Synthesis of robust control systems under
resource constraints

Luigi Palopoli?* , Claudio Pinello?, Alberto Sangiovanni Vincentelli2,
Laurent Elghaoui? and Antonio Bicchi®

! ReTiS Lab, Scuola Superiore S. Anna, Pisa, Italy,
palopoli@sssup.it,

2 Dept. of EECS, University of Berkeley California
pinello@eecs.berkeley.edu, albertoQeecs.berkeley.edu,
elghaoui@eecs.berkeley.edu,

3 Centro Piaggio, Facoltd di Ingegneria, Universitd di Pisa, Italy
bicchi@ing.unipi.it

Abstract. We address the problem of synthesizing real-time embedded
controllers taking into account constraints deriving form the implemen-
tation platform. Specifically, we address the problem of controlling a set
of independent systems by using a shared single CPU processor board.
Assuming a time-triggered model of computation for control processes
and a real-time preemptive scheduling policy, the problem of optimizing
robustness of the controlled systems is formulated. Decision variables of
the optimization problem are the processes’ activation periods and the
feedback gains. The analytical formulation of the problem enables an
efficient numerical solution based on a Branch and Bound scheme. The
resulting design is directly implementable without performance degrada-
tions due to scheduling and execution delays.

1 Introduction and related work

The production of quality embedded software from the specification of control
algorithms is still a bottleneck in many industrial applications [1]. The most
evident problem is the difficulty in establishing a clear flow of information among
the activities of control designers and system engineers. The obvious results
are design cycles that are longer than needed; implementations are often over-
designed and serious difficulties arise in validating the overall design.

A possible solution is to mix algorithm design and implementation choice.
However, this is hardly possible when considering the complexity of the designs
that confront us in safety-critical applications such as transportation and in-
dustrial plant control. It seems that we are then in a quandary: on one side,
we need more separation to cope with design correctness and time-to-market,
on the other, we need to capture aspects of the design that couple all layers of
abstraction.

* The research presented in this paper was developed while the author was hosted as
a visiting scholar at the Department of EECS, University of California, Berkeley

To solve this problem, we advocate a design process that maintains clear
separation of concerns but exposes to the algorithm expert the most critical
parameters of the underlying hardware and software architectures. This goal
can be achieved by identifying a set of abstraction levels that mark the progress
from specification to implementation. Each abstraction layer has to be related
to the next in the sequence by a ”behavior containment” that should guarantee
that whatever has been proven correct at one layer will stay correct in the next
layer. The set of abstraction layers (also called platforms), the parameters that
characterize the implementation layers, the constraints that are mapped down
from the specification layers and of the tools that are used to map one layer into
another constitute the so-called platform-based design paradigms [11].

In this paper, we apply this generic idea to the design of embedded controllers.
In particular, we expose the scheduling policy parameters to the control layer so
that an overall optimization problem can be formulated where control concerns
such as stability and robustness are considered together with scheduling issues.

Other ideas have been proposed that can be cast in this overall framework.
Generally speaking, a feedback controller is an agent exchanging a flow of infor-
mation with the environment. From this standpoint, an implementation platform
introduces limitations on the amount of information that can be circulated. An
intriguing formulation of this concept can be found in a seminal paper by Roger
Brockett [4]. Bandwidth and bit-rate constraints in communication links have
been studied in [18] with respect to the stabilization of linear systems [18] and of
state estimation [17,13]. The application of LQG techniques to control synthesis
with communication constraints is illustrated in [16]. A related area of research
is the effect of quantization [19], where an optimization procedure is applied to
the number of bits allocated to each signal and to other communication vari-
ables to minimize variance of the noise introduced by quantization. A different
thread [3,7,6] considers quantization as an intrinsic feature of certain control
systems.

Concurrency may be another source of complexity. Obvious examples are
multi-agent applications, where a complex goal is attained by coordinating sim-
pler behaviors [9]. Even a single agent may be specified as a set of periodi-
cally activated parallel processes. Very often parallelism in the application is
not matched by parallelism in the implementation platform and a scheduling
mechanism must then be introduced. In this context, one of the most interesting
approaches is the use of parameters governing flows of information across shared
resources (e.g, the processes’ scheduling priorities) to optimize the control per-
formance. Remarkable attempts to combine control synthesis and scheduling of
communication channels are in [14, 8]. In both papers, an integrated formulation
encompassing control and communication is proposed. The scheme that is con-
sidered for scheduling is Time Division Multiplexing. Authors provide results to
design the control parameters once the schedule for the shared resource has been
fixed. However, different scheduling choices can be only compared with exhaus-
tive search, which is not necessarily a viable solution in many applications.

Two aspects are deemed relevant when dealing with a concurrent platform
during control synthesis: 1) the timing behavior, 2) the constraints to the design
parameters (e.g. sampling periods) deriving from limited resources. The two
problems have strong dependencies. For example, in single processor scheduling,
it is well known that preemptive algorithms[12,5] ensure a better utilization
of the processor resource. The price to be paid is the introduction of stochastic
jitter in the emission of results which hinders the construction of realistic models
for the delays.

In this paper, a more ambitious goal is pursued: devising a numerically effi-
cient procedure to optimize the control performance operating at the same time
on all the available design parameters. As a first step towards a general approach
to embedded controller design and for the sake of simplicity, we consider only the
problem of controlling a set of scalar linear systems using a shared computational
resource. The underlying architecture is assumed to be based on a single CPU
board shared among concurrent processes via a preemptive scheduling scheme.
The concurrent model of computation adopted to model the timing behavior
of processes is the Time-Triggered approach, proposed by Kopetz and adopted
in important hardware platforms [10]. More recently, the Giotto programming
language [15] adopted the same paradigm.

The performance metric used in our optimization approach is related to the
robustness of the overall system. This metric is of particular relevance in all
contexts where tight cost constraints are not only placed on the computation
resources but also on the quality of sensors and actuators. The variables of the
optimization problem are activation periods of different processes and the gains
of the controllers. This is a mixed integer program since the activation periods
can only assume integer values. We have devised a branch-and-bound approach
where the relaxation of the problem to a continuous optimization problem yields
tight and numerically affordable estimations for the lower and upper bound
functions.

The paper is organized as follows. In Section 2, we review briefly the Time-
Triggered approach and the results on Real-Time preemptive Scheduling. In
Section 3, we formulate the optimization problem. In Section 4, we describe the
optimization algorithm and offer some computational results. In Section 5, we
give conclusions and present our plan for extending this approach to a larger
class of systems.

2 Background

2.1 The time-triggered MoC

The time triggered model of computation assumes a set of periodic tasks ;.
Every p; time units process 7; becomes active and reads its inputs; then it
computes the output values. Outputs are released right at the beginning of the
next activation period and their values are sustained between two subsequent
writings (according to a ZoH model).

In the sequel the term job will indicate each periodic activation of a process.
It is worth observing that the timing behavior resembles the one of a Moore
sequential circuit, where the delay between inputs and outputs is equal to the
activation period p. The fixed delay virtually nulls jitter in the release time of
the outputs, greatly simplifying the control law design.

2.2 Real-time schedulability of periodic processes

A scheduling policy is said to guarantee schedulability of a set of processes if all
real-time constraints are respected. A necessary condition for achieving schedu-
lability on a single CPU is:

< 0

where e; and p; are integer numbers, counting the clock cycles required to com-
pute process 7; in the worst case and between successive activations of process 7;,
respectively. Moreover sufficient conditions can be derived for different schedul-
ing algorithms. Popular examples are Rate Monotonic (RM) and Earliest Dead-
line First (EDF) for which a sufficient schedulability condition was derived in a
seminal work by Liu and Layland [12]:

m

Y Y<r, 2)

i Pi

where U = 1 for EDF and U = m(2% — 1)(> 0.69) for RM. Other schedul-
ing algorithms, called Pfair [2], guarantee schedulability under condition 2 with
U =1 on a single processor architecture and scale well also to multiprocessor ar-
chitectures, by setting U equal to the available number of processors. It is worth
pointing out that in schedulability analysis e; are the worst-case execution times
for processes and that conservative choices on U allow to achieve robustness with
respect to unmodeled delays or to reserve space for other processes, as required.

2.3 Platform definition

Given the choice of the time triggered MoC and of a class of real time schedulers,
the implementation platform can be parameterized by:

Uaela'-'aema (3)

to be used in (2). A m-tuple of activation periods p € IN™ satisfying (2) is
guaranteed to yield a design adhering to the MoC. It is worth noting that the
set of parameters (3) may represent a family of implementation platforms, all
meeting or exceeding those requirements. As a matter of fact information on the
HW /SW architecture condensed in the proposed platform are: 1) it must ensure
worst case execution time of e;, 2) it has to be endowed with a preemptive
RTOS, 3) the scheduling algorithm has to guarantee schedulability with total
utilization U. As shown next, the proposed characterization for the platform
leads to a compact analytical formulation of the control design problem.

3 Problem formulation

Consider the following collection of scalar systems S;,7 = 1, ..., m each described
by:

zi(k + 1) = a;zi(k) + biu;(k). (4)
Assume b; # 0 Vi = 1,...,m, i.e. all systems are completely controllable. Each

system is controlled in feedback by a process 7;. Such processes are implemented
according to the time-triggered model of computation. The processing activity
consists of deriving the x; values from sensor data and computing the control
values using a static feedback gain ;. The worst case execution time of each
(job of) 7; is denoted by e;. Sensor processing activities may have very different
execution times, depending on the type of sensors used on each sub-system!,
hence e; may differ.
The control law applied to each system can be written as follows:

_ ii(k_ @)k:hu
ui(k) = {Z@-Ifk — 1)p hp; <pk < (h+1)pi,)

where h € IN. The resulting (time varying) closed loop dynamics is:

zi(k + 1) = a;z;(k) + bivizi(k — pi — k mod p;). (6)

3.1 Closed loop stability analysis

In order to derive a time invariant representation, each S; system is re-sampled
taking one out of every p; samples: £;(h) = z;(hp;). The resulting dynamics can
be written as: &;(h + 1) = al*2(h) + ;”':51 alb;yy;&i(h — 1). An equivalent form
is given by:

. 101 .

Xz(h + 1) = [ﬂz'% af"] X,(h), (7)
where 8; = ;_%-:—01 al | 4 = by, and %;(h) = [#;(h — 1) #;(h)]T. The closed
loop dynamics (6) of S; can be related to the one of the considered subsequence
thanks to the following:

Lemma 1. System (6) is globally asymptotically stable if and only if system
(7) is.
System (7) is in standard companion form and its characteristic polynomial
is given by
22 —aliz — BiAi.
Applying Jury’s criterion, system (7) is globally asymptotically stable if and only
if, the following hold:

By > —1 (8)
B <1+ af" (9)
Bi¥i < 1—abt, (10)

! In example, the position of a pendulum could be measured using a position encoder
or processing the video feed from a camera.

where:

Di a; =1
Bi = 1l—afi ’
1—a; a; 75 1.

The analysis of the system’s stability turns out to be particularly easy for positive
systems, i.e. a; > 0. This assumption will be used throughout the rest of this
paper and is valid whenever (4) is the result of sampling a scalar continuous LTI
system. Hence, inequality (9) is implied by (10), and the following Proposition
holds.

Proposition 1 Consider system (6), then the following statements are true:

1. if a; = 1 the closed loop system is asymptotically stable for all 4; such that
—5 <4 <0;

2. if a; # 1 the set of stabilizing solutions for 4; is given by: —11__(1“;,- <A <
(1 — a;). If the open loop system S; is asymptotically stable (0 <a; < 1)
then this set is non empty (a trivial stabilizing solution is 4; = 0). If S; is
unstable (a; > 1) then the set of stabilizing solutions for 4; is non empty if

. log 2
and only if p; < ﬁfa—i.

3.2 Robustness metric

In order to characterize the robustness of the closed loop system we introduce
the following definition:

Definition 1. Consider the discrete time linear system
x(k +1) = A(7)x(k), (11)

where x € R™, v € R™. Let I' CR™ be such that the system is globally asymp-
totically stable if and only if v € I'. Let ||.|| denote some norm in R™. We define
stability radius u the radius of the largest norm ball (induced by ||.||) contained
in I'; we define stability center the center of the corresponding norm ball.

Using feedback law (5) for each S;, the corresponding stability radius ps,; is a
measure of the largest perturbation of the gain v; that can be tolerated without
jeopardizing stability of the closed loop system.

Let S denote the collection of systems S; with 4 = 1,...,m. A natural ex-
tension of Definition 1 for the collection is: ps = min;—1 .. m ps;. A direct con-
sequence of Proposition 1 is the following

Corollary 1. The stability radius of system (6) with respect to variations of #;
and to the ||.||co norm is given by

i (2 -) 4 £ 1
us,:{??—“ﬂ ST (12)
=

2p;
Moreover, the stability center is given by:
i 1— i
{ o gy 4 1
1

Yi = a =1

T 2ps

Remark 1. Definition 1 could be extended by considering a weigthing matrix
W > 0 and by defining p as the radius of the largest weighted norm ball. This
extension could be useful in practical applications without significantly changing
the results presented below. However, to keep the notation as simple as possible,
we will still refer to the stability radius as defined above.

Remark 2. The stability radius ps, is a monotone decreasing function of p;.
Moreover, if the system S; is open loop asymptotically stable (i.e. 0 < a; < 1)
then it is obviously stabilized with any choice of the sampling period and a lower
bound for the stability radius (obtained with p; — oc) is given by 1 — a;.

3.3 Optimization problem
We are now in the condition to state the following problem:

Problem 1. Consider the collection S controlled by a set of time triggered pe-
riodic processes. Each 7;, ¢ = 1,...,m has a computation load e;. Let U be
the maximum utilization factor which guarantees schedulability for the assumed
scheduling algorithm. Find the set of activation periods p; and of feedback gains
4; with 4 = 1,...,m such that: 1) the schedulability condition is respected, 2)
the stability radius is maximized, 3) gains are at the stability center. e; and p;
are integer numbers referred to the computer clock cycle, and 4; € R.

In essence the above problem consists of optimizing the system performance
(stability radius) under real-time schedulability constraints.

Remark 3. Since in this paper we deal with scalar systems and the |.|o, norm, the
stability center and the stability radius can be computed in closed form from the
activation periods p;. Thanks to these assumptions, the mixed-integer Problem 1
can be reduced to the integer problem yielding the periods, the stability center
being derived in a second step.

A related question is deciding whether for a given vector of computation require-
ments ey, éa, . . ., €, & desired stability radius € can be achieved on a single CPU
architecture. A solution to these problems will be presented next.

4 Optimization algorithm

Problem 1 can be formalized as:

maxp [4S
ip SU
pi < Z, ifa;>1 (14)
us >
p; € N\{0},

where the decision variables p = [p1, p2,..., pm]? are the activation periods
of the processes 7;, which are integer positive numbers, and z is the minimum

stability radius acceptable for the problem. It is worth noting that if the prob-
lem encompasses open loop asymptotically stable systems, i.e. a; < 1 for some
i, then it is convenient to require, without loss of generality, i > 1 — a;. In fact
if the optimal solution achieves an objective lower than 1 — a;, one could run
control process 7; at arbitrarily long periods p; without effecting the cost func-
tion. Process 7; would not actually improve robustness of the controlled system,
the only real effect of including 7; in the control problem would then be to make
the admissible solution space infinite. Similarly systems with a; = 1 may need a
I > 0 to ensure finiteness of the solutions space and to obtain a well-posed prob-
lem. For well posed problems the number of feasible solutions is finite. However,
complete enumeration approaches may not be viable for large scale systems. A
more effective approach is based on the use of a branch and bound scheme.

4.1 Branch and bound algorithm

In order to illustrate the proposed branch and bound algorithm it is useful to
introduce some notation. P C IN™ will denote the set of period m-tuples p
respecting the constraint inequalities; p;(P), p(P) will denote respectively a
lower bound and an upper bound of the objective function ps(p) on the region
P. L will denote a list of the disjoint subregions of the solution space which are
currently candidate for the solution. The y; function is assumed to be derived
from an admissible solution. The y,, function is required to have the property
that, when applied to a set containing a single element, it returns the value of
the cost function computed for that element. The branch and bound algorithm

can be formulated as follows.

Algorithm 1
Insert P into L
set variable p* to p(P)
choose p € P s.t. i (P) = ps(p)
set variable p* = p
repeat
choose a region H from L and remove it from L
partition H into non-empty disjoint subregions Hi, ..., Hp
for each #H;
if pu(Hi) < p*
discard H;
else
isert H; into L
if w(Hi) > p*
set p* = pu(H;)
set p* = p € H; s.t. pus(p) = wu(Hi)
endif
endif
end for each
until £ is empty

For the problem under analysis the H; subregions can be obtained by fixing some
of the elements of the p vector. Let Z(#) C {1,...,m} be the index set of periods
that are fixed to yield H, then a finer partition Hi,...,Hp can be obtained
selecting one index z not in Z(H) and fixing p, to its h different admissible
values?. The selection of the u,, y; functions is a particularly important issue.
In fact, if the bounds are not tight, the algorithm does not “discard” a good
number of regions resulting into a nearly exhaustive search. On the other hand
accurate bounds may not be viable if overly expensive computation is required
to derive them. In order to ensure correctness of the algorithm, the lower bound
wi(H;) is assumed to be always constructed using some feasible solution p* € H;
such that us(p*) = w(H;)-

One possible upper bound p,(#;) can be derived using min;ecz(3,) ps; (p;),
i.e. pu(Hi) = min{p,(H), minjez(p,)\z(3) s; (p;)}. This upper bound may be
quite optimistic and becomes tighter as the number of fixed periods increases.
When all periods are fixed, i.e. H; = {p}, it becomes u,(H;) = ps(p). Its
computation cost is very low especially when periods are fixed incrementally.
Different derivations for u,, and for y; can be obtained considering the continuous
relaxation of the problem, which is well posed for the positive systems (a; > 0)
considered in this paper.

4.2 The continuous relaxation

The integrity constraint on the periods is dropped, i.e. p; € [1,+00). In order to
express the schedulability constraint in linear form it is convenient to make the
change of variable f; = pi The resulting problem is given by:

maxs Us

Yueifi<U

fi> REG (if ai>1) (15)
us 2 [

where f is the vector of decision variables f;. Considering integer e; and a unipro-
cessor platform (U < 1), constraint f; < 1is implied by >, e;f; < U and will be
henceforth dropped. Moreover, the following assumption will implicitly be used:
> max;(1 — a;),Va; < 1. Introduce the following function:

H(p) = Z eiw;(p) — U, (16)

where:

—logai ___ 4. 41
wilp) = { T 47 (17)
2p a; = 1.
The solution to Problem 15 can be found as shown in the following:

2 This set is finite because it is a projection of some subset of P which is finite. The
number h varies with z.

Proposition 2 Problem 15 has a solution if and only if
H(p) <0. (18)

If condition 18 holds, then H(u) has only one zero in the set u > ji which is the
optimal solution of Problem 15.

Proof. As a first remark observe that problem 15 can be written in the following
form:

maxs [t

BS; > 1%

Zi eifi <U

fi> 5% (if ai>1)

B2 pn

fz' > 07

which, through simple computations, is equivalent to:

maxy 4
fi > wi(p)
- 20
Sieifi <U (20)
w2 p.
Constraints f; > 0 and f; > 11%)%“—2" (for a; > 1) have been removed since they
are implied by f; > w;(u). For a fixed p, feasible solutions exist if and only if
H(p) < 0. Since each w; is strictly increasing in g > i also H(u) is and this
consideration leads to the proof.

Remark 4. If () denotes the optimal solution, then decision variables associated
to the optimal solution are given by fi(c) = w;(p'?).

Remark 5. Condition 18 is interesting in itself since it addresses the problem of
whether a platform is powerful enough to provide a specified level of performance

fi.

Finding the zero H(-) can be very costly for large scale systems. Hence, it
is convenient to find a lower and an upper estimation for the solution so as to
bound the search. To this end, observe that nonlinearity in function H is due
to the terms relative to a; # 1. Considering the case a; < 1 and restricting to

)) _ log a; .)
u > 1 — a;, we can observe that w;(u) = ; 20%.51“ , is concave and strictly
08 25, —1+2n

increasing. Hence it is very easy to show the following inequality:

wi(p) > wi > wip)

wi(p) = (§ +2p5g) loga; (21)

wi(p) = (2 + 2uts)loga; > 0.

0.7

061
05F =
0.4F ///

03F
02F //// ,//(3

01

Fig. 1. Figure showing the upper and lower bound for w; for a; = 0.8.

The meaning of the linear bounding functions appear clearly in Figure 1,
where the case a; = 0.8 is considered. A similar result can be found for a; > 1
and p > 0:

wi(p) > wi > wip)

wi(w) = (3 + 2u5;y) log a; (22)

1

wi(p) = (5553 + 2055

7)loga; > 0.

The use of linear approximations allows for a very fast computation of an upper
and a lower bound of the optimal value for ps in Problem 15, thus limiting the
search for the zero of H(-) to a small region. It can be interesting to take a
glance at the form of the approximate solution in a simple case. Suppose, for
instance, that all systems are open loop unstable (a; > 1,V4). Denote by z(®) the
linear upper bound for the optimum, by 7: the decision variables for which it is
attained, and introduce the variables:

1) _ 1)
w; = B UZU—Zeif;gg;’-
%

It is very easy to find:

(c) U —=(c) logai U
22]’ €;Wj 10g2 221- €;Wj

7

For each decision variable 756) we can distinguish a term ll%g% necessary to
achieve stability, which is summed to a weighted fraction of the scaled utilization
U. In this computation both factors relative to the systems dynamics (w;) and

to the execution time of the processes (e;) are accounted for.

|System 1|System 2|System 3|
0.992| 1.0512 1.005
1 1 1

a;

bi

Table 1. Dynamical parameters of the controlled systems

The analysis of the continuous relaxation of Problem 14 is useful for it pro-
vides a pair of very interesting upper bound functions y; for the branch and
bound algorithm. A low cost choice is the the optimal value of the restricted
problem obtained using the lower linear approximation w; of functions w; (which
correspond to looser constraints). A better upper bound is given by the exact
resolution of the continuous relaxation. It requires solving the non-linear equa-
tion H(u) = 0. It is worth noting that fixing some of the decision variables f; (as
requested by the invocation yg;(H;) in Algorithm 1) does not change substantially
the way Problem 15 and its linear approximations are solved.

Lower bound p;(H;) are less easy to find. In this case the continuous re-
laxation provides good heuristics. A good lower bound can in most cases be
obtained by solving Problem 15 (or its upper linear approximation) and and
then by changing the non-integer periods to their ceiling (which is a conserva-
tive approximation with respect to the schedulability constraint).

4.3 Numerical Evaluation

We illustrate a possible design flow based on the results presented in the previous
section on a simple example. We consider a set of three scalar systems, whose
dynamics are described by the a;, b; parameters in table 1.

The results of the solution of the optimization problem related to different
execution times for control processes are reported in table 2. The first three rows
show different choices of computation times for control tasks. The second part of
the table (from the third row) is devoted to the outcome of the Branch and Bound
algorithm (optimal cost functions and periods for which it is attained). Finally
the last rows show results of the continuous relaxation. In the first experiment,
the task used to control the system S; is assumed to be very demanding (100
time units for each execution).

This may be the result of a choice of a low quality sensor (requiring a heavy
post-processing of the acquired data). As might be expected, the achieved sta-
bility radius is quite low (if compared with the other experiments). Moreover,
the system requiring more “attention” (i.e. lower sampling period) is the most
unstable one (Sz). In the second experiment ¢; is lowered from 100 to 10 thus
relieving the CPU of a remarkable workload. As a result, more aggressive policies
on the choices of the activation periods may be selected improving the stability
radius. In the third experiment the effects of increasing the computational load
required by the task controlling system Ss are shown. It is possible to observe
a remarkable performance degradation with respect to the second experiment.
Interestingly enough, the optimization process tends to penalize systems which

Exp. 1|Exp. 2|Exp. 3
er 100 10| 10
e2 1 1 5
es 10/ 10 10
ps |0.0095]0.0226]0.0136
P 159 29| 65
P2 10 8 10
ps 37 19 29
1$710.0096]0.0232/0.0138
p{?| 155.6| 29.07| 65.65
p{?| 10.93] 8.43| 10.02
p{| 37.6| 18.6] 28.66

Table 2. Results of the optimization

are closer to stability while keeping unvaried, as much as possible, the activation
period of the process controlling S». As a final remark, the continuous relaxation
provides good estimation for both the objective function and the activation peri-
ods. For almost all cases periods corresponding to the optimal solution are lower
or upper round up of the continuous relaxation. This is not true for in the first
experiment for p;, whose optimal value is 155.6 for the continuous relaxation
and 159 for the discrete problem.

5 Conclusions and future work

In this paper, an integrated design procedure has been presented for determin-
ing optimal scheduling and control parameters for a set of controllers operating
on scalar linear systems. The choice of a performance metric related to sys-
tems’ robustness and of a preemptive scheduling model allows for a compact
analytical formulation of the system design, amenable to an efficient numerical
solution based on a branch and bound scheme. This is a first step towards more
general results concerning mixed scheduling/control synthesis. The most natural
continuation of this work is the extension of the approach to the control of multi-
dimensional systems thus leading to potentially relevant industrial applications.
Other important issues to investigate are alternative formulations for the plat-
form constraints, with two distinct purposes: 1) alleviating, if possible, pessimism
inherent to the choice of the time triggered approach, 2) extending the analysis
to architectures with a higher degree of parallelism, such as multiprocessors and
distributed architectures.

References

1. In Springer-Verlag, editor, EMSOFT 2001: First Workshop on Embedded Software,
Lecture Notes in Computer Science, 2001.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

S.K. Baruah, N.K. Cohen, C.G. Plaxton, and D.A. Varvel. Proportionate progress:
A notion of fairness in resource allocation. Algorithmica, 6, 1996.

A. Bicchi, A. Marigo, and B. Piccoli. Quantized control systems and discrete
nonholonomy. IEEE Trans. on Automatic Control, 2001.

Roger Brockett. Minimum attention control, 1997.

G. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Algo-
rithms and Applications. Kluwer Academic Publishers, Boston, 1997.

David F. Delchamps. Extracting state information from a quantized output record.
Systems and Control Letters, 1989.

N. Elia and S. Mitter. Stabiliztion of linear systems with limited information.
IEEE Trans. on Automatic Control, 2001.

Dimitris Hristu and Kristi Moransen. Limited communication control. System and
Control Letters, 37(4):193-205, July 1999.

T. J. Koo, J. Liebman, C. Ma, and S. Sastry. Hierarchical approach for design
of multi-vehicle multi-modal embedded software. In Springer-Verlag, editor, EM-
SOFT 2001: First Workshop on Embedded Software, Lecture Notes in Computer
Science, 2001.

H. Kopetz and G. Grnsteidl. Ttp-a protocol for fault-tolerant real-time systems.
IEEE Computer, January 1994.

K. Kuetzer, S. Malik, R. Newton, J.M. Rabaey, and A. Sangiovanni-Vincentelli.
System-level design: Orthogonalization of concerns and platform-based design.
IEEE Transaction on coputer-aided design of integrated circuits and systems,
21(27), 2000.

C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. Journal of the Association for Computing Machinery,
20(1), 1973.

G. N. Nair and R. J. Evans. State estimation under bit rate constraints. In Proc.
of the 37th IEEE Conference on Decision and Control, Tampa, Florida, December
1998.

H. Rehbinder and M. Sanfridson. Scheduling of a limited communication channel
for optimal control. In Proc. of the 39th IEEE Conference on Decision and Control,
Sidney, Australia, December 2000.

C.M. Kirsch T. Henzinger, B. Horowitzm. Embedded control systems development
with giotto. In Proc. of ACM SIGPLAN 2001 Workshop on Languages, Compilers,
and Tools for Embedded Systems (LCTES’2001), June 2001.

S. Tatikonda, A. Sahaim, and S. Mitter. Control of lqg systems under communica-
tion constraints. In Proc. of the 87th IEEE Conference on Decision and Control,
Tampa, Florida, December 1998.

W.S. Wong and R. Brockett. Systems with finite bandwidth constraints - part i:
State estimation problems. IEEE Trans. on Automatic Control, 42(9), 1997.
W.S. Wong and R. Brockett. Systems with finite bandwidth constraints - part
ii: Stabilization with limited infromation feedback. IEEE Trans. on Automatic
Control, 44(5), 1999.

L. Xiao, M. Johansson, H. Hindi, S. Boyd, and A. Goldsmith. Joint optimization of
communication rates and linear systems. submitted to IEEE Trans. on Automatic
Control.

