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Abstract. This paper is concerned with the stabilizability problem for
discrete–time linear systems subject to a uniform quantization of the
control set and to a regular state quantization, both fixed a priori. As
it is well known, for quantized systems only weak (practical) stability
properties can be achieved. Therefore, we focus on the existence and con-
struction of quantized controllers capable of steering a system to within
invariant neighborhoods of the equilibrium.
We first consider uniformly quantized, unbounded input sets for which
an increasing family of invariant sets is constructed and quantized con-
trollers realizing invariance are characterized. The family contains a min-
imal set depending only on the quantization resolution.
The analysis is then extended to cases where the control set is bounded:
for any given state–space set of the family above, the minimal diame-
ter of the control set which ensures its invariance is found. The finite
control set so determined also guarantees that all the states of the set
can be controlled in finite time to within the family’s minimal set. It
is noteworthy that the same property holds for systems without state
quantization: hence, to ensure invariance and attractivity properties, the
necessary control set diameter is invariant with state quantization; yet
the minimal invariant set is larger. An example is finally reported to
illustrate the above results.

1 Introduction

Practical applications of control theory reveal some limits of the continuous
models in the description of dynamical systems: limited resources or technical
constraints, which finally lead to discrete measurements or to a finite number of
possible control actions, are typical situations that must be faced. This is part
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of a broader phenomenon which is referred to as quantization.
The example of digitally interconnected systems controlled through finite com-
munication channels (i.e. capable of transmitting only discrete information be-
tween the plant and the controller) is usual. Also, many hybrid models (i.e.
including the interaction of continuous dynamics and logic) are the result of
information quantization.

In the past twenty years the problem of dynamic systems analysis and control
synthesis in presence of quantization has developed and is currently growing
in interest. It is now consolidated the idea of regarding quantization not as a
phenomenon to be neglected and related to the concept of approximation but
rather as a useful tool to be studied within proper models (see for instance [1,
2, 5–7, 12–14]).
In the last decade many papers addressed the problem of the stabilization of
quantized systems (see [4, 6–12, 15]): in [6] Delchamps clarifies that the classical
concept of stability is not significant in this context, hence “practical” stability
properties are introduced for quantized systems. Most of the existing literature
on stabilization deals with the problem of looking for the quantized resources
necessary to achieve a prefixed stability objective.

We are interested in another kind of question that we think is as much im-
portant: the stability problem for systems whose quantized control set is fixed a
priori is studied in [12] where we found a relevant family of invariant sets. In the
present paper this analysis is generalized to the case of a prefixed quantization
both in the control and in the state space. This is intended to model situations in
which, not only the actuators have a discrete or finite set of possible actions, but
also measurements provide a limited (i.e. discrete) information on the state of
the system. Such analysis is helpful because it allows to decide a priori whether a
desired control objective can be achieved by using a given technology (actuators,
sensors, communication and computational means).

Our work is focused on the stabilization of single–input discrete–time linear
systems; we assume that the control space is uniformly quantized and that a
reticular quantization is assigned to the state space.
After some preliminaries, Section 3 is dedicated to the construction of a continu-
ous and increasing family of polyhedral invariant sets: the concept of invariance
must be reconsidered because, in the quantized state model, although the states
evolve according to a deterministic dynamics, the information on them are lim-
ited and the controls are selected on the basis of the quantized results of the
measurements. A quantized controller (mapping a quantized state into a quan-
tized input set) capable of steering the states in an invariant neighborhood of
the equilibrium is constructed. Our analysis does not rely on classical Lyapunov
methods but employs direct geometric considerations, which turn out to be less
conservative: we characterize the static controllers (i.e. the control laws based
only on the current output) realizing the invariance of the sets we have found.
The family contains a minimal set depending only on the quantization resolu-
tion, its size is increasing with state–space resolution decreases. In Section 4 the
analysis is extended to the finite control set case. For any given state–space set



of the family above, the minimal diameter of the control set which ensures its
invariance is found. The finite control set so determined also guarantees that
all the states of the set can be controlled in finite time to within the family’s
minimal set. In particular it is constructed a quantized feedback law which both
renders invariant a given set of the family and makes the trajectories converge
to the family’s minimal element: it turns out that the minimal diameter of the
control set needed to complete this task is just the same as in the case in which
only the inputs are quantized. Hence the state quantization does not influence
the bound on the controls necessary to ensure invariance and attractivity prop-
erties; yet the minimal invariant set is larger. In Section 5 an example illustrates
the presented theoretical results and shows their applicability.

Notation: Qn(Λ) :=
[− Λ

2 ; Λ
2

]n
is the hypercube of edge length Λ, bxc := max

{z ∈ Z | z ≤ x} is the floor function, x+ is the standard notation for x(t + 1) ,
xi(t) stands for the ith component of the state x at time t , ‖x‖∞ := max

i=1,...,n{|xi|
}

and 0 := (0, . . . , 0) ∈ Zn .

2 Preliminaries

Definition 1. Given a n–tuple {w1, . . . , wn} := W of linearly independent
vectors of Rn, for any (z1, . . . , zn) := z ∈ Zn, let the cell Cz be

{
(z1 +a1)w1 +

· · ·+ (zn + an)wn

∣∣ ai ∈
[− 1

2 , 1
2

) ∀ i = 1, . . . , n
}

.
Consider the quantized set S :=

{ ∑n
i=1 ziwi

∣∣ zi ∈ Z ∀ i = 1, . . . , n
} ⊂ Rn .

The reticular quantizer associated to W is the function qW : Rn → S defined
as follows: qW (x) = z1w1 + · · ·+ znwn ⇔ x ∈ Cz

(
z = (z1, . . . , zn)

)
.

We deal with a single–input discrete time–invariant linear system subject to a
fixed and uniformly quantized control set and to a reticular state quantization,
more precisely:





x(t + 1) = Ax(t) + bu(t)
y(t) = qW

(
x(t)

)
x ∈ Rn, u ∈ U ⊆ εZ (ε > 0) , y ∈ S ⊂ Rn

A ∈ Rn×n, b ∈ Rn.

(1)

From now on qW will be simply denoted by q .
A quantizer q models situations where only partial information about the state
of the system are available, that is q(x) is known rather than x . More general
state–quantizers have been considered in the literature [9] : for the sake of sim-
plicity we restrict to the reticular quantizers, however, as it will be pointed out in
Remark 6 at the end of Section 4 , the subsequent treatment can be generalized.
We associate to system (1) the corresponding system without state quantization,
i.e. with q the identity map; it will be denoted by (A, b,U) .

We assume that the pair (A, b) is reachable: in this case a change of the coor-
dinates allows us to work with the controller form associated to the pair (A, b) .
Hence, throughout this paper, we will refer to the following hypothesis:



H1) The pair (A, b) is reachable and the system (1) is in controller form. Let
sn − αnsn−1 − · · · − α2s− α1 be the characteristic polynomial of A .

Let us introduce the basic definitions about invariant sets (see also [3]):

Definition 2. The set D ⊆ Rn is said to be positively invariant for a closed–
loop system x+ = f(x) iff ∀x ∈ D , x+ ∈ D ;

Definition 3. The set D ⊆ Rn is said to be controlled invariant for the system
(A, b,U) iff ∀x ∈ D ∃u ∈ U such that x+ = Ax + bu ∈ D ;

Definition 4. The set D ⊆ Rn is said to be q–controlled invariant for system
(1) iff ∀x ∈ D ∃u ∈ U such that ∀ x̃ ∈ q−1

(
q(x)

) ∩D , x̃+ = Ax̃ + bu ∈ D .

This means that it must be possible to choose a control action, as a function
only of the available measurement q(x) , such that x+ ∈ D .

Remark 1. If D is q–controlled invariant for system (1) , then it is controlled
invariant for the associated system (A, b,U) without state quantization.

The size of the transformed cell A Cz along the nth direction is

h(A Cz) := sup
(x′,x′′)∈C2

z

{∣∣(Ax′)n − (Ax′′)n

∣∣
}

;

since h(A Cz) does not depend on z ∈ Zn, we determine it for z = 0 : the set of
the vertices of C0 is V :=

{
a1w1 + · · ·+anwn | (a1, . . . , an) ∈ {− 1

2 , 1
2}n

}
. ∀ v ∈

V , let h(v) :=
∣∣(Av)n

∣∣ =
∣∣ ∑n

i=1 αivi

∣∣ . It is easy to see that

h(A C0) = 2 · max
v∈V

h(v) := H .

H , which is defined in the controller form coordinates, depends on the coefficients
(α1, . . . , αn) of the characteristic polynomial of A and on the quantizer q .

Let δ := sup
x∈C0

‖x‖∞ be the state–quantizer resolution.

3 Construction of q–controlled Invariant Sets for U = εZ

Although invariant sets are very important in control theory, in the current
literature few results exist for quantized systems. The input quantization is a
severe constraint which often renders unpracticable the classical approaches to
the search of controlled invariant sets (see [3]).
In [12] we have found a simple and general technique to construct a family of con-
trolled invariant sets for any uniformly quantized single–input system (A, b,U)
such that the pair (A, b) is reachable. The family contains a minimal element
which has also good minimality properties with respect to all possible invariant
sets.



These results have been derived taking advantage of the controller form coordi-
nates and are summarized in the following

Theorem: If U = εZ , then ∀∆ ≥ ε , Qn(∆) is controlled invariant.

Owing to Remark 1 , it is natural to look for q–controlled invariant sets within
the family

(
Qn(∆)

)
∆≥ε

.

For the unbounded control set case we have the following characterization of the
q–controlled invariant hypercubes:

Proposition 1. Assume that U = εZ .

i) If ∆
2 ≥ δ , a necessary condition in order that Qn(∆) is q–controlled invari-

ant is ∆ ≥ H .

ii) A sufficient condition in order that Qn(∆) is q–controlled invariant is
∆ ≥ H + ε .

Proof. i) C0 ⊆ Qn(∆) because ∆
2 ≥ δ : hence for the q–controlled invariance

of Qn(∆) is necessary that ∃u ∈ U such that A C0 + bu ⊆ Qn(∆) . If H > ∆
then, ∀ v ∈ Rn, A C0 + v 6⊂ Qn(∆) .

ii) Let x ∈ Qn(∆) , y = q(x) = z1w1 + · · · + znwn is the central point of the
cell Cz 3 x . The control

u(y) :=
(⌊−∑n

i=1 αiyi + ε
2

ε

⌋)
ε

realizes the q–controlled invariance of Qn(∆) , that is ∀ x̃ ∈ Cz ∩Qn(∆) , x̃+ =
Ax̃ + bu(y) ∈ Qn(∆) , in fact: since x̃ ∈ Qn(∆) and A is in controller form
(so x̃+

j = x̃j+1 ∀ j = 1, . . . , n − 1), it is sufficient to show that |x̃+
n| ≤ ∆

2 . The
central point of the transformed cell A Cz is y+ = Ay + bu(y) and is such that
|y+

n| ≤ ε
2 (see also [12]), x̃+ ∈ A Cz + bu(y) , thus x̃+ = y+ + v with

∣∣vn

∣∣ ≤ H
2 .

Hence |x̃+
n| ≤ |y+

n|+
∣∣vn

∣∣ ≤ ε
2 + H

2 ≤ ∆
2 by the hypothesis.

Corollary 1. Assume that U = εZ and consider the feedback law F : Rn → U

F (y) :=
(⌊−∑n

i=1 αiyi + ε
2

ε

⌋)
ε .

The induced closed–loop dynamics

x+ = Ax + bF
(
q(x)

)
(2)

for the state–quantized system (1) is such that all x ∈ Rn are steered into
Qn(H + ε) in at most n steps and Qn(H + ε) is positively invariant. 2

The function
(
F ◦ q

)
: Rn → U is a quantized state – quantized input version

of the so–called dead–beat controller (whereas F is referred to as the quantized
input dead–beat controller).



Remark 2. Note that in Proposition 1.ii we do not require that ∆
2 ≥ δ

(
which

is equivalent to the existence of a cell Cz ⊆ Qn(∆)
)
: when H + ε < 2 δ , for

∆ ∈ [H + ε, 2 δ) it holds that ∀x ∈ Qn(∆) the measurement q(x) is not
sufficient to guarantee that x ∈ Qn(∆) ; in this case Proposition 1.ii seems to
reduce to a formal assertion. This is not the case: in fact, assume for instance that
H + ε < 2 δ and that the system evolves according to the closed–loop dynamics
(2), then, even if the measurements q(x)′s are not sufficient to show that x ∈
Qn(H + ε) , it is known a priori that from the nth step on x ∈ Qn(H + ε) . Thus
it is not unrealistic to investigate the q–controlled invariance for hypercubes of
edge length ∆ < 2 δ .
In Section 5 we will give an example where this phenomenon occurs.

We conclude this section with the characterization of the quantized controllers
which make Qn(∆) positively invariant.

Assume that U = εZ , fix ∆ ≥ H + ε and consider Qn(∆) . Let S[∆] :=
Im(

q|Qn(∆)

) ⊂ S . ∀ y ∈ S[∆] let Cz(y) be the cell containing y and set Hy :=∑n
i=1 αiyi + H

2 and Hy :=
∑n

i=1 αiyi − H
2 which respectively denote the sup

and the inf of the nth component of the points of the transformed cell A Cz(y) .
The set

U[∆,y] :=
{

u ∈ U
∣∣∣ ∀x ∈ Cz(y) ∩Qn(∆) , x+ ∈ Qn(∆)

}

consists of the controls which realize the q–controlled invariance of Qn(∆) when
the measurement y = q(x) is available. By arguments similar to those used to
prove Proposition 1.ii , it can be shown that U[∆,y] ⊇ U∗[∆,y] , where

U∗[∆,y] :=
{

z ε
∣∣ z ∈ Z and −

⌊
1
ε

(
∆
2 + Hy

)⌋ ≤ z ≤
⌊

1
ε

(
∆
2 −Hy

)⌋}
;

if moreover Cz(y) ⊆ Qn(∆) , then U∗[∆,y] = U[∆,y] .

Using the definition of the floor function we calculate #U∗[∆,y] = ∆−H
ε − θ with

θ ∈ [−1, 1) ; in particular, for ∆ = H + ε , 0 < #U∗[H+ε,y] ≤ 2 .

Remark 3. Since ∀ y ∈ S[∆] , #U[∆,y] < +∞ and also #S[∆] < +∞ , then
there exists a finite number of static quantized controllers defined in Qn(∆)
which make it positively invariant, that is

#
{

Φ : S[∆] → U
∣∣∣ ∀x ∈ Qn(∆) , x+ = Ax + b Φ

(
q(x)

) ∈ Qn(∆)
}

< +∞ .

4 Finite Control Set

We now analyze the q–controlled invariance of the hypercubes Qn(∆)’s (with
∆ ≥ H + ε ) in the finite control set case. We consider input sets of the type

Uk := {−kε, . . . , 0, . . . , +kε}
and, for a given ∆ ≥ H+ε , we find the condition on k ensuring the q–controlled
invariance of Qn(∆) .



We restrict our analysis to systems such that
∑n

i=1 |αi| ≥ 1 which are indeed the
interesting ones: in fact in the other case, not only the system is stable, but also
u ≡ 0 is sufficient for the invariance of any hypercube and for the convergence
of the trajectories to the equilibrium. Note that when

∑n
i=1 |αi| ≥ 1 , it holds

that ‖A‖∞ =
∑n

i=1 |αi| .
Consider the system (A, b,Uk) associated to system (1) : in [12] we have proved
that

Theorem: Qn(∆) is controlled invariant if and only if

k ≥ −
⌊1
2

∆

ε

(
1−

n∑

i=1

|αi|
)⌋

:= K .

By Remark 1 it follows that for the q–controlled invariance of Qn(∆) it is
necessary that k ≥ K . In next Proposition 2 , we construct an explicit quantized
feedback law taking values in UK and rendering Qn(∆) positively invariant.
Hence the condition k ≥ K is also sufficient: this means that, even if the state
space is quantized, it is not necessary to have more control resources to ensure
invariance properties.

Proposition 2. Assume that
∑n

i=1 |αi| ≥ 1 ; let ∆ ≥ H + ε and k := −
⌊

1
2

∆
ε(

1−∑n
i=1 |αi|

)⌋
. Consider the feedback law F̃ : Rn → Uk defined by

F̃ (y) :=





−(kε) if
∑n

i=1
αiyi − kε ≥ ε

2
,

+(kε) if
∑n

i=1
αiyi + kε ≤ − ε

2
,

zε with z =
⌊−∑n

i=1 αiyi + ε
2

ε

⌋
otherwise.

(3)

Then ∀ γ ∈ [H + ε,∆] , Qn(γ) is positively invariant for

x+ = Ax + bF̃
(
q(x)

)
. (4)

Proof. Let Ξ :=
{
x ∈ Rn | ∑n

i=1 αixi − kε > ε
2

} ∪ {
x ∈ Rn | ∑n

i=1 αixi + kε <

− ε
2

}
be the region where the quantized input dead–beat controller saturates.

Note that ∀x 6∈ Ξ , v := Ax + bF̃ (x) is such that
∣∣vn

∣∣ ≤ ε
2 .

Since A is in controller form, for x ∈ Qn(γ) it is sufficient to analyze x+
n ; we

divide the analysis in three cases.
I) If q(x) 6∈ Ξ then, using the same arguments used to prove Proposition 1.ii ,
|x+

n| ≤ H+ε
2 .

II) If q(x) ∈ Ξ and x 6∈ Ξ then, with y = q(x) , y+ = Ay + bF̃ (y) is such that
|y+

n| > ε
2 . Suppose that

∑n
i=1 αiyi > 0 , then y+

n =
∑n

i=1 αiyi − kε > ε
2 . By

Equation (4) , x+
n =

∑n
i=1 αixi − kε ≤ ∑n

i=1 αixi + F̃ (x) ≤ ε
2 because x 6∈ Ξ ;

moreover x+
n ≥ y+

n − H
2 > ε

2 − H
2 > −H+ε

2 : thus |x+
n| ≤ H+ε

2 .
The case

∑n
i=1 αiyi < 0 is similar.



III) If q(x) ∈ Ξ and x ∈ Ξ then x+ = Ax + bF̃
(
q(x)

)
= Ax + bF̃ (x) . If∑n

i=1 αixi > 0 , since x ∈ Ξ , then
∑n

i=1 αixi − kε > ε
2 > 0 . Hence |x+

n| =∑n
i=1 αixi−kε ≤ ∑n

i=1 |αi| |xi|−kε ≤ ‖x‖∞ ·
∑n

i=1 |αi|−kε : in this case the proof
of the statement is achieved by showing that ‖x‖∞ ·

∑n
i=1 |αi|− kε ≤ ‖x‖∞ . By

the definition of k it holds that kε ≥ ∆
2

( ∑n
i=1 |αi|−1

) ≥ ‖x‖∞
( ∑n

i=1 |αi|−1
)

because ∆
2 ≥ ‖x‖∞ and

∑n
i=1 |αi| ≥ 1 . Thus kε ≥ ‖x‖∞

( ∑n
i=1 |αi|−1

)
which

is what we wanted to show.
The case

∑n
i=1 αixi < 0 is similar.

Corollary 2. Consider the system (1) and assume that U = Uk , let ∆ ≥ H+ε .
Qn(∆) is q–controlled invariant if and only if

k ≥ −
⌊1
2

∆

ε

(
1−

n∑

i=1

|αi|
)⌋

.

In particular, for ∆ ≥ H + ε , Qn(∆) is q–controlled invariant for system (1) if
and only if it is controlled invariant for the associated system (A, b,Uk) without
state quantization. 2

Note that the closed–loop dynamics in Equation (4) is such that if H+ε
2 ≤

‖x‖∞ ≤ ∆
2 , then ‖x+‖∞ ≤ ‖x‖∞ : in next Proposition 3 we will show that a

mild supplementary hypothesis is sufficient to ensure that any trajectory starting
from x(0) ∈ Qn(∆) enters Qn(H + ε) in a finite number of steps.

Proposition 3. Assume that
∑n

i=1 |αi| ≥ 1 ; let ∆ ≥ H + ε and k := −
⌊

1
2

∆
ε(

1−∑n
i=1 |αi|

)⌋
. If 1

2
∆
ε

(
1−∑n

i=1 |αi|
) 6∈ Z , then the closed–loop dynamics

x+ = Ax + bF̃
(
q(x)

)
,

induced by the feedback law F̃ : Rn → Uk defined in Equation (3), is such that
Qn(∆) is positively invariant, all x(0) ∈ Qn(∆) are steered into Qn(H + ε) in
a finite number of steps and Qn(H + ε) is positively invariant.
For x(0) ∈ Qn(∆)\Qn(H+ε) , an upper bound on the number of steps necessary
to enter Qn(H + ε) is given by

B := −n ·
⌊

1
ϕ

(
H + ε

2
−

(∥∥q
(
x(0)

)∥∥
∞ + δ

))⌋
,

where ϕ := kε− ∆
2

(∑n
i=1 |αi| − 1

)
and δ is the state–quantizer resolution.

Proof. The positive invariance of Qn(∆) and Qn(H + ε) has been proved in
Proposition 2 . From 1

2
∆
ε

(
1−∑n

i=1 |αi|
) 6∈ Z it follows immediately that ϕ > 0 .

We claim that ∀x ∈ Qn(∆)\Qn(H +ε) , x+ is such that |x+
n| ≤ H+ε

2 or |x+
n| ≤

‖x‖∞−ϕ . The claim implies the thesis, in fact: since A is in controller form, after
n steps it holds that

∣∣xj(n)
∣∣ ≤ max

{‖x(0)‖∞ − ϕ ; H+ε
2

} ∀ j = 1, . . . , n ; thus



‖x(n)‖∞ ≤ max
{‖x(0)‖∞ − ϕ ; H+ε

2

}
. Since ϕ is a strictly positive constant,

the thesis follows.
The bound on the number of steps necessary to enter Qn(H + ε) is obtained by
looking for the smallest m ∈ nN such that ‖x(0)‖∞ − m

n ϕ ≤ H+ε
2 : by simple

calculations we get m = −n ·
⌊

1
ϕ

(
H+ε

2 − ‖x(0)‖∞
)⌋ ≤ B because ‖x(0)‖∞ ≤∥∥q

(
x(0)

)∥∥
∞ + δ .

Let us prove the claim: if x 6∈ Ξ or q(x) 6∈ Ξ then in the proof of Proposition 2
we have shown that |x+

n| ≤ H+ε
2 . If x ∈ Ξ and q(x) ∈ Ξ , for

∑n
i=1 αixi > 0

it holds that |x+
n| ≤ ‖x‖∞ ·∑n

i=1 |αi| − kε , as shown in part III of the proof of
Proposition 2 ; by the definition of ϕ , ‖x‖∞ ·

∑n
i=1 |αi|−kε = ‖x‖∞ ·

∑n
i=1 |αi|−

ϕ− ∆
2

(∑n
i=1 |αi| − 1

) ≤ ‖x‖∞ − ϕ .
The case

∑n
i=1 αixi < 0 is similar.

Note that if 1
2

∆
ε

(
1 − ∑n

i=1 |αi|
) ∈ Z and αi ≥ 0 ∀ i = 1, . . . , n

(
with∑n

i=1 αi ≥ 1
)
, then x =

(
∆
2 , · · · , ∆

2

)
is such that ∃ ! u ∈ Uk ensuring that

x+ ∈ Qn(∆) ; in this case x+ = x , therefore x is not attracted by Qn(H + ε) .
Anyway, if the condition 1

2
∆
ε

(
1−∑n

i=1 |αi|
) 6∈ Z does not hold, then one more

level of controls
(
i.e. U = Uk+1

)
is sufficient to guarantee the attractivity of

Qn(H + ε) .

Remark 4. Exactly as in the case in which only the input are quantized (see
[12]), it holds that the minimal diameter of the control set (the saturation level)
needed to ensure the invariance of Qn(∆) is also sufficient to guarantee that all
the states of Qn(∆) are initial points of trajectories which lie within Qn(∆)
and are attracted towards Qn(H + ε) . This property can be profitably exploited
to reduce the amount of resources necessary to complete the stabilization task.
For instance, when the dead–beat controller is not saturated, the maximal value
that it takes within Qn(∆) is approximately −

⌊
1
2

(
1 − ∆

ε

∑n
i=1 |αi|

)⌋
: hence

the optimal saturation makes possible to save about 1
2

∆
ε levels.

Remark 5. Even though the bound B on the number of steps necessary to enter
the final set can be updated at each step, it is a very conservative estimate.
Basically there are three ways to know that the state has reached the final set:

A- q(x) corresponds to a cell Cz ⊆ Qn(H + ε) ;
B- if q(x) 6∈ Ξ for n consecutive steps then, by the part I of the proof of
Proposition 2 and the controller form of A , we deduce that at the successive
step x ∈ Qn(H + ε) ;
C- the use of the bound B .

The third case must be considered just as a parachute in case that A and B fail.

Remark 6 (Beyond reticular quantization). The only relevant information about
the state–quantizer qW which have been involved in the foregoing results are
the quantities H and δ : this enables us to apply the presented techniques to
more general state–quantizers and to get similar results.



5 Example

Consider the system

x+ =
(

0 1
5
4

1
4

)
x +

(
0
1

)
u ;

suppose that U ⊆ 1
4 Z , thus ε = 1

4 , and that the reticular state quantization is
associated to

W =
{(

2

0

)
,

(
0

4

)}
:

in this case δ = 2 and H = 7
2 . It is worth noting that since H + ε = 15

4 <
2 · δ = 4 , the set Q2(H + ε) does not contain any cell of the state quantization
(see the figure), in particular the criterion A of Remark 5 can not be used in this
case.
Let us suppose that at time 0 the quantized result of the measurement of the

state x(0) is y(0) =
(

8

12

)
: with ∆ = 28.1 we ensure that x(0) ∈ Q2(∆) .

According to Proposition 3 , it holds that k = 29 and ϕ = 9
40 ; let U = U29 ⊂

1
4 Z and implement the feedback law defined in Equation (3). The observations
of the evolution of the system are summarized in the following table:

Step 0 1 2 3 4 5 6 7 8

y
(

8

12

) (
10

8

) (
6

8

) (
8

4

) (
2

4

) (
2

0

) (
0

0

) (
0

0

) (
0

0

)

u(y) − 29
4 − 29

4 − 29
4 − 29

4 − 14
4 − 10

4 0 0 0
B 108 90 74 74 38 20

Step 9 10 11 12 13 14 15 16 17

y
(

0

0

) (
0

0

) (
0

0

) (
0

0

) (
2

0

) (
0

0

) (−2

0

) (
0

0

)

u(y) 0 0 0 0 − 10
4 0 10

4 0
B

Since at the 4th and 5th step the controller does not saturate then, using the
criterion B of Remark 5 , we deduce that from the 6th step on the state x is
confined within Q2(H + ε) (hence the computation of B has been stopped ).
We also note that, in spite of the state quantization, just three control values
are sufficient to make Q2(H + ε) invariant.
According to Remark 4 , the feedback law defined in Equation (3) makes possible
to save approximately 1

2
∆
ε ' 56 levels in the control set.

The observed behavior is generated by x(0) =
(

17/2

21/2

)
: the following figure shows

the real evolution of the state (denoted with black circles “ • ”), the white circles
“ ◦ ” are the output q(x)’s , that is the central points of the cells visited by the
state, the shaded square is Q2(H + ε) .
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Conclusions

In this paper we have addressed the stabilization analysis for discrete–time lin-
ear systems subject to a fixed uniform quantization both in the control and
in the state space. We have focused on the study of invariant neighborhoods
of the equilibrium and provided quantized controllers steering the system into
such sets (i.e. realizing attractivity). Several open problems remain in this field,
among which notably is the extension to dynamic feedback of quantized state
information, and quantized output feedback. More generally, the combination of
quantization with limited communication bandwidths is a most important and
challenging area to which further work will be devoted.
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