyy — A\CLW,Co. The corresponding generalized

eigenvector X,.x gives the direction, in the parameter

RN space, where maximum performance are obtained. The

corresponding directions in the task and joint velocity spaces
are

(12)

(13)

Wpax = CIZszlx

qnm.\' = ngxmﬂ_\.. (]4)

Obviously, similar considerations apply for Apin, the min-
imum generalized eigenvalue, and X,,i,, the corresponding
eigenvector. Note that by computing the generalized eigenval-
ues/eigenvectors of (13), an ellipsoid is described in R(C2),
the actual N.-dimensional task space of the manipulation
system at the given configuration.

Example 1 (Part b): Consider again the robot of Fig. 1,
disregarding the second link of the right limb. Assuming soft-
finger contacts, manipulation may be performed by rolling
the object along the links. The robot task is to lower the
object center along the y direction to reach a more “ma-
nipulable” configuration in order to prepare for a subsequent
fine operation. Note that a task is chosen that is compatible
with the kinematic constraints of the system, i.e. the desired
object velocity vy must lie in the span of the columns
of Ciy. The manipulation is then accomplished by solving
u; = Ciox for x and commanding joint velocities q =

Fig. 2. Four configurations of the robot of example 1-b moving the object
downward by rolling. Manipulability ellipsoids are superimposed, showing
that more isotropic configurations are achieved.
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Fig. 3. Simulation results for the whole-limb manipulation of example

1-b.Upper left: contact coordinates w1, ; Upper right: coordinates of the object;
Lower left: joint angles; Lower right: generalized manipulability eigenvalues.

Cyox. This control law, along with the equations of rolling
reported in Appendix C.1, defines the differential equation
of motion of the robot. Fig. 2 depicts four configurations of
the robot during manipulation, while Fig. 3 reports plots of
the relevant variables obtained by simulation. In Fig. 2, for
each configuration the shape of the two-dimensional velocity
manipulation ellipsoid in the 6-dimensional space of object
velocities is reported. For clarity purposes, the plane spanned
by the columns of Ci3 where the ellipses lie is represented
onto the plane of motion of the robots.

Redundant Systems: Assume now that the system has some
degree of redundancy, i.e. there exist some combination of
joint movements that do not generate any motion of the
object. This fact reflects in the appearance of a nonempty
submatrix Cas, see (9). As a consequence, there is a degree
of arbitrariness in the choice of joint motions to achieve
given object motions. According to our definition of an input
effort function, however, we will choose the joint motion
that accomplishes the goal with minimum effort expendi-
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ture. Therefore, we want to solve the following constrained
optimization problem:

arg min qTqu

q
_ q=C :
Subject to {q 22X + Cozy
u=Ciyx
where y € RV~ is a free vector to be determined. By equating
the gradient of 7 W q to zero it can be easily verified that
the minimum is obtained for
def

y = —(CJW,Cy3) ' C,W,Caox = — C;, Caox.
The corresponding optimal solution is
q=Cax — C23C;,Carx
=(I- ngersq)ngx

def ~
= CQQX.

Therefore, the Rayleigh performance-to-effort quotient for
redundant systems is written as
XTC’{;W,,C]QX
XTC%‘ZW(ICQQX
Similarly to the previous case, if Ajax, Xmax are the maximum

generalized eigenvalue and the corresponding eigenvector of
the associated pencil, the “optimal” velocity vectors are given

by

Ri(x) = (15)

Wmax = gl?xnmx
Qmax = C‘Z2xmax~

(16)

In the case of quasistatic indeterminacies in the manipulation
system, the velocities of the object corresponding to given joint
velocities can be completely determined only if the dynamics
of the problem are taken into account. What we have in
this case is an under-actuated mechanism, whose dynamics
have been studied in some detail for example in [17], [29].
The discussion of the dynamical behavior of such systems is
beyond the scope of this paper.

IV. VELOCITY WORKSPACE ANALYSIS

The manipulability ellipsoid method provides the directions
in task space where the robot can attain maximum performance
with a given effort. Although this is an important indication,
it does not exhaust the designer’s interest in describing the
kinematic characteristics of the task space of a robot at
different configurations. Another key point in characterizing
the kinematics of manipulators has been pointed out by
[30] and consists in describing the limits of performance in
the velocity workspace corresponding to limitations of the
input effort that joint actuators can provide. In general, such
limitations impose that the operating points of the actuators
lie within a given subset of the combined effort-velocity
space. For actuators used most commonly in robotics, such
as electric motors, this set is best approximated by a convex
polytope (a region limited by planar facets). Such joint-
space polytope is mapped by the linear differential kinematic
relationship of the robot in a polytope in the robot force-
velocity task space. Although the original formulation [30] of
polytopes in combined force-velocity workspaces is intriguing,
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it falls beyond the scope of the present paper. In this section,
the approach of [30] to describing velocity workspaces is
generalized to general multiple limb robots.

A typical problem in the analysis of velocity workspaces
is the determination of the task-space directions where the
best output performance, in this case the maximum task space
velocities, can be attained, provided that joint-space limitations
of the form

(ii.min < di < (}i.mnx (17)

are in order. The possible asymmetry of bounds in (17) is
notationally inconvenient, and can be eliminated by applying
a suitable transformation of joint variables as

def

r=D¢+r,. (18)

where

dof . : 2
Dl:tdlag{ : },

41, max — Gl.nin Gr.max — Qrmin

. . . . T
r def |: qd1,max + q1.1nin r.max (h',min}
o — |-—F—m/m/mmm ¥, .. .. —

1. max — 1.min Granax — (r,min

Thus, the polytope of bounds on input velocities is concisely
described by P/ {r € R": |t < 1}. If the output

performance is measured by the weighted 2-norm of the object
velocity 1, the workspace analysis problem is equivalent to
finding the direction in the velocity space that maximizes the
quotient
u
/o ” HZ (]9)

I

e

For single, nonredundant serial link manipulators, the problem
is easily solved considering the input polytope P/ and its
mapping into the task space given by u = Jq. Since this
mapping is linear in ¢, and since there is a one-to-one
correspondence between points in joint and task velocity space,
a polytope is defined in the task space, whose vertices are the
image of the vertices of P/. Inspection of the vertices directly
gives the desired maximum performance. The extension to the
more general context considered in this paper is discussed in
the sequel.

Nonredundant Systems: Consider first a manipulator with
N; = N, = 0. The input bounding polytope is further
restricted in this case by the kinematic constraints (8) to the

intersection of I’/ with the affine linear manifold IT%" {re

R":r = DCoyyx+r,.x € R™}. The intersection is a convex
polytope .. A convex polytope I, in R™« is also implicitly
defined by P, “'x € RN: [|r]|oc = |[DCaox + ollse < 1}.
Since D is invertible and Cs, is full column rank, every
vertex of P, is mapped in one and only one vertex of P.
According to (8), P, is mapped in a third polytope P’, in
the task space by another bijection (C,» is full column rank).
The latter polytope allows us to evaluate system performances.
In fact, from the properties of norms and the convexity of
P,, it follows that maximum performance is attained along a
direction pointing at a vertex of P,. Thus, the desired direction

of maximum performance in task space, and the corresponding
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joint velocities, can be found by exhaustive search of the
polytope vertices. An efficient algorithm for enumerating such
vertices is as follows.

By introducing slack variables o € R?", inequality con-
straints on input velocities are transformed into a matrix
equation as

Az=b. (20)
with
1—71n
A:[ e 1} z:{X} P
~DCy 4 L7
1 +‘ Tor

where A is a 2r x (N, + 2r) matrix whose rank is 2r,
z € RN*2" and b € R?". The set of solutions to (20) with
the condition o; > 0.2 =1..... 2r describes the polytope P..
At the vertices of P, at least N, slack variables are null.

Define an index set Z = {iy.da.....7n. } C {1.2,..., 2r}.
The number s of possible different sets I, b = 1.....¢ S,
is: s = (2,%"),\, Consider the 2r x 2r square matrix By
obtained from A by deleting the N, columns with indices
N. +i. i € Ij. Note that the first N. columns of A are
present in each of the B, matrices. Such a construction of B
amounts to imposing that solutions of (20) have components
o; = 0, i € I). If By is invertible, a basic solution z, =
[(B; 'b)T. 07]T of (20) is obtained. Invertibility of By can
be efficiently checked by testing the rank of the N..x N, matrix
whose elements are A;;.7 € Tr.7=1..... N... Among basic
solutions, those with nonnegative o,.j € I (feasible basic
solutions) contain the coordinates x of the vertices of I,.
At this point, P,. P., and P, (the polytope in joint velocity
space), are directly evaluated by means of (18) and (8).

Example I (Part c): As an example of application of this
technique, consider again the two-limb robot of Fig. 1. If soft-
finger contacts are assumed, and disregarding the second joint
of the right limb (i.e. » = 3), the kinematic analysis matrices
evaluated at ¢, = 7/4. o = 7/4. g3 = 7/2. u = 0.5. v = 1,
are

-1 0.25
3“ _?f” 0.5 —0.25
Cpy = Co= |0 05
0 0 05 0
0 0
—05 0.2

and therefore N; = N, = 0. N. = 2. Given the bounds on
joint velocities (in {rad/sec])

—12<q <1
-1 < <
-1 <q3 <08

2
]

the terms of (20) are evaluated as

0455 —0227 1L 0 0 0 0 0
0 05 0 1 0 0 0 0
A | 0556 0 001 000
~0455 0227 0 0 0 1 0 0
0 05 0 0 0 0 1 0
| 0.556 0 0 0 0 0 0 1
r0.909
1
0.889
b =11 001
1
L1111

In this case. the number s of different sets Z is 15:

{5.6} {46} {45} {3.6} {3.5}
(3.4} {2.6} {25} {2.4} {2.3}
(1.6} {1.5} {14} {1.3} {12}
Among these, the sets
{3.6} {2.5} {1.4}
give singular B matrices, while the sets
(1.5} (3.5} (3.4} {2.6) {16} {1.2}

originate nonfeasible solutions (negative o; terms). Therefore,
only 6 permutations (6 Bj matrices) remain, that define the
vertices of the polytope I’., and correspondingly those of I
and I’,:

-0.57] [-1.2] [-12] [0.3
Py=1{ -1 |.] o4 | 1 | |1
-1 | [ ~0.7] 103
1] 1
04 . |-1
081 105
—27 [-27 [-14] [16 1.6 1
r={[B] ) ) [ Loal ] e
r st r 2271 1 1.97
—050 |=-12] |-12
0 0 0
Pu= 0 0 0
0 0 0
05] L 12l [ 12]
~1.17 -187 =15
0.3 1 W
0 0 0
0 0 0
0 0 0
L41L3_ -1 J (-1 |

The polytopes are represented in Fig. 4, where vertices are
labeled in the order they are enumerated in (21). Assuming
for simplicity W, = I, the maximum output performance is
obtained at vertex B.

Redundant Systems: The velocity workspace analysis for
redundant systems can be carried out in an analogous way,
i.e. by evaluating the vertices of a polytope in the parameter
space, then searching for extremum performances among
them. However, a formal justification of this procedure takes a
little more geometric reasoning than in the nonredundant case.
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Fig. 4. The joint-space, parameter-space, and task-space polytopes for Ex-
ample 2.

For redundant systems, the input space polytope P, is
the intersection of P/ with the affine manifold II, déf{i €
R*: DCQQX + DCQJy + 7. X € RN’ .y € RN' } Again,
a convex polytope P, in RN-+™+ is implicitly defined by
P, {x € B¥ .y € BV: |||l = [|DCa2x + DCasy +
T,|l~ < 1}. Since D is invertible and [Cap Cas] is full
column rank, every vertex of I, is mapped by one and only
one vertex of .. Unlike the nonredundant case, however, the
mapping between P, and the polytope in the task space, P,,
is not a bijection for redundant manipulators. Nevertheless,
maximum values of (19) are still obtained in correspondence
of vertices of I’,. These vertices are the image under C;» of
points on the boundary of P,,. In particular, they are at least
the image of the vertices of the polytope P, def {xe RNy =
0: |It]|c = [|DC22x + Foll~ = 1}. In fact, recalling that:

e Cyy € N(HI).Vy € R, ie. only the term Cgox

affects the output velocity;

* if [DCaorx+1,]lx < 1then [[u]lz = /xTCLW,Cox
< ]|z max» 1.€., @ maximum output performance may be
obtained only in a point for which |[DCaox + 1, ||.c = 1;

it follows that any change of the value of y from a vertex
of P, corresponding to a maximum output performance does
not affect neither |||y nor ||f]|.c. Therefore, a bijection may
be established between P, and P,.

In conclusion, the same algorithm for the computation of
the vertices of the polytopes P,. P. and P, utilized for
the nonredundant case may be adopted, provided that the
constraint equation terms are suitably modified as

DCy, DCy; X
A= I({. z=|y
—DCy —DCyy o

Then, polytope P, is evaluated from P, by imposing y = 0.
Example I (Part d): Consider again the whole-limb robot
of example 2, with soft finger contacts. Assume now that
q = 1128 [rad], g2 = 0. g3 = 7/2.u = 0.5178,v = 1[m)].
The first limb is now in singular configuration and, as observed
in Section II-A, the system has now one degree of redundancy
(N, = 1). In this case, the kinematic analysis matrices are:

—1.11
“(’)2 A8 —.24
C]Q = () Cg(_) = 0 023 = 58
"
0 .58 0
—-.02
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(c)

The joint-space (a), parameter-space (b), and task-space (c) polytopes

The polytopes corresponding to the given bounds are:

p_[[-r7] [-171] [-163
SRR I W I O T R R B B
1.37 1.37 1.21
171 |=141 | |=1.71 | [
[—.39 —1.2 -1.2
P, = -1 1{,]091 1
| -1 -1 —.95
[0.23 1 1
1 —.82 -1
0.8 0.8 0.71
r1.9 1.9 1.81
-9 {=9] |-086
0 0 0
P = 0 0 0
0 0 0
L 0.9 0.9 0.86
(—152 -1.527 1-1.34
0.72 0.72 0.64
0 0 0
0 0 0
0 0 0
L-0.721 [-0.72] [-0.64

The polytopes are shown in Fig. 5, and vertices are labeled in
the order they are enumerated. Note that in this case there is
only one possible motion for the object (N. = 1), and in fact
the vertices of polytope P, lie along a line in the twist space.
Assuming for simplicity W, = I, the maximum performance
corresponds to vertex A (or B). Note that polytope P, is the
mapping in task velocity space of P,

Pp = {[-1.71],[-1.71].[-1.63].[1.37],{1.37], [1.21]}
= {[-1.71].[-1.63].[1.37]. [1.21]},
In Fig. 5, polytopes P, I’,,. I’;, and I, are shown. Points

M and N in Fig. 5(a) and Fig. 5(b) are the two vertices of
P,, which are mapped in points A= B and D = E of P,.

V. CASE STUDIES

A. Case Study 1

As a first application of the manipulability analysis methods
above described, consider the system depicted in Fig. 6,
consisting of two two-link limbs rigidly grasping an object.
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By applying the technique of Section 1I, we obtain

r Llylssing sings
—Llil5 cos ¢y sin gy

C12 =

L Llasinfgs — q1)
rlylysin(qy — q1) — Llasingy
Llssings
lilysin(qs — q1) — Ly singy

L Ll singy

Gy =

Correspondingly, the manipulability ellipsoid degenerates in a
segment. In this case the performance-to-effort ratio, assuming
W, = diag[l,1.1. L. L. L], evaluates to the equation shown
at the bottom of this page. Other proposed generalizations
of the manipulability ellipsoid method fail when applied to
general (including kinematically defective) cooperating robot
systems. In Fig. 7(a) and Fig. 7(b) are reported the ellipsoids
as evaluated by the methods proposed in [23] and [24],
respectively, for the particular configuration ¢; = g3 =
7/2 depicted in Fig. 6(b). Note that both methods result in
ellipsoids with a nonnull minor axis, indicating a possibility
of motion of the object in the y direction, which is clearly
negated by the system (actually, a four-bar linkage). The
ellipsoid resulting from the method proposed in this paper,
in the configuration of Fig. 6(b), is reported in Fig. 7(c).

In this case, also the velocity polytopes degenerate to a
segment. Assuming [} = l» = 1.L = 2[m], and ¢ min =
—1.¢; max = 1[rad/s], the algorithm presented in Section IV
gives:

1 -1
P, ={[-05].[05].}. P, = :i

]
2
w

(a) (b)

Fig. 6. Manipulation system of case study 1: (a) generic configuration; (b)
particular configuration considered in text.

17 7-1
0 0
0 0
Pe=S10l"| o 22
0 0
0 0

In this degenerate case, both the polytope and the ellipsoid
methods give substantially the same result (i.e. a segment).

B. Case Study 2

In this example, we will consider two four-degrees of free-
dom, SCARA-type robots manipulating an object, as shown
in Fig. 8. For simplicity, all the links of the two robots are
assumed to have the same length L. If two complete-constraint
contacts are used to model the grip on the object, we obtain
the matrices shown at the bottom of this page. Note that,
for nonsingular configurations (g2 # 0, qs # 0), the system
has connectivity N, = 3, no redundancy nor indeterminacy,
and Ci» = C;, Cyy = C,. Feasible first-order differential
motions for the object are all pure translations (the last three
rows of Cy» are zeroes), achieved by moving the joints with
suitable combinations of the columns of Cos.

Lzlflg(sinQ q1 + sin’(qs — ql))

1
R? = - x
2 1

212612 (g3 — 1) + L2(I3 sin® gy + 13 sin? qs) — Liylo(ly sin gy + Iz sings) sin(gz — q1)

rLsinga 0 0
0 L sin g sin g 0
0 0 Lsin gg
Ci= 0 0 0
0 0 0
L 0 0 0
cos(q1 + ¢2) sin{qr + g2) sin qg 0 7
—cosqy —cos(qy +q2)  —(singy + sin{gy 4 ¢2)) sings 0
COs (1 sin ¢y sin gg 0
C, — 0 0 L sin gg
- 0 cos(gs + qg) sin g2 sin(qs + ¢o)
0 —(cosqs + cos(qs + ¢o)) singe  —sings — sin(gs + qs)
0 COS (5 COS (]2 sinqs
L Lsin g2 0 0 ]
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Fig. 7. Manipulability ellipsoids for the system of case study 1 in configura-
tion in Fig. 6(b), according to three different methods: (a) Method described
in [23]; (b) Method described in [24]; (c) Method proposed in this paper.

Fig. 8. Two 4-axis SCARA robots cooperating to manipulate an object.

If either arm is in singular configuration, C; looses rank,
hence connectivity is lost to the advantage of redundancy.
Thus, for ¢o = 0, the block decomposition is

_ 0 -
0 0
0 0

| Lsingg _ L sin gg

Cio = 0 Co = sin(qs + go)
0 —sings — sin(qs + go)
0 sin gs

L 0 i

Fig. 9. Manipulability ellipsoids in four different configurations of the
system of case study 2. The object is being lifted in the vertical direction.
Axonometric views of the three principal ellipses in the translational task
space are used for display.

- 17

1
0
0
0
0
0]

C28 =

Note that the decomposition above shows that the mobility of
the system is not preserved in singular configurations. Finally,
if both arms are in singular configuration (g2 = ¢¢ = 0), no
first-order differential motion of the object is possible, while
two redundant degrees of freedom are present:

Mol 07

-2 0

1 0

0 0
Cu=1,
0 =2

0 1

L 0 0]

The manipulability ellipsoids in four different configurations
of the system during the vertical lift of the object are reported
in Fig. 9.

The velocity polytopes, in the configuration shown in Fig. 8,
with g1 = g5 =2 = ¢ = g3 = g7 = 7/2,q3 = g = 1 [m],
evaluate to

3757 [-3.75 1 1
P, = to|l =3 1] 4 || -4
—3.79 1 (=379 [=3.79] [-3.79
—4.75] [-4.75] [ -1 -1
1ol =3 | l=4].]1
0 0 379 |3.79
4757 3757 [4.75] [3.75
ST I VU T I A T O B ‘
0 3.79 0 3.79
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D
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2~ 7A| |
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Fig. 10. Velocity polytope P, for the cooperating SCARA robots.
__1W =17 71 07 1 07 =17 17
0 0 -1 -1 1 1
1 1 1 1 0 0
0| |-1 1 -1 0] -1
Po=q1-11=1]"|-1 -1 0 0
1 1 ] 0 1 1
-1 o -1 1 -1 0
L 0] L—1< L 1] =11 L ol L-1
roy1oroyr 11 T T 17
1 1 -1 0] -1 0
-1 -1 0 -1 o [-1
-1 1 0 0 1 1
I AR | 0 1
0 ol |-1 -1 -1 -1
1 -1 1 1 0 0
l-1] L 1] L ol L 0 L 1) L 1]
—17 -17 -1 -1 1 0
-1 —1} 0 ol o] [-1
P 0] |-1 -1 1 1 -1
u 0 0 0 ol o} | ol
L 0 0 0 o to 0
ol Lod Lo 0 0 0
r oy o7 17 roq ri1 ro1 rt
-1 0| |1 1 1 1
ol |-11 o} |o} |1 1
0 ol ol o[ ]Jo] |0
0 ol (o] {of {o] |o
L o) L o) Lol loJ Lol Lo

In this case, the bounds on joint velocities are assumed unitary,
ie. gimin = —1; Ggimax = 1. The velocity polytope P, is
shown in Fig. 10.

C. Case Study 3

A more complex manipulator will be considered as a final
example. The MIT Whole-Arm Manipulator (“WAM”) [10],
depicted in Fig. 11, is comprised of three links, of which
one is fixed (base, or chest, and shoulder) and two form
the manipulator arm. The manipulator possesses 4 degrees of
freedom: a spherical joint at the base of the first arm link,
and a rotational joint between the first and the second arm
links. Consider the particular configuration shown in Fig. 11.
The origin of the first three reference frames are placed at the
shoulder center, 01 = 02 = 03 = [0 0 0.5]T [m]. Also, for the

configuration being considered, assume

o;=100 5 17 [m]:
zy=[1 0 0T: zo=[0 0 1]7;
zo=[0 2 L7 z=[-1 0 0

The arm holds an object against the base (or chest), as shown
in Fig. 11, being the two contact points and their respective
unit normal vectors given by

c,=[0 06 08T m:
e 2 4"

co=[0 05 0]Tm:

_VZ 1.

n=[0 0

Assuming soft-finger contacts, the HJ and HGT matrices for
the given configuration are computed as

r o -03 06 0 0 0 0 0
—0.6 0 0 0 0 0 =071 0
TyT _
JH = -0.21 0 0 0o 00 -1 0
0 -02 =01 0 0 0 0 0
r1 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0
T _ 0 0 1 0 0 1 0 0
GH' = 0 —-0.8 0.6 0 0 0.5 0 04’
0.8 0 0 0 0 0 =071 0
L-0.6 0 0o -05 0 0 =071 1

respectively. Block matrices describing the system kinematics,
expressed with respect to a frame located at the center of the
object, are obtained as

0
0.019
—0.002
—0.047

0

0

Cp =

0.039
0 —0.031 0
0 0 —0.205
0 Co2 = 0 0.214
0.097 —-0.14 0
0

Connectivity is N. = 2, while no redundancy nor indetermi-
nacy are present. The manipulability ellipsoid degenerates in
an ellipse with principal axes

Ay

0.36
0
0
0

0.45
0

Ay =

0

-0.27
0.2

0.3
0
0

3

Assuming unitary bounds on the joint limits, the velocity

—7.13] [7.13] [-7.13
{74ﬁ8}’{&68]'[ 458}}'
0.22
~0.96

polytopes result

r={[ )

r—0.22
0.96
-1
-
r—0.18
0.13
—0.017
—0.33
—0.45
L 0

r,

0.22
0.96
-1
1
—0.18
-0.13
0.017
0.33
—0.45
0

—0.22
—0.96
1 ,
-1
0.18
0.13
—-0.017
-0.33
0.45
0

1
1
0.18
—-0.13
0.017
0.33
0.45
0
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Fig. 11. MIT-AI Lab whole-arm manipulator (WAM) rolling an object on
its base.

VI. CONCLUSION

In this paper, we considered multiple robot systems for
coordinated manipulation of objects. With respect to prior
results, the more general case when kinematically defective
elements are present in the system has been explicitly ad-
dressed. Such widening of the analysis scope is believed to be
both theoretically interesting and practically important, since
it allows to consider cooperating systems comprised of several
simple (few joints) linkages, whole-limb manipulators, devices
for power-grasping, parallel manipulators, efc.

The contributions of this paper are in the definition of
algorithms for analyzing the mobility and differential kine-
matics of such systems, and in extending the concepts of
manipulability ellipsoids and polytopes previously proposed
for simpler systems.

Future work in this area will address the extension to
force/torque and dynamic manipulability ellipsoids. Also, the
possible usefulness and significance of using different norms
(p-norms or others) for the evaluation of joint and task
space performances, that led in this paper to a convenient
reformulation of the polytope method for velocity workspace
analysis, will be further investigated.

APPENDIX A
DEFINITIONS AND NOTATION

The quantities used in writing the differential kinematics of
cooperating limbs are defined as follows:

. . T X )
ox — [”C{ ..... acz“ uw{ ..... uw;ll"] . ovx c R()n:
my _ [T m T m T m T1T me, G,
X = Toavess ne Wi wl] x € R
u= v .17 we R
a=[¢1-Go..... @' qeR":
G = 3 3 3x3n - Ge R()x()n
cy X Ch X 13 13
Dy; -+ D, Lig L. .
JT: ; JERb"XTS
Dl.r‘ Dn.r' LL! Ln,r

where c;x is the cross-product matrix for ¢; (i.e. the skew-
symmetric matrix such that ¢; x w = ¢; X w); blocks D; ; and
L; ; are defined as

if the #-th contact force does
not affect the j-th joint;
for prismatic j-th joint;
for rotational #-th joint;

D,"J'
(ci —05x)
(0 0 0) if the i-th contact force does
not affect the j-th joint;
(0 0 0) for prismatic j-th joint;

zlr for rotational j-th joint;

L;;

and o; and z; are the center and z-axis unit vector of the
Denavit-Hartenberg frames associated with the jth joint.

The selection matrix is built as follows. Assume the vari-
ables relative to complete-constraint contacts are numbered
from 1 to ny, those relative to soft-finger contacts from n1 + 1
to n1 + no, and those relative to hard-finger contacts from
n1 +ns + 1 to ny; + ne + ny = n. The H matrix is written as

0.'5(!:+n| Ix3(natny)

nl 000

H-= ,
0712 x3(n+n,) On; X3y

I3(n,+n \)

000 -+ nl
where n; is the unit vector normal to the surfaces at the ith

contact point c;.

APPENDIX B
ALGORITHM FOR OBTAINING C IN (6)

Recall that any p x ¢ matrix A whose rank is p can

be decomposed (by Gaussian elimination) in a row-reduced
echelon form (RREF) as
U
PA =1L [ O} .

where P is a p x p permutation matrix, L is p x p lower-
triangular invertible, U is p x ¢ “staircase”, and the zero block

is (p—p) xq.
By reordering columns of A one can further obtain
1 UI U2
PAP =L { o o ],

where P’ is a ¢ x ¢ permutation matrix, U; is p X p upper
triangular invertible, U is p x (¢ — p), and the zero blocks
have suitable dimensions.
The latter decomposition can be used to obtain a matrix N 4

whose columns span the nullspace of A,

U;'U,

N,=P
-I

Note that the columns of UflUZ can be evaluated simply by
back substitution in the ¢ — p triangular systems U;x = Us.
Linearly dependent columns may possibly enter N 4, and must
be purged to obtain a minimal basis of A'(A). Note that this
algorithm, although not numerically optimal, can be easily
implemented also in symbolic form.

q—p



BICCHI et al.: MOBILITY AND MANIPULABILITY OF GENERAL MULTIPLE LIMB ROBOTS

The RREF algorithm (in its first form) can be employed
to reduce the kinematic basis matrix C = [C] CQT]T to
its block form (6), by operating as follows (R — X means
“assign result R to variable X”):

Step I Apply RREF to CT and transpose the result, to

obtain

C,PTL;T =[Us, O]—Cyp:
where the zero block has NV, columns;

Step 2 Apply the same column operations on C,

C.PIL;T — Ca:
Step 3 Apply RREF to the first m — N, rows of C7 and
transpose, thus obtaining N; null columns on the
right; apply the same operations on the first m — N,
columns of Cj; at his point, matrix C has the
following structure:

{Cn

Cu O
Caa

O Cu

Step 4 Reassemble matrix C by permuting the first and

second block of columns: (6) is obtained.

APPENDIX C
EXAMPLE 1

With reference to Fig. 1, the contact point coordinates ¢y, €2
and normal unit vectors n;.n, are

l1 cos gy + ucos(qr + q2) L+ vcosqgs

ci = | lising; + usin(q + ¢2) Co = v$in gz
0 0
sin(q1 + q2) —sings
n; = |—cos(q1 + q2) ny = | cosqs
0 0

All joints have axis parallel to the z axis, and centers in

0 [y cosqy
o= [0]. ox=|lising

0 0

L L+ l>cos g3
o3=10|. o,= lo sin gy

0 0

If both contacts are hard-finger, H = [Is | Ogxg]; if both
contacts are complete-constraint, H = Iy; finally, if both
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contacts are soft-finger,
I(S Oﬁx()‘
H-= nf 000
OZXU
000 nf
In the latter case, the Q matrix of (5) is given by the
equation shown at the bottom of this page, where standard
abbreviations S;; = sin(g; + ¢;). Ci; = cos(¢; + q;), are
used. Numerical examples have been worked out assuming
the following dimensions: [; = \/5/2 Iy = V2, L =1.The
object is a sphere of radius 0.25.

A. Contact Kinematics

In deriving the equations of motion for Example 1, we adopt
the description of differential kinematics of rolling contacts as
presented by [31]. For the spherical object rolling on the planar
surface of the i-th link, the equations governing the evolution
of the local coordinates of the contact point on the object
(t0;+v0;) and on the link (uy;.vy;) are

loi = Wri1[COS Vyi

Vo = Wi

Ty = pwiil COSYP; — pwijz SINYP;. (23)
Opi = —pwril SINYP; — pwiig COSP;
1/.),7 = wy;1 tanw,;

where p is the radius of the sphere, and wy; is the relative
rotational velocity projected onto the tangent plane at the ith
contact:

— COS Uy SIN Vi — SIN UL SIN Vi COS Vi
Wt = -
SI g — COS Ug; 0
b b
X Ry(Pwgi — “wo). (24)

The rotational velocity of the i-th link and of the object
expressed in base frame, b ¢i and bw,, respectively, are easily
written in terms of joint and object velocities as

0o 0 0 (]1
bwp = [0 0 0 |42
11 0] g
00 0][hn
bwpa = [0 0 0] |d2 Ywy = [O3xs  LsJa (25)
0 0 1| |gs

Joining (23), (24), and (25) we obtain the differential
kinematics equation for the i-th contact coordinates 7; =
(i Voi i vy /(/J,)T as a function of the object and joint

Q:[HGTVHJ]:

rn 0 0 0 0 —01151 + 1S
0 1 0 0 0 L O+ uChy
0 01 1151 -+ ’U,S12 —1101 + ’11,012 0
1 0 0 0 0 —083
0 1 0 0 0 L +vCy
0 01 Sy —L 4+ vCy 0
0 0 0 S12 ~Cs 0
L() 0 0 Sy sy 0

~11 81 + uS12 —1151 +uS12 + 1S 0 07

11(71 + 11(712 [1(‘1 + ’ll,Olg - ]1(/'1 0 0
0 0 0 0
0 0 —uS3 0
0 4] L+vCy—L 0
0 0 0 0
0 0 0 0
0 0 0 0]
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velocities,

x| = Alnompox, P, q) (:) 1 =1.2. (26)

q
where x is the position of the center of the sphere in base
frame. and @ is a set of angles describing the object orien-
tation.

REFERENCES

[1] E. Nakano, S. Ozaki, T. Ishida, and 1. Kato, “Cooperational control
of the anthropomorphous manipulator ‘“MELARM’,” in Proc. 4th Int.
Symp. Industrial Robots, 1974.

[2] M. Uchiyama and P. Dauchez, “A symmetric hybrid position ferce
control scheme for the coordination of two robots,” in Proc. IEEE Int.
Conf. Robotics and Automat., 1988.

[3] 1. D. Walker, R. A. Freeman, and S. 1. Marcus, “Analysis of mo-
tion and internal loading of objects grasped by multiple cooperating
manipulators,” Int. J. Robot. Res., vol. 10, no. 4, Aug. 1991.

[4] J. K. Salisbury and B. Roth, “Kinematic and force analysis of articulated
mechanical hands,” ASME J. Mech. Design, vol. 82-DET-13, 1982.

[5] J. Kerr and B. Roth, “Analysis of multifingered hands,” Int. J. Robot.
Res., vol. 4, no. 4, 1986.

[6] Z.Li, P. Hsu, and S. S. Sastry, “Grasping and coordinated manipulation
by a multifingered robot hand,” Int. J. Robot. Res., vol. 8, no. 4, 1989.

[71 D. E. Orin and S. Y. Oh, “Control of force distribution in robotic
mechanisms containing closed kinematic chains,” J. Dyn. Sist. Meas.
Cont., vol. 102, 1981.

[8] K. J. Waldron, “Force and motion management in legged locomotion,”
IEEE J. Robot. and Automat., vol. 3, no. 2, 1987.

[9] Y. Nakamura, K. Nagai, and T. Yoshikawa, “Dynamics and stability in

coordination of multiple robotic systems,” Int. J. Robot. Res., vol. 8, no.

2, Apr. 1989.

J. K. Salisbury, “Whole-arm manipulation,” in Proc. 4th Int. Symp.

Robot. Res., 1987.

K. Mirza and D. E. Orin, “Force distribution for power grasp in the

digits system,” in Eighth CISM-IFToMM Symp. Theory and Practice of

Robots and Manipulators, (Ro.Man.Sy. '90), 1990.

C. Melchiorri and G. Vassura, “Mechanical and control features of the

University of Bologna Hand Version 2,” in Proc. 1992 IEEE/RSJ Int.

Conf. Int. Robots and Syst., IROS ’92, 1992, pp. 187-193.

A. Bicchi and C. Melchiorri, “Mobility and kinematic analysis of

general cooperating robot systems,” in Proc. IEEE Int. Conf. Robot.

and Automat., 1992.

A. Bicchi, “Optimal control of robotic grasping,” in Proc. Amer. Cont.

Conf., ACC 92, 1992.

A. A. Shabana, Dynamics of Multibody System.

1989.

L. Nielsen, C. Canudas de Wit, and P. Hagander, “Controllability issues

of robots in singular configurations,” in Proc. IEEE Conf. Robot. and

Automat., 1991.

A. Jain and G. Rodriguez, “Kinematics and dynamics of under-actuated

manipulators,” in Proc. IEEE Conf. Robot. and Automat., 1991.

J. K. Salisbury and J. J. Craig, “Articulated hands, force control and

kinematic issues,” Int. J. Robot. Res., vol. 1, no. 1, 1982.

T. Yoshikawa, “Analysis and control of robot manipulators with redun-

dancy,” in Prep. Ist. Int. Symp. Robot. Res., 1983.

, “Manipulability of robotics mechanisms,” Int. J. Robor. Res.,

vol. 4, no. 2, Summer 1985.

— . “Dynamic manipulability of robot manipulators,” J. Robot. Syst.,

vol. 2, no. 1, pp. 113-124, 1985.

K. L. Doty, C. Melchiorri, and C. Bonivento, “A theory of generalized

inverses applied to robotics,” Int. J. Robot. Res.. vol. 12, no. 1, Feb.

1993.

S. Lee, “Dual redundant arm configuration optimization with task-

oriented dual arm manipulability,” IEEE Trans. on Robot. and Automat.,

vol. 5, no. 1, Feb. 1989.

P. Chiacchio, S. Chiaverini, L. Sciavicco, and B. Siciliano, “Global task

space manipulability ellipsoids for multiple-arm systems,” IEEE Trans.

on Robot. and Automat., vol. 7, no. 5, Oct. 1991,

C. Melchiorri, “Comments on ‘Global task space manipulability ellip-

soids for multiple-arm systems’ and further considerations,” IEEE Trans.

Robot. and Automat., vol. 9, no. 2, Apr. 1993.

(101

(11]

[(12]

[13]

[14}
[15]
[16]

New York: Wiley,

(17]
(18]
{19}

[201

[21]

[22]

(23]

[24]

125]

[26] P. Chiacchio, S. Chiaverini, L. Sciavicco, and B. Siciliano, “Reply to
comments on ‘Global task space manipulability ellipsoids for multiple-
arm systems’ and further considerations.” IEEE Trans. Robot. and
Automat., vol. 9, no. 2, Apr. 1993.

A. Bicchi and C. Melchiorri, “Manipulability measures of cooperating
arms,” in Proc. 1993 Amer. Cont. Conf., ACC 93, 1993.
G. H. Golub and C. F. VanLoan, Marrix Computations.
MD: Johns Hopkins University Press, 1989.

J. Baillieul, “The Nonlinear control theory of super-articulated mecha-
nisms,” in Proc. Amer. Cont. Conf., 1990, pp. 2448-2451.

T. Kokkinis and B. Paden, “Kinetostatic performance limits of cooperat-
ing robot manipulators using force-velocity polytopes,” in ASME Winter
Annu. Meet.—Robot. Res., 1989.

R. M. Murray and S. S. Sastry, “Grasping and manipulation using
multifingered robot hands,” Memo no. UCB/ERL M90/24, University
of California at Berkeley, Berkeley, CA, 1990.

Baltimore,

Antonio Bicchi received the Laurea degree (cum
laude) from the University of Pisa in 1984, and the
Ph.D. from the University of Bologna in 1988. He
was a Post Doctoral Scholar at the Massachusetts
Institute of Technology, Artificial Intelligence Lab-
oratory, from 1988 to 1990.

Since 1985 he has been working at the Centro
“E. Piaggio” Foundation of the University of Pisa.
He is currently an Associate Researcher in Control
Engineering at the Department of Electrical Systems
and Automation (DSEA) of the University of Pisa,
and hold teaching appointments with the University of Pisa and Siena, and
with the Italian Navy’s Academia. His main research interests are in the
field of dexterous manipulation, including force/torque and tactile sensing and
sensory control; dynamics; kinematics and control of robotic hands and legged
vehicles; whole-limb robot manipulation; and nonholonomic motion planning.

Claudio Melchiorri received the Laurea degree
in electrical engineering from the University of
Bologna in 1986, and the Ph.D. from the University
of Bologna in 1990.

Since 1985 he has been working with DEIS,
the Department of Electrical Engineering of the
University of Bologna. He has been an Adjunct
Associate at the University of Florida, Gainesville,
FL, during 1988, and a Visiting Scientist at the
Artificial Intelligence laboratory of MIT in 1990
and 1991. Currently, he is an Associate Researcher
in Automatic Control at DEIS, holding a teaching appointment in Industrial
Robotics. His main research interest are in the area of robotic manipulation,
including topics such as dexterous hands, redundancy control, kinematics,
position/force control, force/torque and tactile sensors, and in the area of
digital control, including topics such as robust control and control of delay
systems.

Daniele Balluchi received an electrical engineering
degree from the University of Pisa in 1992. His
thesis was on the analysis and control of dexterous
robotic manipulation. He was granted a C.N.R. fel-
lowship for research in nonholonomic robot motion
planning.

He is cofounder and current director of DIERRE
Electronics.




