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Abstract In this paper we propose a method for online motion planning of con-
strained nonlinear systems. The method consists of three steps: the offline gener-
ation of a library of parametric trajectories via direct trajectory optimization, the
online search in the library for the best candidate solution to the optimal control
problem we aim to solve, and the online refinement of this trajectory. The last phase
of this process takes advantage of a sensitivity-like analysis and guarantees to com-
ply with the first-order approximation of the constraints even in case of active set
changes. Efficiency of the trajectory generation process is discussed and a valid
strategy to minimize online computations is proposed; together with this, an effec-
tive procedure for searching the candidate trajectory is also presented. As a case
study, we examine optimal control of a planar soft manipulator performing a pick-
and-place task: through simulations and experiments, we show how crucial online
computation times are to achieve considerable energy savings in the presence of
variability of the task to perform.
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1 Introduction

Trajectory planning is a problem of critical importance in robotics. Among the
many, two fundamental motivations are: increase robot autonomy towards auto-
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mated discovery of complex behaviors [13], and maximize performances such as
energy efficiency or execution speed (critical in production cycles [21] and in mo-
bile robotics [16]).

Trajectory planning is even more important for the novel generation of soft
robots. These systems, thanks to the introduction of continuous or lumped elasticity
in their design (see [11] and [19] for two recent reviews), present richer dynamics
with respect to their rigid counterparts. A suitable exploitation of such characteris-
tic leads to substantial improvements in efficiency [20], and maximum speed [9].
However, in order to achieve these results, two ingredients are fundamental for the
control scheme: optimality and feedforward. Optimal control theory is one of the
very few tools able to exploit elastic potential energy of soft robots [9, 10], whereas
closed-loop controllers may alter the natural dynamics of the system [4]. Addition-
ally, in a great variety of practical situations, problem parameters may vary and be
known only at the very beginning of the task, posing the challenging requirement
of generating the motion planning in a negligible time with respect to the smallest
time constant of the system dynamics.

In this context, due to the dynamic nonlinearities, nonlinear programming is one
of the only viable options to both exploit the system dynamics and reduce the need
for feedback. However, its direct application is not sufficiently fast, and the need for
alternative methods for real-time computation of (near-) optimal trajectories arises.

A classical answer to this problem is Dynamic Programming (DP) where all the
computational effort is shifted offline, but the curse of dimensionality makes this
method inapplicable to large scale systems. Similar in concept to DP, but different
in practice, is the trajectory library approach [15]; here the offline phase consists
in the computation of a set of optimal motions and the synthesis of optimal con-
trollers able to steer the system to one of the stored paths. Such libraries can be
built with various techniques, e.g. randomized motion planning [17]; in this paper
we opt for the mature field of Direct Trajectory Optimization (DTO) [2]. A com-
bination of DTO and differential DP for the trajectory generation was proposed by
[12], where neighboring optimal controllers were also stored in the library. In [18] a
feedback motion planning algorithm, which uses sum-of-squares verification for the
computation of stability regions along the trajectories in the library, was presented.

A different line to approach real-time optimization comes from the field of Non-
linear Model Predictive Control (NMPC) where, in some schemes, only the solution
of a computationally lighter approximation of the nonlinear Optimal Control Prob-
lem (OCP) is performed. For example, [5] perform only one Sequential Quadratic
Program (SQP) iteration per sampling time, whereas [23] use sensitivity analysis to
anticipate the online solution of the OCP and subsequently correct the result. These
are, however, control techniques and their applicability is limited to local corrections
of a nominal trajectory computed at the previous sampling time. From our side, we
are interested in optimal feedforward actions without restrictions on the values of
the OCP parameters.

In this paper we aim to merge the previous points of view, using NMPC cor-
rection techniques for the online refinement of trajectories stored in a library. Fur-
thermore, unlike the works listed above, our goal is not the system stabilization,
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which would implicitly identify the system initial state as the OCP parameter, but
rather to consider a generic definition of a parametric NonLinear Program (NLP).
In this framework, the optimal trajectory might be a function of any parameter in
the underlying NLP, such as the system final state or the cost function weights.

The presented method is composed of three phases: the offline generation of a
library of parametric trajectories via DTO, the online search in the library for the
best candidate solution to the OCP we aim to solve, and the online refinement of
this trajectory. The last step consists in a real-time correction based on a sensitivity
analysis or in the solution of a Quadratic Program (QP), depending on the magnitude
of the parameter variation. Also the selection of the candidate trajectory is based on
sensitivity information, which, together with an efficient statement of the QP, are
stored in the library.

The main contribution of this work is the development of an algorithm for real-
time optimal motion planning; nonetheless, to the best of the authors’ knowledge,
the experimental results presented in this work are the first successful application of
open-loop optimal control of flexible-joint robots, strategy that recently proved to
be the most adequate to the control of this type of systems [4].

In Sec. 2 we expose a motivational pick-and-place problem with parametric ob-
ject mass, initial and terminal pose. We show how soft robots could in principle
save a considerable amount of energy (approximately 30%) but, assuming the pa-
rameter values to be known only at the very beginning of the task, this saving can
be achieved only with real-time motion planning. After a brief review of parametric
nonlinear optimization (Sec. 3), in Sec. 4 we present an efficient strategy for the
online refinement of optimal trajectories. Sec. 5 describes the method of parametric
trajectory libraries, and shows how it overcomes the difficulties outlined in Sec. 2.
Experimental validation is presented in Sec. 6 (and in the accompanying video),
pointing out the further benefit of this method of not requiring settling times caused
by model-plant mismatches. Finally, conclusions are presented in Sec. 7.

2 Motivational Example and Problem Statement

Pick and place is probably the most striking example of soft robots efficiency; how-
ever, even for this simple task, if we allow object positions and masses to vary, bring-
ing the robot to resonance becomes a non-trivial operation which requires advanced
planning techniques. In this section we analyze energy efficiency of a pick-and-
place problem for the planar manipulator shown in Fig. 1 and described in Tab. 1.
We show how, in principle, soft actuation could outperform rigid one but excessive
planning times make these savings out of reach for common DTO techniques and
the need of novel methods for online motion planning arises.

The task is to move n, = 100 objects with random masses m, € [0.3,0.5] kg
between random positions which are assumed to be known only at the completion
of the previous task. We compare rigid actuation (R), soft actuation with variable
stiffness (VS), and soft actuation with constant stiffness (CS); including returns, we
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Mass Friction Center of mass Length
(kg (Ams)  position (m)  (m)

Link1 0.75 0.040 0.20 0.22
Link2 0.88 0.030 0.19 0.22
Inertia Friction Reduction

- (mgm?) (ENms) ratio

Motor 0.50 0.22 205
Fig. 1:, Planar RR mampulatqr powered Table 1: Parameters of the planar ma-
by series elastic actuators with the fast

version of the Pisa-IIT SoftHand with a
closure time of 0.1 s.

nipulator (identified from a point-mass
model).

obtain 2n, OCPs per actuation type. Preliminarily, we will not take computation

times into account assuming that optimal trajectories are computed instantaneously.
Denoting with ¢ € R"¢ the angular position of the links and with 6 € R"¢ the

link-side angular position of the motors, the soft robot dynamics is modeled as

M(@)p+c(@,9)+K(9—60)=0, I0+FO+K(6—9)=r1, (1)

where M € R"*"¢ ig the link inertia matrix, ¢ includes Coriolis, centrifugal, fric-
tional, and gravitational terms, K is the diagonal stiffness matrix, / is the diagonal
inertia matrix of the motors, F is the diagonal friction matrix of the motors, and 7
represents motor torques. The dynamics of the corresponding rigid robot is simply

M(@)+D¢+c(p,9)+Fp=1. 2)

Fork=1,...,2n,, each OCP has the following structure (case-specific equations or
variables are explicitly indicated):

k

1 t
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(a) Rigid robot. (b) Robot with constant stiffness.

Fig. 2: First three pick-and-place tasks. From top to bottom: end-effector trajectory,
configuration angles as functions of time, input torques as functions of time.

where &(@) € R" denotes the position of the end-effector, the subscripts i and
f represent initial and final values, respectively, whereas underlines and overlines
denote lower and upper bounds, respectively. The time horizon of each plan is tf —
ti" = 2 s which, overall, demonstrated to be the shortest horizon allowed by actuator
velocity limits for this positioning of the objects. The (OCP) is discretized with a
multiple shooting approach: 30 shooting intervals per plan with piecewise constant
inputs and 5 integration steps per shooting. The integration scheme is the 4th order
explicit Runge-Kutta. Bounds on the optimization variables are: T = —7 = 5 Nm,
P=—0= [oo 7[/2] i rad, v = —v = 4 rad/s. NLPs are solved with IPOPT [22] and
implemented in the highly efficient framework CasADi [1]. Energy efficiency is
compared analyzing the mean cost, defined as J* := ﬁ ):,31"1 J¥*, with J* denoting
the solution of the kth (OCP).

The mean cost set by the rigid robot (R) is J; = 0.184 (Nm)?; by way of illus-
tration, Fig. 2a shows the optimal trajectories for the first three movements. Opti-
mizing the stiffness of each actuator at every movement (VS), we reduce the energy
consumption by 31.0% setting Ji;g = 0.127 (Nm)?. However, this analysis neglects
energy consumption due to the change (and the retention) of the actuator stiffness
that, depending on the motor design, might be significant. To make the compari-
son fair, we fix motor stiffnesses (CS) to the mean optimal values obtained from
the previous analysis K* = diag(0.316,1.772) Nm/rad. The resulting average cost is
Jég =0.137 (Nm)?, with a satisfactory saving with respect to the rigid case (25.8%)
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and a limited loss with respect to the variable stiffness case (—7.6%). Fig. 2b shows
the optimal trajectories for the latter case.

Taking computation times into account, however, these conclusions change dras-
tically. Since the final state of the robot is not an equilibrium (@(#f) # 6(tf)), delays
in the computations and, consequently, in the application of the open-loop control
might have catastrophic consequences. NLP solutions, in fact, required on average
0.853 s for the constant stiffness case and 1.658 s for variable stiffness case, making
these optimal trajectories useless in practice. (Computations are performed with a
notebook computer with the 2.4 GHz Intel Core i7 processor and a 16 GB 1867
MHz LPDDR3 memory.)

The problem address by this work is to extend the scope of DTO methods to the
real-time motion planning of dynamical systems. The goal is not to define a stabi-
lizing policy for the system under analysis, but rather to derive a general-purpose
strategy able to react online to environment changes and variations in the task pa-
rameters. To this end, we decide to leverage on offline computations and we consider
a limited loss in optimality an admissible compromise but, on the other hand, we are
as intransigent as possible towards the feasibility of the synthesized motions. The
algorithm we propose in this paper is able to generate nearly optimal (and first-order
feasible) trajectories in an amount of time that, for the case study presented in this
section, is two orders of magnitude lower than the one obtained with the state-of-
the-art NLP techniques mentioned above.

3 Notions of Nonlinear Optimization

In this section we review some basic concepts of parametric nonlinear optimization.
Even if these are well known (see, e.g., [14] and [7]), they are reviewed here for
convenience as they are the basis for the developments in the next sections. In the
following, we will denote with d, f(x) (df(x)) the total (partial) derivative of f(x)
with respect to x.

Direct trajectory optimization techniques translate the continuous time (OCP)
into a finite dimensional NLP. Including the explicit dependence on a set of param-
eters p, we get a multiparametric NLP, which can be stated as

min f(x,p) s:t. {g(x, p) = 0, h(x,p) > 0}, (mpNLP)

where x € R™, p e R, f € R, g € R", and h € R". For a feasible x, we
call & (x,p) := {k € {1,...,m}|Ig(x,p) = 0} active set, and we distinguish ac-
tive inequalities h,(x, p) := {h(x,p)|k € <7 (x,p)} € R™ from inactive inequal-
ities ;(x,p) := {m(x,p)lk € {1,...,n} \ & (x,p)} € R" " Moreover, denot-
ing with x*(p) a local solution of (mpNLP), we define the optimal active set
A*(p) = (x*(p), p)-
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The Lagrangian function for (mpNLP) is I(x,A,u,p) := f(x,p) — A Tg(x,p) —
u " h(x, p), with Lagrange multipliers A € R"s and u € R The following theorem
states necessary conditions for x to be a local solution of (mpNLP).

Theorem 1 (First-Order Necessary Conditions (FONC)). Consider the set of
Karush-Kuhn-Tucker (KKT) equations

9 1(x,A,u,p) =0, (stationarity) (3a)
g(x,p) =0, (primal feasibility) (3b)

h(x,p) >0, (3¢)

u>0, (dual feasibility) 3d)

' h(x,p) =0, (complementarity slackness) (3e)

where (3e) is equivalent to Wh(x,p) =0 for k= 1,...,n,. Assume both the objec-
tive f(x, p) and the constraints g(x, p), h(x, p) to be € with respect to x and Linear
Independence Constraint Qualification (LICQ) to hold at x*(p). Then there exist La-
grange multipliers 1*(p), w*(p) such that (3) are satisfied at (x*(p),A*(p), u*(p))-

Collecting primal and dual variables in a single vector y := [x" AT [,LT]T, we
are interested in determining how the solution y*(p) changes as a result of small
variations of p. The following theorem sets the basis for this analysis.

Theorem 2 (Optimal Sensitivity). Suppose both the objective f(x, p) and the con-
straints g(x,p), h(x,p) to be €* with respect to x and p. For p = p, if FONC,
Second Order Sufficient Conditions (SOSC), and Strict Complementarity Slackness
(SCS) hold at y*(p), then: i) x*(p) is an isolated local minimum of (mpNLP) for
p = p and multipliers A*(p), W*(p) are uniquely determined; ii) for p in a neigh-
borhood of p, there exists a unique €' function y*(p) satisfying FONC, SOSC, and
SCS for (mpNLP).

Given the existence and the differentiability of y*(p), we can derive the sensi-
tivity matrix d,y*(p). Let us consider the equalities (3a), (3b), (3e) of the FONC;
requiring their total derivative with respect to p to vanish at the solution, we obtain
the linear system of equations

Ol —0)g—0]h Ol
g 0 0 dpy* = &Pg , 4
w'loh 0 AT u* oy

where all the functions are evaluated at p and y*(p). Under the hypotheses of Theo-
rem 2, the KKT matrix in the left hand side of (4) is always invertible and the linear
system can be solved for d,y*(p).

Given a solution of (mpNLP) for some p = p, we are now able to approximate
the solution of (mpNLP) for a new value of the parameter p = p+ A, as

Y(P+Ap) =y (P)+dpy* (P)Ap. &)
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4 Active Set Changes in Sensitivity Analysis

While the quality of approximation (5) is generally satisfactory when the perturbed
parameters belong to a neighborhood of their nominal values p, we assist to a severe
accuracy loss whenever the magnitude of A, is high enough to cause a change in the
optimal active set (i.e., &/*(p) # o/*(p+ A,)). This change, in fact, is associated
with: i) a discontinuity in the sensitivity function d,y*(p), that makes the use of a
linear approximation inconsistent; ii) a high risk of unfeasibility of the approximated
solution which would result in a control input inapplicable to the real system.

In order to overcome this problem, in Sec. 4.1 we take advantage of a procedure
(originally proposed in [8] and, more recently, used in NMPC [6]) that, through the
definition of a tangent Quadratic Program (tQP), naturally extends the sensitivity
analysis to take into account active set changes and inequality constraints (3c), (3d).
In Sec. 4.2 we show how the structure of this tQP can be exploited to reduce offline
the dimension of the problem, with a great decrease in the online solution times.
Finally, in Sec. 4.3, we address the issue of the nonconvexity of the tQP and we pro-
pose a tailored convexification strategy which has a minimal impact on the solution.
This leads to the statement of the problem we actually solve online.

4.1 Sensitivity Analysis via Quadratic Programming

In order to include active set changes in the sensitivity analysis, we consider the tQP

1
min SA axxle+(A; apx1+axf) A, (tQP)

st {0:gAc+0pg4p =0, h+ d:hA; + dphA, >0},

where all the functions are evaluated at p and y*(p) and A, represents the correction
to x* (/) induced by the parameter variation A,. In this subsection we show that the
solution of (tQP):

e always verifies the first order approximation at p and y*(p) of the feasibility
conditions (3c) and (3d),

e coincides with the sensitivity approximation (5) whenever the latter does not
violate the first order approximation of (3c) or (3d).

These two properties candidate (tQP) as the natural extention of (5) whenever active
set changes are detected.

We start considering the Lagrangian function for (tQP) with multipliers 1*(p) +
A, for the equalities and u*(p) + A, for the inequalities. The related FONC are

Ol Ac — 9, gAy — 3 hA, +dyplA, =0,  (stationarity) (6a)
Ox8A, +dpgA, =0, (primal feasibility) (6b)
h+ 0chA, + d,hA, > 0, (6¢)
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u*+ Ay >0,  (dual feasibility) (6d)
(g + Ay,) (i + ey Ay + IphiAp) =0, (complementarity slackness) — (6e)

with k = 1,...,n,. Analyzing this set of equations we note that: (6a) and (6b) co-
incide with the first two equations in (4) multiplied by A,, (6¢) and (6d) are the
linearization of (3c) and (3d) at p and y*(p), and (6e) is equivalent to the third equa-
tion in (4) except for second order terms. Focusing on (6e) we also notice that, as
long as the solution of (6) verifies (3c) and (3d) strictly, second order terms are ir-
relevant and the solutions of (6) and (4) coincide. This claim can be easily verified;
in fact, only one of the following alternatives is possible: either the kth constraint is
active (i > 0, p = 0), then, since (6¢) holds strictly, (6e) implies Ay = 0, which
agrees with the result from the third equation in (4); or the kth constraint is inactive
(he = 0, u; > 0), then, since (6d) holds strictly, (6¢) implies Oy A + 8phkAp =0,
which agrees with the result from the third equation in (4). On the other hand, sec-
ond order terms in (6e) become relevant when some of the inequalities (6¢), (6d) are
active, ensuring feasibility of (6).

4.2 Condensation of the Tangent Quadratic Program

Generally speaking, there are two main approaches to the solution of (tQP) [6]:
solve the problem in the actual form, using a sparse QP solver; or use the equality
constraints to remove dependent variables (process called condensing) and solve the
resulting dense QP. Since in our case the entire condensing process can be performed
offline, the second approach is certainly more convenient. tQPs are typically con-
densed exploiting the structure of the control problem: with the initial state as a pa-
rameter, a forward simulation of the system dynamics is performed to express state
variables as functions of the inputs and remove them from the optimization. This
procedure however is not easily extendible to our problem because of the generic
nature of the parameters we consider. In this subsection we propose a method to
condense (tQP) that does not require any hypothesis on the typology of parameters.

Denoting with .4 (M) and %Z(M) the null and range space of a matrix M and
defining ¢, := [g" h) |, we consider: Z; € R™*(x==") orthogonal basis of
N (0xca), Zp € R™*" orthogonal complement to Z; to form a basis of .4(d,g),
and Z3 € R™*" orthogonal complement to [Zl Zz] to form a basis of R™. Fur-
thermore, we define Z, := Z5(dchaZs) !, where d,h,Z, € R™*" is invertible since
N (9vhy) N %(Z2) = 0. We then consider the new set of variables [z] 2] z1] ' :=

[Zl 7 Z3] ! A,. In the following we show that, with this change of variables, (tQP)
assumes the condensed form

N E - - -
min EZITZHZIZ +dZip st. {AZ1p > b, 7 > c}. (ctQP)
Z12

where Z/, := [z{ 2, |. This reformulation entails two main advantages:
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e the decrease in the number of optimization variables from 7, to n, — ng,
e the transformation of active inequalities into lower bounds on the variables Z;.

Changing variables in the equalities of (tQP), we can express the dependent vari-
ables as explicit functions of the parameter variation z3 = —(o“’XgZ3)’l 8pgA p, where
again dygZ3 € R"*" is invertible since .4 (dyg) NZ(Z3) = 0. Active inequali-
ties of (tQP) are transformed into lower bounds 2, > —dhaZ3z3 — dphaA, =: c.
Defining Z1p = [Zl Zz] and A := d.hiZ1», we see that inactive inequalities do
not take any advantage from this change of variables, in fact we obtain A7, >
—ohiZzzz — 8phiA p — hi =: b. Finally, changing variables in the cost function, after
some manipulations we arrive to the form presented in (ctQP) with H := ZlT28xxlzlz

and d := 2] 7] dulZiz + Ay Il Ziz + |01,
ity condition (3a) have been used, constant terms (including z3) have been removed,
and p} € R™ denotes the optimal value of the active inequality multipliers.

ng—na) Ma Taxhazz}, where optimal-

4.3 Tangent Quadratic Program Convexification

The final issue in the solution of (tQP) is its potential nonconvexity, which prevents
a direct application of the most efficient optimization algorithms. In fact, assum-
ing SOSC and LICQ to hold, only the reduced Hessian matrix R := zfamlz] is
guaranteed to be positive definite, while dy,/ might have negative eigenvalues.

Commonly, dy,[ is convexified with the addition of a correction matrix Ay :=
. caA dyc, with symmetric A. This choice is particularly appealing since:

e there always exists a finite A such that dy, +Ap = 0,

e this convexification does not alter the solution of (tQP) whenever the correction
from (tQP) does not require any active constraint to become inactive (i.e., when-
ever in (6¢) we have dihaAf + dpha A, = 0, with A solution of (tQP)).

However, since we are going to solve the problem in its condensed form (ctQP), to
our purpose is sufficient to make only H positive definite and not the entire d,/. To
do that we consider the simpler correction matrix Ay := 8xThaA dihy; in the follow-
ing we prove that the previous claims still hold.

We define the corrected Hessian matrix L := dy [ + A and we replace it to dyl
in the definition of H. We get

ST s R Z! 0ulZ,

Znlzi = 7, 0ulZ) 2] dulZy + A |

For the Schur complement lemma, requiring Z ITZLZ 12 to be positive definite is equiv-
alent to require R > 0 and A > Z; (8xxlle’1ZIr8xxl — Bxxl) 7, =: S. Being R the
reduced Hessian, the first condition is verified whenever SOSC and LICQ hold, and
being S a bounded matrix, a A such that the second relation holds can always be
found. Moving to the second claim, we note that, as long as dyh, A + 8phaAp =0
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the contribution to the cost function of the correction term A;‘TALA; assumes the
constant value A; 81;'— haA 8phaAI,, hence it does not affect the solution of (tQP).
Finally, concerning the choice of A, we decide to minimize ||A||r subject to
min(eig(A — S)) > € for a small € > 0, whose closed-form solution consists in a
clipping of the eigenvalues of A — Sto € [14].

4.4 Sensitivity Analysis Summary

In conclusion we briefly summarize the results from this section. We have shown
how to take into account the first order approximation of inequality constraints (3c),
(3d) in the sensitivity analysis. This process results in the quadratic program (tQP),
whose solution coincides with the linear sensitivity correction (5) as long as the fea-
sibility conditions (6¢), (6d) are satisfied, but allows to improve the quality of the
approximation for parameter variations A, big enough to change the optimal active
set. We have proposed a condensing strategy that (without any hypothesis on the na-
ture of the parameters p) allows to remove (offline) all the dependent variables from
(tQP), resulting in the dense, but substantially smaller, quadratic program (ctQP).
Finally, we have proposed a convexification method tailored for (ctQP) which does
not alter its solution as long as “constraint deactivations” do not occur, ensuring that
also the solution of the convexified (ctQP) coincides with the linear correction (5)
when the active set is unchanged.

5 Parametric Trajectory Libraries

We now describe how parametric trajectory libraries are built and how they are used
for the online generation of suboptimal trajectories.

Having parameterized the OCP with the vector p, we discretize the continu-
ous time problem into the finite dimensional (mpNLP). Alg. 1 is then applied for
the construction of the trajectory library. This consists in the generation of ran-
dom OCPs; for each OCP we first find the nearest trajectory in the library (using
a metric defined in the following). Then, starting from this trajectory, an approxi-
mated solution is derived. The approximation accuracy is tested through a problem-
dependent accuracy index: if the accuracy is high enough, the solution of (mpNLP)
is not required, otherwise (mpNLP) is solved and its solution is added (together
with sensitivity information) to the library. The algorithm stops when the number of
consecutive successful approximations rg,c. exceeds the threshold value ng,.

Being the elements of p generally non-homogeneous, one of the key aspects of
Alg. 1 is the definition of a metric in the parameter space. Our proposal is the fol-
lowing: when the kth trajectory is added to the library (with k = 1,2,... 1), we
compute s’; = Hdpju*(pk)H for j =1,2,...,n,. These values indicate how quickly
the solution changes in the jth direction of the parameter space. We then perform
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Algorithm 1: Parametric Trajectory Library Generation

Result: library

Nsuece = 0

while ngycc < ng,e. do

generate random p

if library is empty then

solve (mpNLP)

compute sensitivity (4) and (ctQP) blocks
add trajectory to the library

else
find nearest trajectory in the library
approximate solution with sensitivity (5)
if constraints (6¢) or (6d) are not verified then
| approximate solution with (ctQP)
end
if accuracy is poor then
Nsuce = 0
solve (mpNLP)
compute sensitivity (4) and (ctQP) blocks
add trajectory to the library
else
| Asucc = Nsuce +1
end

end
end

the search after scaling the jth parameter axis of the quantity ”lt Yo s’j‘-, so that di-
rections with respect to which the solution is very sensitive on average are stretched,
encouraging the choice of solutions in the shrunk directions. A minimization of the
2-norm distance is then used for the search in the scaled space.

Once the library is built, the online application of the method consists in the
approximation steps of Alg. 1 exclusively: the parameter vector is assembled from
sensor readings or external inputs; the nearest plan is selected; the approximation
from the sensitivity analysis is accepted if the linearized feasibility constraints are
verified, otherwise the solution of the (ctQP) is required. The approximation is then
applied to the system without any further verification.

5.1 Application to the Benchmark Problem

In Sec. 2 we have shown that elastic actuators can in principle reduce the energy con-
sumption required to perform a task, but standard trajectory optimization techniques
are not sufficiently fast to exploit the robot elasticity. Using trajectory libraries, on
the other hand, the online computation cost is reduced to the solution of a linear sys-
tem and, when needed, a QP. Here we present the results obtained using a parametric
trajectory library for the solution of the benchmark problem of Sec. 2.
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Fig. 3: First three pick-and-place tasks for the constant-stiffness robot performed

applying the approximated optimal planning from the parametric trajectory library.

(OCP) is parameterized with the initial and final configuration of the robot and
the mass m, of the object that the manipulator has to move. Considering that fi-
nal motor positions G(té‘) are free, and exploiting the circular symmetry of the
problem, the number of parameters is n, = 6. Describing the end-effector posi-
tion with polar coordinates p := ||&|| and o := atan2(&,,&;), the parameter vec-

tor is pk = [of —qf ¢ O 6F pfmk]" € R™, with k = 1,2,...,2n,. An ad-

ditional symmetry can be exploited noticing that two parameter vectors p* and

pl = [— p’]‘ — pé — p’§ — pﬁ p’§ p’g}T are associated to solutions with opposite sign.

Random plannings for the construction of the library are generated with the pro-

cedure presented in Sec. 2. In order to test the accuracy of the approximated
k

optimal control law we generate, we use a grasp error index defined as ¢, :=

€ (£F) — EX|| 41 || (25) |, with £, denoting the hand closure time and & (¢F) the sim-
ulated final position of the end-effector. This represents an upper bound of the dis-
tance between the object and the end-effector during the interval necessary to close
the gripper. The threshold value for the grasp error is set to 10 mm.

After 47315 random plannings the algorithm stops, succeeding in ng,.. = 103
consecutive approximations. The number of trajectories added to the library is n =
578, which is considerably small considering that ntl [y < 3. Solving the sequence
of 2n, plannings analyzed in Sec. 2 relying on approximated solutions exclusively,
we obtain an average cost of J- = 0.137 (Nm)?2, which is identical to the non-
approximated case. The average grasp error is 1.92 mm, with a maximum value of
10.78 mm. 22.5% of the times sensitivity correction from (4) is sufficient, whereas
in the other cases the solution of (ctQP) is required. Simulations of the first six
approximated optimal controls are illustrated in Fig. 3, where the trajectory of the
end-effector reveals some small positioning errors. Using the QP solver quadprog
from MATLAB, the solution of (ctQP) requires on average 46.0 ms (with a maximum
value of 79.1 ms). In conclusion we note that repeating this analysis eliminating the
whole correction process (i.e., using the nearest trajectory in the library directly) we
obtain an average grasp error of 32.2 mm with a maximum value of 88.7 mm; errors
that are approximately ten times bigger that the ones obtained after the refinement.
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6 Experimental Validation

In this section the method of parametric trajectory libraries is experimentally vali-
dated on the manipulator shown in Fig. 1; this is powered by series elastic actuators,
and provided with the fast version of the Pisa-IIT SoftHand [3]. Stiffness values of
the series elastic actuators are not optimal but equal to 0.7 Nm/rad; nonetheless, the
goal of these experiments is to show the online applicability of the proposed method.
A detailed analysis of energy consumptions will be subject of future works. Exper-
imental results are also presented in the video accompanying the paper!.

Motor positions are controlled with a PID controller, tracking the reference sig-
nal 6;(¢) generated by the optimization process (note that this closure of the loop
does not alter the elastic properties of the system). The task is to pick three objects

with mass 100 g from the positions &' = [15 4()]Tcm, & =120 30}Tcm, &=

30 25] Tcm, and to place them in §7 = &} = &5 = [—30 30] " ¢m. The time hori-
zon for each movement is 1.5 s. The closure (opening) of the hand starts when the
condition 1d;(|&(q) — & |lte > 1€ (q) — &EF|| is verified, withk = 1,...,6.

We start presenting in Fig. 4a the results achievable when each movement is
planned through the solution of (mpNLP). The first thing to note is that, because of
the high computation times, in this case a settling time is necessary to stabilize the
system at the end of each planning, ensuring that the position read by the sensors
(and used as initial condition in (OCP)) is consistent with the state of the system
when the feedforward is actually applied. (Settling times can be easily recognized
from Fig. 4a as time intervals of constant motor angle.) This phenomenon makes
the storage of potential energy between consecutive tasks impossible therefore, in
order to facilitate the stabilization, we add the constraint @(tf) = 6(z) to (OCP).
Considering the absence of a feedback action on the end-effector position, the over-
all accuracy of the movements is satisfactory (even if not sufficient to guarantee the
success of every grasp): each trajectory reaches a circle of radius 40 mm centered
at the nominal final position. Nonetheless, stabilization phases make the system be-
havior and the execution time (25.1 s) unacceptable. Fig. 4b shows the experiment
in case a trajectory library is used. Here it can be seen that, with similar accuracy,
the method based on the trajectory libraries is able to perform the same task in a
considerably shorter time (7.1 s) and without requiring any settling time.

7 Conclusions and Future Works

In this paper we have illustrated a procedure for online generation of optimal mo-
tion plans for constrained nonlinear systems. Combining a trajectory library with a
sensitivity analysis, we are able to refine online the trajectories stored in the library,
making them suitable for the open-loop control of the system. Analyzing this prob-
lem as a generic parametric NLP, we can manage a wider class of parameters with

! The accompanying video can be found at https://www.youtube.com/watch?v=AEDXAZmoPuw.
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Fig. 4: Experimental results. From top to bottom: end-effector trajectory during the
three pick-and-place actions, reference and real motor positions with the PID con-
troller.

respect to common applications of trajectory libraries, which are mainly focused on
system stabilization. We motivated the necessity of such a planning technique an-
alyzing a pick-and-place task, showing how the combination of soft actuation and
trajectory optimization can drastically reduce energy consumptions but it is not fea-
sible because of the slow responsiveness of NLP-based planners. In this context, we
have experimentally validated our approach demonstrating its ability to overcome
computation time issues for the analyzed system. Nonetheless, we underline that the
presented method can be applied to the trajectory optimization of generic dynamical
systems and is not in any way restricted to soft robots or robots in general.

Future works will be focused on the analysis of the complexity of the presented
approach in case of higher dimensional systems, such as bipeds and humanoids.
Moreover, we plan to conduct a deeper analysis of the sampling process for the
library generation in order to derive theoretical guarantees about its completeness.
Finally, we also aim to conduct more detailed experimental analyses on the energy
benefits that result from the application of this method to soft robots.
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