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Abstract

The design a hybrid feedback control for a spark ignition engine, equipped with an

electronic{throttle valve, which achieves torque tracking is developed. The desired torque

is supposed to be available on{line by interpreting the motion of the accelerator pedal that

is actuated by the driver. A hybrid model that describes the interacting behavior of the

intake manifold, the engine, the power{train and the catalytic converter is illustrated. The
solution is obtained by decoupling the control problem into two subproblems: the intake

manifold dynamics control and the torque generation process control (which includes

catalytic converter management). The quality of the control law when applied to the

hybrid model has been analytically demonstrated and a set of simulations are presented.

1 Introduction

In this paper, we focus on an application domain for hybrid system theory that is of great
industrial interest: automotive engine control. The engine control problem is very complex
(see e.g. [17, 24]). Figure 1 shows the decomposition of the system in a chain of its basic
processes [3, 31, 50]. Air intake and fuel injection can be controlled to yield the desired mix
to deliver to the combustion process. The timing of the sparks generated by the spark plugs
determines the start of the combustion process that takes place in the cylinders. The torque
and the emissions generated by the combustion process depend on the fuel mix (quantity of
fuel and its dynamics) and on the spark ignition timing. The torque is then delivered to the
power{train and the emissions to the exhaust subsystem. The goals for the control strategy
are, in general, given in terms of emissions and torque but it is often the case that sub{goals
are given by car manufacturers on all the processes in the chain.

1This research has been partially sponsored by PARADES, a Cadence, Magneti-Marelli and SGS-Thomson
GEIE, and by CNR.
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Figure 1: Functional decomposition of the system.

The literature on engine control is very rich. Most of the published works on control
synthesis are based on average{value models (e.g. [31, 26, 17, 15, 52]) of the engine and the
power{train and are devoted to the control of a particular phenomenon or subsystem during a
particular operating condition. Cycle-accurate models are instead mainly used to analyze the
behavior of the engine and in the design of mechanical parts, sensors and actuators ([44, 6, 47]),
but they are scarcely used to design control laws (see e.g. [49]). Typical engine control problems
are: the idle control ([33, 13, 1]), the air/fuel ratio control ([14, 42, 38]), the knocking and
mis�ring control ([23, 19]), the driveline oscillation control ([46, 9]).

We argue that the increasing requirements on the engine and power{train behavior both in
terms of vehicle performance and tailpipe emissions as well as gas consumption, can be achieved
only by using more accurate models than the ones proposed so far. An accurate model of a
four{stroke gasoline engine has a \natural" hybrid representation because

� pistons have four modes of operation corresponding to the stroke they are in. Hence their
behavior can be represented with a �nite state model;

� power{train and air dynamics are continuous{time processes.

In addition, these processes interact tightly. In fact, the timing of the transitions between two
phases of the pistons is determined by the continuous motion of the power{train, which, in
turn, depends on the torque produced by each piston.

In our approach, the adoption of a hybrid formalism allows us to represent the cyclic behavior
of the engine, thus capturing the e�ect of each fuel injection on the generated torque, the
interaction between the discrete torque generation and the continuous power-train and air
dynamics.

Hybrid systems have been the subject of intensive study in the past few years by both
the control and the computer{science communities. Particular emphasis has been placed on a
uni�ed representation of hybrid models rooted in rigorous mathematical foundations ([22, 5, 2,
40, 29, 4, 30]). Some classical problems such as reachability analysis ([43, 18]), stability and
safety ([35, 11, 39]) have been investigated and tools for their solutions, i.e. HyTech ([28, 27]),
Kronos ([41]), Checkmate ([16]), developed.

In this paper, the problem of designing a feedback control which achieves engine torque
tracking of a reference signal is addressed. The desired torque is available on{line by interpreting
the motion of the accelerator pedal that is actuated by the driver.

The solution is obtained by decoupling the control problem in two subproblems: the �rst
de�ned for the intake manifold dynamics (implemented by an inner control loop), the second
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de�ned for torque generation process (implemented by an outer control loop).
The solution of the torque{tracking control problem is subject to constraints on the amount

of non{stoichiometric mixed which can be supplied to the engine without saturating the cat-
alytic converter storage mechanism. A remarkable point addressed in the proposed solution is
that the best strategy of distribution of the control action, between fuel injection and air load-
ing, to achieve both torque tracking and proper catalytic converter management is obtained.

Further, by means of a deep analysis of the closed{loop system the robustness properties
of the proposed control have been analytically identi�ed for the hybrid model of the engine.
Indeed, the use of a hybrid framework, where discrete and continuous signals are modeled in
a separate but integrated manner, is a de�nite advantage over other approaches, which ap-
proximate the system by converting it to continuous or discrete representations, thus obtaining
solutions whose properties are not guaranteed.

The paper is organized as follows. In Section 2, we describe in detail a hybrid model of the
engine, the power{train and the catalytic converter. In Section 3, we propose a hybrid torque{
tracking control feedback for the engine, which is composed of two nested control loop: the inner
for intake manifold control, and outer for torque generation. In Section 4, the behavior of the
closed{loop hybrid system is analyzed and su�cient conditions, which guarantee convergence,
torque tracking and proper catalytic converter management, are provided. Finally, in Section 5
the e�ectiveness of the proposed hybrid feedback is illustrated by discussing some interesting
simulations.

2 Hybrid model of the engine

In this section, we review the model of a power{train equipped with an N{cylinder 4{stroke
engine proposed in [7], which is here augmented to include the catalytic converter. The power-
train hybrid model is described in the tagged-signal model (TSM) formalism proposed by Lee
and Sangiovanni{Vincentelli [36, 37]. Such formalism allows us to formally describe systems
represented as interacting processes of heterogeneous models of computation. In particular, we
use a combination of FSMs, DESs and CTSs to form a hybrid system that is the basis for our
design.

The overall system is composed of four main interacting blocks, namely the intake manifold,
the cylinders, the catalytic converter and the power{train (Figure 2). The intake manifold
pressure p is controlled by the throttle valve, which is powered by an electrical motor. We
denote by v and � the motor input voltage and the throttle-valve position, respectively. The
mass of air loaded in the cylinders depends on the pressure p and on the crankshaft revolution
speed n.

The torque T produced by the engine is given by
PN

i=1 T
i, where T i is the torque generated

by the i{th cylinder, which is determined by the mass of loaded air mi, the mass of fuel qi

injected in the cylinder, and the sparki ignition command2. The timing sequence of the four
strokes of each cylinder is determined by the continuous motion of the crankshaft. We denote
by � the crankshaft angular position, which is obtained by the integration of the crankshaft
velocity n.

2From this point on, we use the superscript i to indicate variables related to the i{th cylinder.
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Figure 2: The engine blocks and their communication topology.

The generated torque T feeds the power{train dynamics whose state, denoted by �, contains
the crankshaft revolution speed n and angle �. To reduce tailpipe emissions �, the exhausted gas
� is treated by the catalytic converter that, under suitable engine feedback control, guarantees
emissions which meet the imposed standard.

2.1 The intake manifold.

Manifold pressure dynamics is a continuous-time process controlled by the throttle-valve posi-
tion � that changes the e�ective section of the intake rail of the manifold. While in traditional
engines the throttle valve is directly connected to the gas pedal, modern cars are equipped with
an electronic{throttle system that allows full control of the intake manifold dynamics. Denoting
by p the mean-value pressure and by v the electric motor input voltage, manifold dynamics is
modeled as (see [10, 25]):

_�(t) = a��(t) + b�v(t) (1)

_p(t) = app(t) + bp�(t) (2)

Parameters ap and bp depend in on the geometric characteristics of the manifold, on the physical
characteristics of the gas and atmosphere, and on the current value of the pressure p and engine
speed n. In (1{2), we assume that an inner intake manifold control loop linearizes the intake
manifold dynamics and compensates its dependency on the crankshaft speed n, so that ap and
bp can be considered constant. The throttle angle and electric motor voltage are bounded as

� 2 [0; 90] (3)

v 2 [�V;+V ] : (4)

2.2 The cylinder.

The cylinder model is the most complex. It is \responsible" for torque generation. The torque
T i generated by each piston at each cycle depends on the thermodynamics of the air{fuel
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mixture combustion process. The pro�le of T i depends on the phases of the cylinder, the
piston position �i, the mass mi of air, the mass qi of fuel both loaded in the cylinder during
the intake phase, and on the spark ignition timing.

In a 4{stroke combustion engine, a piston reaches the Top Dead Center (TDC) (Bottom
Dead Center (BDC)) when it is at its uppermost (lowermost) position. Each cylinder cycles
through the following four phases:

� intake (I). The piston goes down from the TDC to the BDC loading the air{fuel mix
present in the intake manifold;

� compression (C). The trapped mix is compressed by the piston during its upward move-
ment from the BDC to the TDC;

� expansion (E). The combustion takes place pushing down the piston from the TDC to
the BDC;

� exhaust (H). During its upward movement, from the BDC to the TDC, the piston expels
combustion exhaust gases.

Let �i be the position of the i{th piston, expressed in terms of the corresponding crank angle,
with respect to the last Dead Center (DC), that is

�i(t) = [�(t)� �i0] mod 180o; (5)

where �i0 is the value of � for which the i-th cylinder is at a DC. This corresponds to reset �i at
the beginning of each phase. Note that since the pistons are connected to the crankshaft their
positions �i are related to each other.

The quantity mi of air loaded into each cylinder at the end of the intake run depends, in a
nonlinear fashion, on the evolution of the intake manifold pressure and the crankshaft speed.
The amount of air loaded up to time t, denoted by mi(t), is sampled at the intake BDC time
t` to obtain the loaded air for the current engine cycle.

To achieve a proper combustion of the air-fuel mix, the amount of fuel qi that can be injected
into a cylinder is subject to constraints [48]. These constraints are usually expressed in terms

of the air-to-fuel ratio A=F = mi

qi
of the mixture. When A=F = (A=F )stoic = 14:64, the mix is

said to be at stoichiometry, which is a desirable operating point for emissions. Rich mixtures
A=F < 14:64 produce excess of CO and HC, while lean mixtures A=F > 14:64 have excess of
NOx. We denote by  the equivalence ratio

(k) =
(A=F )stoic

A=F
= (A=F )stoic

mi(k)

qi(k)
(6)

so that  = 1 for stoichiometric mixture and  = 0 when fuel is not injected. The allowed
values of mixture composition are bounded by

(k) = [min; max] [ f0g : (7)

Spark ignition must occur at every cycle. Intuitively, it should occur exactly when the piston
reaches the TDC of the compression stroke. Since the combustion process takes non-zero time
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to complete, the pressure in the cylinder reaches its maximum some time after spark ignition.
It is then convenient to produce a spark before the piston completes the compression stroke
(positive spark advance), to achieve maximum fuel e�ciency. Producing a spark after the piston
has completed the compression phase and is in the expansion stroke (negative spark advance)
may be used to reduce drastically the value of the torque generated during the expansion run.
Hence, the spark control input has a very short delay and can be used to reduce torque much
faster than using only the throttle valve. The spark ignition time is commonly de�ned in terms
of the spark advance 'i, which denotes the di�erence between the angle of the crank at the
TDC between compression and expansion and the one at the time of ignition tij. In terms of
the piston position �i, we have

'i =

(
180o � �i(tij) for a positive spark advance
��i(tij) for a negative spark advance :

(8)

Note that the spark advance has to be bounded both from above and from below to prevent
the mix from not burning uniformly thus causing undesired knocking [21, 34] (upper bound)
and from mis�ring [19, 51] (lower bound), which causes undesired pollutants. These bounds
depend on the revolution speed n. The spark advance and the amount of injected fuel is set at
each cycle to control the generated torque (see [8]).

The air-fuel mixture is loaded in the cylinder during the intake stroke while the torque
generation starts after the spark is ignited. Hence, to complete the description of the torque
generation process, we need to model the delay between the time at which the mixture is loaded
and the time at which the corresponding active torque is generated [32].

The overall model of the torque generation process for a single cylinder consists of four
communicating processes of di�erent MOCs:

� an FSM, modeling the 4-stroke engine cycle,

� a DES, modeling the discrete delay on the active torque generation, and

� two memory-less CTSs, modeling the air intake process and the pro�le of the generated
torque.

Modeling the 4-stroke engine cycle with an FSM This part of the cylinder model is
used to capture the sequential nature of the behavior of the cylinders. Based on the events
generated by the spark ignition signal and by the reaching of dead centers, the FSM takes a
transition and outputs the appropriate information to coordinate the other parts.

The four phases of the piston are associated to the states of an FSM that represents the
behavior of the cylinder. A state transition would then occur when the piston reaches a dead
center. However, the torque generated by the piston is related not only to the four phases of the
piston but also to the spark generation process. Since spark ignition may occur either during
the compression stroke or during the expansion stroke, a six state FSM is needed to model the
possible behaviors of the cylinder. The cylinder FSM is shown in Figure 3. The FSM state sik
takes one of the following values

� I, denoting Intake.
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Figure 3: FSM describing the behavior of the i{th cylinder.

� BS, denoting Before Spark. The piston is in the compression stroke and no spark has
been ignited yet.

� PA, denoting Positive Advance. The piston is in the compression stroke and the spark
has been ignited.

� NA, denoting Negative Advance. The piston is in the expansion stroke and the spark has
not been ignited yet.

� AS, denoting After Spark. The piston is in the expansion stroke and the spark has been
ignited.

� H, denoting Exhaust.

The cylinder changes phase either when a spark is given (FSM input event uik = spark i or
uik = spark&DC i if the spark is given exactly at the dead center), or when a dead center is
reached (FSM input event uik = DC i). The evolution of the torque produced by the cylinder
depends on the transitions of the FSM, provided by the output oik of the FSM that takes
the following values: BS2AS, BS2PA, BS2NA, PA2AS, NA2AS, AS2H, H2I and I2BS. The
next{state and output functions of the cylinder FSM

sik+1 = �(sik; u
i
k); oik = �(sik; u

i
k) (9)

are shown in Figure 3. Note that, for the sake of notational simplicity, we dropped the super-
script i, indicating the correspondence of the variable with cylinder i, from the index k.
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Figure 4: Ignition e�ciency function (at low engine speed).

Modeling the air-intake process with a CTS Assuming small variations of the crankshaft
speed n during intake and recalling that p represents the pressure mean{value over the engine
cycle, a CTS linear model for the air intake can be used:

mi(t) = cp p(t) : (10)

Modeling the torque pro�le with a CTS The pro�le of the torque T i produced by the
i{th piston can be expressed in terms of the motion of the piston given by �i (e.g. [49]). We
set to zero the torque T i during the passive phases of the cylinder, but we take into account
the loss of energy due to these phases by reducing the amount of torque generated during the
active phase. As a consequence of this simpli�cation, the pro�le T i is a piece-wise constant
signal zero everywhere except in the expansion phase when the spark ignition command has
already been given

T i(t) =

(
G qi �('i) if ok 2 fPA2AS;BS2AS;NA2ASg
0 otherwise

(11)

where: oik is the current FSM output, the gain G represents the potential value of the torque
that can be achieved by the given mix, and the ignition e�ciency function �(') has in general
the pro�le shown in Figure 4.

Modeling the discrete delay on active torque generation with a DES The delay on
active torque generation, which is characteristic of 4{stroke engine cycles, is modeled by means
of a DES synchronized with the FSM transitions and whose dynamics depends on the FSM
transitions:

z(k + 1)i = foi
k
(zi(k); vi(k))

yi(k) = hoi
k
(zi(k); vi(k))

(12)

where oik denotes the k{th FSM transition. The components of the DES input vector vi(k) are

� the mass of air mi loaded during the intake phase;

� the mass of injected fuel qi during the intake phase.
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� the piston position �i, used to compute the spark advance 'i according to (8);

The DES state zi(k) is used to model the delay between the mixture intake and the active
torque generation. The DES output yi(k) = (mi; qi; 'i; �i) provides

� at the NA2AS;BS2AS and PA2AS transitions, the values (mi; qi; 'i) to the CTS de-
scribing the pro�le of the engine torque (11);

� at the AS2H transition, the value �i of the unbalanced mixture mass, which will reach
the catalytic converter, resulting from the combustion of qi fuel with mi air, i.e. �i =
mi � (A=F )stoicq

i.

The functions foi
k
and hoi

k
describing the dynamics and the output of the DES are the following:

fI2BS = (mi(k); qi(k); 0)
fBS2PA = zi(k) + (0; 0; 180o � �i(k))
fNA2AS = zi(k) + (0; 0; ��i(k))
fok = zi(k) for ok 2 fBS2NA;BS2AS; PA2AS;AS2H;H2Ig

(13)

hBS2AS = hPA2AS = (zi(k); 0)
hNA2AS = (zi(k); 0) + (0; 0; ��i(k); 0)
hAS2H = (0; 0; 0; (zi(k))1 � (A=F )stoic(z

i(k))2)
hok = (0; 0; 0; 0) for ok 2 fBS2NA; I2BS;BS2PA; ;H2Ig

(14)

Consider for example the torque produced in the state AS when a positive spark advance has
been applied. According to the DES dynamics (13{14) this torque depends on the value of
the DES output yi(k) at the transition PA ! AS, which in turn depends on values mi(k �
2); qi(k � 2) at the transition I ! BS, i.e.:

yi(k) = (zi(k); 0) =
�
(zi(k � 1) + (0; 0; 180o � �i(k � 1))); 0

�
=

�
mi(k � 2); qi(k � 2); 180o � �i(k � 1); 0

�
:

This shows how the DES model captures the delays in the torque generation process: a one{
step delay associated to the spark ignition (due to the fact that the spark is given during the
compression stroke while the torque is generated during the expansion stroke), and a two{step
delay associated to the mix mass (due to the fact that the mix is loaded during the intake
phase). Further, the unbalanced mixture mass �i, output at the AS ! H transition, is

yi(k) =
�
0; 0; 0; (zi(k))1 � (A=F )stoic(z

i(k))2
�
=
�
0; 0; 0; (zi(k � 1))1 � (A=F )stoic(z

i(k � 1))2
�

=
�
0; 0; 0; (zi(k � 2))1 � (A=F )stoic(z

i(k � 2))2
�
=
�
0; 0; 0; mi(k � 3)� (A=F )stoicq

i(k � 3)
�

which shows how the three{step delay between air{fuel mixture intake and exhaust gas delivery
is captured by the DES model.
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2.3 The catalytic converter.

A three{way catalytic converter is commonly used in the exhaust system to reduce tailpipe
emissions, in order to meet the standards imposed by governament. The conversion e�ciency
of the converter is strongly related to the catalyst brick temperature [20]. For this reason a
warm-up phase is necessary to fastly increase the converter temperature during a cold engine
start up. We assume that the catalytic converter temperature is greater than the minimum
light{o� temperature (around 250o), so that the catalytic works at the maximum e�ciency.

The functioning principle of a three{way catalytic converter is based on the oxygen storage
and release mechanism. The conversion e�ciency drastically decreases when such mechanism
reaches a saturation point due to either excess of NOx or HC and CO in the engine{out gas. A
detailed model of a three{way catalytic convert is very complex since it comprises a description
of the reaction kinetics, the exchanges between the reacting species and the surface of the
catalyst, the thermodynamics and the gas dynamics. Our main concern in devising a solution
to the force tracking control problem is to keep the catalytic converter far from saturation.
Hence, we are interested in modeling the closeness of the catalytic converter to the saturation
points. The capability of storing the oxygen depends on the equivalence ratio  of the mixture.
Indeed, assuming that at start up the catalytic converter is balanced, when the air{fuel mixture
loaded by the cylinders is at stoichiometry, i.e.  = 1, the oxygen storage and release mechanism
of the catalytic converter remains balanced. Engine outputs of lean mixtures ( < 1) and rich
mixtures ( > 1) unbalance the converter towards excess and lackness of oxygen, respectively.

The four component of the output yi of the DES (13{14) modeling the cylinder behavior
provides, at the AS ! H cylinder FSM transition, the value of the unbalanced mixture mass
�i = mi�(A=F )stoicq

i related to the current engine cycle. Such mass will feed the oxygen storage
and release mechanism of the catalytic converter after some time due to the transport delay
associated to the motion inside the pipe from the exhaust manifold to the catalytic converter.
Hence, in order to control the state of storage of the catalytic converter it is su�cient to control
the evolution of the sequence of unbalanced mixture masses �i(k). Indeed, the saturation
constraints of the oxygen storage and release mechanism of the catalytic converter can be
mapped ahead at the beginning of the exhaust pipe. By doing this we obtain a simpli�cation
of the model since it does not take into account of the exhaust pipe transport delay.

To model the storage mechanism at the beginning of the exhaust pipe a DES is used. The
DES state variable l represents the unbalancement of the mixture masses in the engine-out
gas delivered up to the current time. The DES systems, which receives from all cylinders the
unbalanced mixture mass �i(ki) given by (14), is as follows

l(k0 + 1) = l(k0) +
NX
i=1

�i(ki) (15)

where the sequence ftk0g of times tk0 at which (15) is updated is de�ned as [Ni=1ftkig, where
ftkig denotes the sequence of times tki at which the i{th cylinder DES (13{14) makes a step.

To prevent the catalytic converter from reaching a saturation point, the state l is bounded
to satisfy the following constraint

lh 2 [lmin; lmax] (16)

Dynamics (15) captures the storing nature of the catalytic converter: the unbalanced quantity of
exhausted gas are trapped into the converter to be processed in the future. In (15) we assume a
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linear dependency of l from the air and fuel masses. A re�nement of this model can be obtained
by using a nonlinear input map 	(mi; qi), which should satisfy 	(mi; (A=F )stoicm

i) = 0.

2.4 The power{train.

In the force tracking control problem we assume that the clutch is engaged and a particular
gear is selected. The power-train is described by the continuous time system

_�(t) = A�(t) + b T (t)� b0 (17)
_�(t) = (0; 6; 0) �(t) (18)

where � = (�e; n; !p)
T includes the drive-line torsion angle, the crankshaft revolution speed,

and the wheel revolution speed and � is the crankshaft angle position. Input T is the torque
produced by the engine. Vector b0 models the resistant actions on the power{train, due to
internal friction and external forces at the equilibrium point. Being the description of a passive
system, dynamics (17) is exponentially stable and is characterized by a real dominant pole �1,
and a pair of conjugate complex poles �� j�. Model parameters depend on the selected gear.

2.5 The power{train model for a 4{cylinder engine.

In this section the general power{train model introduced above is specialized to the case of a
4{cylinder in{line engine.

To take into account of the delay of spark ignition actuation, in the speci�cation the control
problem we require the value of the spark advance to be set at the intake BDC, that is at
I ! BS cylinder FSM transition. We denote by r(k) the desired spark advance e�ciency
applied to the cylinder which takes the I ! BS transition at time tk. Assuming no noise
on the spark actuation, r(k) corresponds to the value of spark advance e�ciency �(') actually
applied in the chosen cylinder for the current engine cycle. This allows us to simply the cylinder
FSM from 6 to 4 states.

Moreover, note that in 4{cylinder in{line engines, the cylinders are driven in such a way
that at each instant of time each cylinder is in a di�erent stroke of the engine cycle. Thanks
to this symmetry the engine model can be drastically compacted. Indeed, the FSM can be
reduced to a single{state FSM with a self{loop transition occurring at each dead center. The
piston positions are identi�ed by a unique variable �(t) = �(t)mod 180o given by (5).

To handle more easily the constraint (7) on fuel injection, we adopt an input transformation
and consider i as the injection input in place of qi. Further, fuel injection actuation is modeled
by a discrete delay of one transition in the cylinder DE dynamics. The produced torque is then
expressed as T (k) = G cp (k�1) p(tk�2) r(k�1), where (k) denotes the value of equivalence
ratio for the cylinder which takes the H ! I transition. Considering i the injection input, the
unbalanced mixture mass �i is rewritten as: �i = mi� (A=F )stoicq

i = (1� i)mi = (1� i)cp p.
We denote by �(k) the unbalanced mixture mass of the cylinder which takes the AS ! H
transition at time tk.

Since the cylinder FSM is reduced to a single-state FSM, the catalytic converter dynam-
ics (15) evolves on the unique sequence of transition times ftkg, corresponding to the piston
dead centers, and receives as input the variable �(k).
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Figure 5: Decentralized control loops scheme.

The hybrid model of the power-train with 4{cylinder in{line engine, is composed of the
following interacting components:

1. a CTS as in (1{2), modeling the throttle valve and intake manifold dynamics which are
subject to the constraints (4) and (3);

2. a single{state FSM, which generates the dead center events from the piston evolution �(t)
taking a self{loop transition;

3. a DES, active at each FSM transition and modeling the torque generation and catalytic
converter dynamics. By (11), (10), (13{14) and (15) we have

C(k + 1) = (k) (19)

T (k + 1) = G cp 
C(k) p(tk) r(k) (20)

�E(k + 1) = cp (1� C(k)) p(tk) (21)

�(k + 1) = �E(k) (22)

l(k + 1) = l(k) + �(k) (23)

where: C(k) is the equivalence ratio  of the cylinder in the compression stroke, and
�E(k) denotes the unbalance mixture mass of the cylinder that begins the expansion
stroke. Dynamics (23) is subject to constraint (16).

4. a CTS as in (17{18), modeling the power{train mechanical dynamics.

3 Control design

Our approach to the torque{tracking control problem is to decouple the control problem by
synthesizing two nested loop:

1. an intake manifold control | in the inner loop;
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2. a torque generation control | in the outer loop.

The intake manifold control is designed by solving a minimum{time control problem with
respect to a reference trajectory p̂(t), for the intake manifold pressure p(t), which is a ramp{
signal. The synthesis of this control is obtained in Section 3.1 by applying the Pontryagin
Maximum Principle in the continuous{time domain [45].

The aim of the torque generation control is to �nd the best politic of distribution of the
control action, between fuel injection and air loading, which achieves both torque tracking and
proper catalytic converter management. The reference torque is assumed to be a ramp{signal
and a quadratic cost function is used to measure tracking performance. The catalytic converter
imposes constraints on the amount of non{stoichiometric mixed which can be supplied to the
engine without saturating the catalytic converter storage mechanism. In Section 3.2, a solution
to the torque generation control is derived in the discrete{time domain [12]. The feedback
control is expressed in terms of: the equivalence ratio (k) to be applied during fuel injection,
and the desired value of manifold pressure ~p(k) to be used by the intake manifold control loop.

In Section (3.3), a hybrid feedback control for the hybrid model of the engine described in
Section 2 is derived from the two decouplingly designed control loops. The use of reference
ramp{signals in both control loops allows us to

1. interface the outer and the inner control loops: at each dead center the torque generation
control de�nes a ramp reference signal ~p(t) to be tracked by the intake manifold pressure;

2. extend the feedback control to the case of tracking a reference torque signal T̂ (t) of generic
shape in time: at each dead center the given reference torque signal, provided on{line, is
approximated by the current expression of the local tangent.

Finally, in Section 4, the behavior of the closed{loop hybrid system in approaching and tracking
a generic reference torque signal is analyzed in depth and su�cient conditions, under which con-
vergence and torque tracking as well as proper catalytic converter management are guaranteed,
are provided.

3.1 Intake manifold control

The feedback control for the intake manifold dynamics (1{2) is designed by solving �rst a
minimum{time tracking control problem with respect to a reference pressure trajectory which
is ramp signal:

p̂(t) = mpt+ np : (24)

When p(t) is forced to track the reference signal (24), we have _p(t) = mp, which replaced
into (1) gives the reference trajectory for the throttle angle and the throttle motor input:

�̂(t) = �
ap
bp
p̂(t) +

mp

bp
= �

apmp

bp
t+

mp � apnp
bp

= m�t+ n� (25)

v(t) = �
a�
b�
�̂(t)�

apmp

bpb�
: (26)

where m� = �apmp

bp
and n� = mp�apnp

bp
. Further, the formalization of the optimal control

problem for the time varying reference trajectory (24{25) is obtained by augmenting the state
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space with a state variable � denoting the elapsed time. The minimum{time tracking control
problem to solve is:

Problem 3.1.1 Given an initial state (�; p; �) = (�0; p0; 0),

min
v(t)

�(tf) (27)

subject to the dynamics
_�(t) = a��(t) + b�v(t)
_p(t) = bp�(t) + app(t)
_�(t) = 1

(28)

and the constraints

v(t) 2 [�V; V ] (29)

(�(tf); p(tf ); �(tf)) 2 S (30)

where the target set is

S �

(
p�mp� � np = 0
��m�� � n� = 0

: (31)

The Hamiltonian associated to the above minimum{time problem is

H(t) = �� _� + �p _p+ �� _� + �1(�� 90)� �2�

= ��(a�� + b�v) + �p(app+ bp�) + �� + �1(�� 90)� �2� (32)

where �1 and �2 are the Lagrange multipliers corresponding to the state constraint (3), de�ned
by (

�1 = 0 if � < 90
�1 � 0 if � = 90

(
�2 = 0 if � > 0
�2 � 0 if � = 0

:

The adjoint variable are subject to the dynamics

_��(t) = �
@H

@�
= �a��� � bp�p + �1 � �2

_�p(t) = �
@H

@p
= �ap�p (33)

_��(t) = �
@H

@�
= 0

The transversality condition requires that at the �nal time tf the adjoint vector [��; �p; ��]
T

should lie on the subspace perpendicular to the target set S as in (31). That is

m���(tf ) +mp�p(tf) + ��(tf) = 0 : (34)

The boundary conditions problem is de�ned by the extended dynamics (28) and (33), the initial
condition (�; p; �) = (�0; p0; 0), and the �nal conditions (34) and (�(tf); p(tf); �(tf)) 2 S with
S as in (31).
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If the constraints (3) are tight, then the integration of the adjoint dynamics gives

��(t) =

 
��(tf ) + �p(tf )

bp
a� � ap

!
e�a�(t�tf ) � �p(tf)

bp
a� � ap

e�ap(t�tf ) (35)

�p(t) = �p(tf) e
�ap(t�tf ) (36)

��(t) = ��(tf ) (37)

Hence, non{singular optimal controls are given by

v(t) =

(
+V if b���(t) < 0
�V if b���(t) > 0

: (38)

Solution (35) can be rewritten as

��(t) =

 
��(tf ) + �p(tf)

bp
a� � ap

!
e(ap�a�)(t�tf ) � �p(tf )

bp
a� � ap

= 0 (39)

from which one deduces that, along a non{singular optimal arc, ��(t) can be zero at most
once. The switching surface for the optimal control is obtained by backwards intergration of
the extended dynamics (28) and (33) from a �nal condition with (�(tf); p(tf); �(tf)) 2 S. If, at
some time t = ��+ tf , we have ��(��+ tf ) = 0 then a control switching takes place. When
the control switching occurs the state (�; p; �) evaluates to0B@ �

p
�

1CA =

 
Ap(��) 0

0 1

!0B@ �̂(tf)
p̂(tf)
�(tf)

1CA+

 
Bp(��)v
��

!
(40)

where v 2 f�V; V g and

Ap(t) =

0@ ea�t 0
bpe

(a��ap)t

a��ap
eapt

1A and Bp(t) = (I � Ap(t))

 
� b�

a�
bp
ap

b�
a�

!
: (41)

The two dimensional switching surface (40) is parametrized in terms of the �nal time tf and the
switching time �. By replacing (24) and (25) in (40), since �(t) = �(tf )��, the surface (40)
is mapped into the (�; p) subspace as follows:

� = e�a���̂+
�
1� e�a��

�
�v (42)

p =
bp

a� � ap

�
ea�� � eap�

�
(�̂ + �v)e

�ap�p̂+
�
1� e�ap�

�
pv : (43)

where (�v; pv)
T = Bp(��)v with Bp(�) as in (41). Note that, since the system of equations

(42{43) is lower triangular then the equation (42) can be solved for � given a value of �. Hence,
to test whether or not a given state (�; p) belongs to the switching surface, the pressure p is
compared to the right{hand side of (43) computed for the determined �. Given a point (�; p),
let �? denote the solution to (42) and p?(�) denote the right{hand side of (43) for a given �.
De�ne the function � : IR2 ! IR as:

�(�; p) = p� p?(�?) : (44)
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The minimum{time control for non{singular trajectories is

v(t) =

(
+V if (�(�; p) < 0) _ ((�(�; p) = 0) ^ (� < �̂))
�V if (�(�; p) > 0) _ ((�(�; p) = 0) ^ (� > �̂))

: (45)

In minimum{time trajectories to the target set S, singular arcs appear when the throttle angle
� reaches one of the boundaries � = 0 and � = 90. In such case, either �1 6= 0 or �2 6= 0 and
the optimal control is

v(t) =

(
�90a�

b�
if �(t) = 90

0 if �(t) = 0
: (46)

The bang-bang control (45) is readily extended to obtain the minimum{time tracking control
for trajectories which contain singular arcs. Indeed, singular arcs end when the state (�; p)
reaches the switching surface �(�; p) = 0 with �(�; p) as in (44). Furthermore, trajectories
approaching a singular arc under a control v chosen according to (45) are optimal since this is
the fastest way in which � can evolve.

In conclusion, from (26), (45) and (46), the minimum{time tracking control which is a
solution to Problem 3.1.1 is

v(t) =

8>>>>>><>>>>>>:

+V if [(�(�; p) < 0) _ ((�(�; p) = 0) ^ (� < �̂))] ^ (� < 90)
�90a�

b�
if [(�(�; p) < 0) _ ((�(�; p) = 0) ^ (� < �̂))] ^ (� = 90)

�V if [(�(�; p) > 0) _ ((�(�; p) = 0) ^ (� > �̂))] ^ (� > 0)
0 if [(�(�; p) > 0) _ ((�(�; p) = 0) ^ (� > �̂))] ^ (� = 0)

� bpa��+apmp

bpb�
if (� = �̂) ^ (p = p̂)

(47)

3.2 Torque generation control

In this section, a feedback control that achieves tracking of a reference torque ramp signal T̂ for
the torque generation process is devised. The torque generation model is obtained from the DES
modeling the cylinder behavior presented Section 2.5. The reference torque pro�le is describe
by the equation T̂ (k + 1) = T̂ (k) +m� where m and � are constant, the latter indicating the
time between two dead centers. The decoupling of the torque generation control with respect
to the intake manifold control is based on an abstraction of the dynamics of the intake manifold
closed{loop system, which is modeled by a simple one step delay system, p(k+1) = ~p(k), whose
input ~p(k) denotes the desired manifold pressure. The spark advance e�ciency is always set
to the optimal value r(k) = 1 to reduce fuel consumption. The advantages of modulating the
spark advance e�ciency will be investigated in future work. Hence, the DES describing the
torque generation process is completed by the delay equation on fuel injection actuation (19),
the torque generation equation (20) and the catalytic converter equation (23). The delay
equation (21) and (22) can be abstracted by considering the mixture unbalance at the intake
phase instead of the exhaust phase. The input to the torque generation process are: the
equivalence ratio (k) and the desired manifold pressure ~p(k).

The torque generation control problem is speci�ed as follows

Problem 3.2.1 Given an initial state (T̂ (0); p(0); C(0); T (0); l(0)) = (T̂0; p0; 
C
0 ; T0; l0)

min
(k);~p(k)

1X
i=0

W

2
(T (i)� T̂ (i))2 (48)
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subject to the dynamics

T̂ (k + 1) = T̂ (k) +m�
p(k + 1) = ~p(k)
C(k + 1) = (k)
T (k + 1) = Gcpp(k)

C(k)
l(k + 1) = l(k) + cp (1� C(k)) p(k)

(49)

and the constraints

(k) 2 [min; max] (50)

~p(k) 2 [~pmin; ~pmax] (51)

l(k) 2 [lmin; lmax] (52)

lim
k!1

l(k) = 0 (53)

A solution to the optimal control Problem 3.2.1 is determined from the solution to a simpli�ed
optimal control problem obtained by relaxing the constraint on l(k). When the dynamics of l(k)
are removed from (49), the state components p and z can be collapsed to a single component
as well as the inputs hatp and . The simpli�ed optimal control problem is:

Problem 3.2.2 Given an initial state (T̂ (0); z(0); T (0)) = (T̂0; z0; T0)

min
u(k)

1X
i=0

W

2
(T (i)� T̂ (i))2 (54)

subject to the dynamics
T̂ (k + 1) = T̂ (k) +m�
z(k + 1) = u(k)
T (k + 1) = Gcpz(k)

(55)

and the constraints

u(k) 2 [umin; umax] (56)

where umax = ~pmaxmax and umax = ~pminmin.

The Hamiltonian associated to the above optimal control problem is:

H(k) =
W

2
(T (k)� T̂ (k))2 + �r(k + 1)u(k) + �s(k + 1)Gcpz(k) + (57)

�T̂ (k + 1)(T̂ (k) +m� + �s(k)(u(k)� umax) + �i(k)(�u(k) + umin):

where the Lagrange multipliers �s and �i are de�ned by8>>><>>>:
�i(k) = 0 if u(k) > umin

�i(k) > 0 if u(k) = umin

�s(k) = 0 if u(k) > umax

�s(k) > 0 if u(k) = umax

(58)
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and the adjoint variables �z; �s and �T̂ are subject to the dynamics

�z(k) =
@H(k)

@r
= Gcp�T (k + 1) (59)

�s(k) =
@H(k)

@s
= W (T (k)� T̂ (k)) (60)

�T̂ (k) =
@H(k)

@T̂
= �T̂ (k + 1)� (W (T (k)� T̂ (k)) : (61)

The boundary conditions are given on: the initial system state (T̂0; z0; T0) and the �nal adjoint
state that has to be null. The optimal u(k) is found by setting

@H

@u
= GW (Gcpu(k)� T̂ (k + 2))cp + �s(k)� �i(k) = 0 : (62)

By (58), three cases are in order:

1: u(k) 2 (umin; umax), since by (58) �i(k) = �s(k) = 0, then by (62) u(k) = T̂ (k+2)
Gcp

;

2: u(k) = umax, by (58) �i(k) = 0, �s(k) � 0, and by (62) �s(k) = GW (Gcpumax(k) � T̂ (k +
2))cp � 0;

3: u(k) = umin, by (58) �s(k) = 0, �i(k) � 0, and by (62) �i(k) = �GW (Gcpumin(k)� T̂ (k +
2))cp � 0.

Hence, a solution to the optimal control problem 3.2.2 is:

u(k) = sat

8>><>>:
~pmaxmax

T̂ (k+2)
Gcp

~pminmin :

(63)

The following holds:

Lemma 3.2.1 Given u(k), (63) yields if and only if for all (k) and ~p(k) such that (k)~p(k) =
u(k) there exists �(k) 2 [min; max] such that

~p(k) = sat

8>><>>:
~pmax

T̂ (k+2)
Gcp�(k)

~pmin

(k) = sat

8>><>>:
max

T̂ (k+2)
Gcp~p(k)

min

(64)

The proof of this Lemma is reported in appendix.
Lemma 3.2.1 allows us to express the solution (63) to Problem 3.2.2 in terms of the equiva-

lence ratio (k) and the desired manifold pressure ~p(k) using (64). However, since the dynamics
of l has been abstracted away in Problem 3.2.2, (64) has to be re�ned to take into account of
the constraints (52) and (53) de�ned in Problem (3.2.1).

To enforce on the trajectories of system (49) the constraint (52), (64) is modi�ed as follows:

~p(k) = sat

8>><>>:
~pmax

T̂ (k+2)
Gcp�(k)

~pmin

(k) = sat

8>><>>:
bmax

T̂ (k+2)
Gcp~p(k)bmin

(65)
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where �(k) 2 [bmin; bmax] and

bmax = minf1 +
l(k) + cpp(k)(1� C(k))� lmin

cp~p(k)
; maxg

bmin = maxf1 +
l(k) + cpp(k)(1� C(k))� lmax

cp~p(k)
; ming (66)

Further, by choosing among all the possible values for �,

�(k) = sat

8>><>>:
max

T̂ (k+2)

T̂ (k+2)�QG(l(k)+cpp(k)(1�C (k)))

min

(67)

with Q 2 (0; 1], constraint (53) is also satis�ed as guaranteed by the following lemmas.

Lemma 3.2.2 If

max � 1�
lmin

cp~pmax

and min � 1�
lmax

cp~pmin

; (68)

then3 �(k) as in (67) satis�es �(k) 2 [bmin; bmax].

Lemma 3.2.3 If the reference signal T̂ (k) is such that there exists a �k > 0 for which

T̂ (k) 2 (Gcp~pmin; Gcp~pmax) 8 k > �k; (69)

then4 under feedback (65), the sequence of l(k) can be bounded as follows

0 � (1�Q)jl(k)j � jl(k + 1)j < jl(k)j 8 k > �k + 1: (70)

The proofs of Lemmas 3.2.2 and 3.2.3 are reported in appendix.
By Lemma 3.2.3 convergence of l(k) to zero is guaranteed for any Q 2 (0; 1]. The velocity

of convergence is upper bounded by 1�Q and the fastest convergence is achieved for Q = 1.

3.3 Hybrid torque{tracking control

In this section a hybrid feedback control which solves the torque tracking problem for the hybrid
model of the engine described in Section 2 is proposed. Such control is made of two nested loop:
the inner one is derived from Section 3.1 and controls the intake manifold, while the outer one
is derived from Section 3.2 and controls the torque generation.

3Under these constraints we have that for any l(k) > 0 (l(k) < 0) we cannot have l(k+1) < lmin (l(k+1) >
lmax resp.), which is a reasonable assumption for the model of a commercial car.

4This is a very mild hypothesis since it requires that the plant should be able to track the reference signal
T̂ with  2 (min; max).
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3.3.1 Inner loop: intake manifold control

Since the engine control unit is implemented by a digital system, in this section a discretized
version of the intake manifold control developed in Section 3.1 is derived. Let �0 denote the
sampling period of the discrete{time intake manifold control and let fthg denote the sequence of
sampling times. The period{�0 discrete{time model of the intake manifold is obtained from (1{
2) as follows  

�(h+ 1)
p(h + 1)

!
= Ap(�0)

 
�(h)
p(h)

!
+Bp(�0)v(h) (71)

where Ap(�0) and Bp(�0) are as in (41).
The direct application of the continuous{time feedback control (47) to the discrete{time

dynamics (71) would generate a chattering behavior around the point (�̂; p̂). Hence, the bang-
bang control (47) is adopted to steer the state of the intake manifold dynamics (71) to a nonzero
measure set centered on (�̂; p̂) of type

R(�̂; p̂) =
n
(�; p) 2 [0; 90]� [0;1) : (�� �̂)2 + (p� p̂)2 � �21 ^ j�(�; p)j � �2

o
(72)

where �(�; p) as in (44) measures the distance of the state (�; p) from the intake manifold
optimal switching surface and �1; �2 are control parameters.

Let xj(2) denotes the second component of a given vector x. For any (�; p) inside the domain
R the linear feedback control vR(�; p) de�ned by

vR(�; p) = (Bp(�0) Ap(�0)Bp(�0))
�1

" 
�̂(h)
p̂(h)

!
� Ap(�0)

2

 
�(h)
p(h)

!#�����
(2)

(73)

is applied. For unconstrained v the feedback (73) is a dead{beat control which achieves con-
vergence of dynamics (71) to (�̂; p̂) in two steps. Since in our case v is bounded by (4), the
parameters �1 and �2 that de�ne the set R(�̂; p̂) in (72) are chosen such that R(�̂; p̂) be a
controlled invariant for dynamics (71) under feedback (73). In conclusion, the discrete{time
feedback control for the intake manifold is

v(h) =

8>>>>>><>>>>>>:

8>>><>>>:
+V if [(�(�; p) < 0) _ ((�(�; p) = 0) ^ (� < �̂))] ^ (� < 90)
�90a�

b�
if [(�(�; p) < 0) _ ((�(�; p) = 0) ^ (� < �̂))] ^ (� = 90)

�V if [(�(�; p) > 0) _ ((�(�; p) = 0) ^ (� > �̂))] ^ (� > 0)
0 if [(�(�; p) > 0) _ ((�(�; p) = 0) ^ (� > �̂))] ^ (� = 0)

9>>>=>>>; if (�; p) 62 R(�̂; p̂)

vR(�; p) if (�; p) 2 R(�̂; p̂)
(74)

with vR(�; p) as in (73).

3.3.2 Outer loop: torque generation control

In order to be able to apply the feedback control loop for the torque generation developed
in Section 3.2 to the engine as described by the hybrid model presented in Section 2.5, the
following points need to be addressed:

1. in the optimal control Problem (3.2.1), the discrete{time model of the system has been
assumed to evolve with a �xed sampling frequence of period equal to � , i.e. the engine
is supposed to run at �xed crankshaft velocity. Indeed, only under such hypothesis the
reference signal T̂ (k) in (49) is actually a ramp signal;
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2. in the expression of the optimal control (65), the bounds on the desired manifold pressure
~p, ~pmin and ~pmax are supposed to be �xed and known, while in the overall model they
depend on the intake manifold dynamics;

3. the engine inputs v(h) and (k) are asynchronous: the former evolves at a �xed sampling
frequency 1=�0, while the latter is synchronous with the dead centers.

4. the feedback law needs to be generalized to the case where a generic (non{ramp) reference
torque signal is applied.

At each time tk of the sequence of dead centers times ftkg, the torque generation feedback
law (65) gives the current value of the equivalence ratio (k) for fuel injection and the current
value of desired intake manifold pressure ~p(k) for the inner intake manifold control loop. To
include reference torque signals T̂ which are di�erent from the ramp{signal, at each tk the given
signal is locally approximated by the tangent line by setting in (65)

T̂ (k + 2) = T̂ (k) + 2mT̂ (k) ~� (k) (75)

where ~�(k) = 30=n(tk) is the current estimate of the dead center period (obtained from the
crankshaft velocity measurement) and

mT̂ (k) =
T̂ (k)� T̂ (k � 1)

�(k � 1)
(76)

with �(k � 1) the measured time between the current and the previous dead center. In the
following section, the robustness with respect to the evolution of the crankshaft velocity of the
feedback control (65) with value of the next dead center time � replaced by the estimate ~� , will
be analized in depth.

Moreover, the implementation of the control (65) in the outer control loop requires also es-
timates of the bounds ~pmin and ~pmax, which de�ne the feasible range for desired intake manifold
pressure. At each dead center the following estimates are used

~pmin(k) = Ap(~�(k))

 
�(k)
p(k)

!
�Bp(~� (k))V

�����
(2)

~pmax(k) = Ap(~�(k))

 
�(k)
p(k)

!
+Bp(~�(k))V

�����
(2)

(77)

where Ap(�) and Bp(�) are given by (41).
At each dead center time tk the feedback outer{loop control (65) returns the value ~p(k)

of the desired manifold pressure to be used by the inner{loop intake manifold control (74).
Feedback (74) is based on the reference trajectory for the intake manifold state (�̂; p̂) given
by (25) and (24), which has to be derived from the values ~p(k). The asynchronousness of
the two control loops is solved by interpolating the values of the sequence ~p(k), generated at
dead{center times ftkg, on the �xed time base fthg of the intake manifold control.
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Given a time tk let �h(k) = argminh(th > tk). For all h with th 2 [t�h(k); t�h(k+1)), the reference
trajectory (�̂; p̂) is de�ned according to (25) and (24) by chosing

mp = m~p(k) =
~p(k)� ~p(k � 1)

�(k � 1)
(78)

np = n~p(k) = ~p(k) (79)

In conclusion, the hybrid tracking feedback control is summarized below.

Fuel injection control | running at dead{center times ftkg

compute
~̂
T (k + 2) according to (75)

compute ~pmin; ~pmax according to (77)
compute ~p(k) and set (k) according to (65)
compute m~p(k); n~p(k) according to (78{79)

(80)

Intake manifold control | running at �xed sampling fthg
compute �(�; p) according to (44) with mp = m~p(k); np = n~p(k)
set v(h) according to (74)

(81)

4 Analysis of the robustness of the torque tracking con-

trol

We report here the results on the analysis of the robustness properties of the hybrid feed-
backs (80) and (81) when applied to the hybrid engine model presented in Section 2. Such
analysis is developed through a sequence of incremental steps. Starting from an abstraction
of the hybrid engine model, at each step the model is re�ned until its complete description is
achieved.

The robustness analysis is developed through the following steps:

R.1 �xed crankshaft velocity and ramp{signal reference torque;

R.2 �xed crankshaft velocity and generic reference torque;

R.3 hybrid plant model and generic reference torque.

4.1 R.1: �xed crankshaft velocity and ramp{signal reference torque

We start the study of the robustness properties of the proposed hybrid feedback considering a
relaxed hybrid model of the engine where

� the crankshaft speed is supposed to be constant, i.e. n(t) = 30=� , and

� the reference torque signal T̂ is a ramp{signal of type (49).

We will show that:
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Proposition 4.1.1 If the reference signal T̂ satis�es the hypothesis of Lemma 3.2.3, where
~pmin and ~pmax are given by (77), and if

Q � min

(����� ~pmax � T̂ (k + 2)

l(k + 1)

����� ;
����� ~pmin � T̂ (k + 2)

l(k + 1)

�����
)

and Q 2 (0; 1] (82)

then

� T (k) = T̂ (k), for all k greater than some �nite K > 0, and

� limk!1 l(k) = 0.

If the manifold pressure is a�ected by a multiplicative disturbance "M(k) and an additive dis-
turbance "A(k), that is

p(k) = ~p(k)"M(k) + "A(k) ; (83)

with "M(k) and "A(k) bounded as

j"M(k)� 1j � dM < 1 and j"A(k)j � dA : (84)

then limk!1 l(k) = L <1.

Proof. Consider �rst the convergence of T (k) to T̂ (k). If, given some �k, we have

p(k + 1) 2 [
T̂ (k + 2)

Gcpmax

;
T̂ (k + 2)

Gcpmin

] 8k > �k (85)

p(k + 1) = ~p(k + 1) 8k > �k (86)

then the outer control loop (65) can set a proper value for (k) so that T (k + 2) = T̂ (k + 2).
The existence of a value �k for which (85) and (86) hold is guaranteed by Lemma 3.2.3. In fact,
(85) trivially follows from (67), while (86) is implied by (82). Hence,

T (k) = T̂ (k) for any k > K = �k + 2:

Since (86) holds, then by Lemma (3.2.3), limk!1 l(k) = 0 provided that Q 2 (0; 1].
Let the manifold pressure p(k) be a�ected by disturbances as in (83). By (49), we have

l(k + 2) = l(k + 1) + cpp(k)(1� (k)). Moreover, since T (k) = T̂ (k), by (65) and (83),

l(k + 2) = l(k + 1) + cp(~p(k)"M(k) + "A(k))�
T̂ (k + 2)

G

and, by (65) and (67),

l(k + 2) = l(k + 1)(1�Q"M(k)) +
T̂ (k + 2)

G
("M(k)� 1) + cp"A(k) ;

which gives

l(k) = l(�k + 2)(1�Q"M(�k + k + 1� i))k +
k��k�2X
i=0

(1�Q"M(�k + k + 1� i))i (87)

 
T̂ (�k + k + 3� i)("M(�k + k + 1� i)� 1) + cp"A(�k + k + 1� i)

G(1�Q"M(�k + k + 1� i))

!
:
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Then

jl(k)j �M
k��k�2X
i=0

j1�Q"M(�k + k + 1� i)jk � M
1X
i=0

j1�Q(1� dM)jk

whereM = (maxi T̂ (i))dM+cpdA
G(1�QdM )

. Hence, since for any Q 2 (0; 1] and dM 2 (0; 1), 1�Q(1�dM) < 1
then the upper bounding series converges and

lim
k!1

jl(k)j �
1X
i=0

M j1�Q"M(�k + k + 1� i)jk �
M

Q(1� dM)
= L

The closest Q(1� dM) is to 1, the faster is the convergence of l(k) and the lowest upper bound
L. 2

Note that, if Q is small the upper bounds dA and dM are small since the reference air ~p(k) is
smooth and can be easily tracked by p(k).

4.2 R.2: �xed crankshaft velocity and generic reference torque

When a generic (non{ramp) reference torque signal T̂ (t) is required to be tracked, the hybrid
feedback control (80) computes, at each dead point, the next value of the requested torque by
approximating locally the reference signal with tangent according to (75).

If the crankshaft velocity is �xed at 30=� then, at a given dead center time tk, the hybrid
feedback control (80) and (81) produces a torque T (tk) that exactly matches the value of the
ramp signal starting at time tk�2 with value T̂ (tk�2).

If the second derivative with respect to time of the reference torque signal T̂ (t) is bounded
by M 00, then at each dead center, the error between the reference signal T̂ (tk) and the produced
torque is upper bounded by

jT (tk)� T̂ (tk)j � 4M 00� 2 (88)

In the intake manifold inner{loop control, the discontinuities due to a non{ramp torque signal
are added to those due to the modulation of ~p(h) introduced by the equivalence ratio (k)
modulation. Hence, non{ramp reference signals do not qualitatively change the behavior of the
inner loop.

4.3 R.3: hybrid plant model and generic reference torque

Consider now the case where the hybrid feedback control (80) and (81) is applied to the hybrid
engine model described in Section 2. In such model the sequence of dead center times is not
equally spaced as supposed in the previous two sections.

Let �d(k) denote the di�erence between the time �(k) between the next and the current
dead center and its estimated value ~�(k), i.e.

�d(k) = �(k)� ~�(k)

and let �d(k) � �M for some �M .
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By (49) and (76), T (k+2) = G[~p(k+1)+m~p(k+1)�d(k+1)](k). Assuming that feedback

control has locked the reference signal T̂ (k) and replacing according to (65) (k) with T̂ (k+2)
Gcp~p(k+1)

,

we have

T (k + 2) = T̂ (k + 2) +

 
mT̂ (k) +G

mp(k + 1)

~p(k + 1)

!
�d(k + 1) +mT̂ (k)�d(k + 2) :

Hence, the torque produced is composed of: the linear approximation of the reference signal
and a disturbance due to the terms multiplyingmT̂ (k) and m~p(k+1). The �rst term represents
the error on the linear interpolation of the torque and is numerically larger than the second
one, that is due to errors on manifold pressure measurement time.

Further, recall that, the value T̂ (k+2) obtained by the tangent approximation of the torque
reference signal, is a�ected by an error which can be upper bounded as in (88)

Variable l(k) is a�ected only by the error on the manifold pressure measurement time:

l(k + 2) = l(k + 1)(1�Q) +m~p(k + 1)(1� (k))�d(k)

Since (1� (k)) and m~p(k + 1) are bounded, then for any Q 2 (0; 1)

lim
k!1

jl(k)j < L

where L is proportional to 1
1�Q

and �M .

5 Simulations

In Figure 6 a minimum{time trajectory of the intake manifold dynamics (28) to a ramp{
signal reference pressure as in (24), obtained applying the optimal control (47) developed in
Section 3.1, is reported. According to the theoretical study, the optimal control v has only one
switching before approaching the reference signal.

Figures 7,8 and 9 report the results of the simulation of the hybrid engine model described
in Section 2 under the hybrid tracking{control feedback (80) and (81) for ramp and sinusoidal
reference torque signals.

In Figure 7 a ramp{signal reference{torque is applied. The control action is composed of
two subsequent parts:

� �rst, overloading the catalytic converter, the control signals attempt to achieve the refer-
ence torque by using an equivalence ratio  greater than the stoichiometric value 1;

� then, keeping the torque locked on the reference signal, the control balances the catalytic
converter by driving the manifold pressure to values that both guarantee torque tracking
and, at the same time, produce lean mixture until the catalytic converter is recovered.

The catalytic converter is loaded until the intake manifold dynamics approaches the manifold
pressure reference signal; then its recovery begins and the torque approaches the reference
signal. At each dead center, a new reference signal is provided to the intake manifold inner{
loop. Hence, the errors on the estimation of the next dead center time produce a noise on
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Figure 6: Simulation of intake manifold under continuous{time feedback control low (47). Top{Left: Intake manifold pressure
p(t); Top{Right: Throttle valve angle �(t); Down{Left: State{space trajectory �(t); p(t); Down{Right: Input control v(t).

the reference manifold pressure signal ~p(h). To reduce the negative e�ects of such noise in the
intake manifold inner{loop, the signal ~p(h) is �ltered through a one{order low{pass �lter. The
control v(h) changes according to the reference manifold pressure ~p(h) so, the discontinuities
of ~p(h) which are produced at each dead center appear also on the input signal v(h). Such
discontinuities decrease when the catalytic converter is balanced because, in this case, ~p(h)
depend only on the torque reference signal which is smooth.

In Figure 8 the reference{signal is a sinusoid{signal, whose peak value can be produced by
the engine with a stoichiometric mixture. The closed{loop system behavior is similar to that
of the previous case, except for the fact that the discontinuities of v(h) do not decrease since
the requested torque does not produce a ramp{signal desired manifold pressure.

Finally, in Figure 9 the reference{signal is a sinusoid{signal, whose peak value cannot be pro-
duced with stoichiometric mixture. At �rst, the control law attempts to achieve the requested
torque, then it tries to recover the catalytic converter until the torque reference become too high
to be produced. The catalytic converter, overloaded to achieve the torque, is kept unbalanced
to remain close to the desired torque, but, when it reaches its physical constraint, it forces to
use either stoichiometric or lean mixture. This phenomenon generates a discontinuity on the
produced torque that is clasped on the reference value until the catalytic converter reaches its
constraints, then it jumps to the maximal torque generatable at stoichiometric. The recovery
of catalytic converter begins when the reference torque signal becomes small enough.

Appendix

Proof of Lemma 3.2.1. Let us �rst show that for a given u(k), (64)) (63). If (k) and ~p(k)
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Figure 7: Simulation of hybrid model engine under control (80,81), excited by a ramp-signal reference. Top{Left: Torque
produced and torque reference signal; Top{Center: catalytic converter status l(k); Top{Right: Intake manifold pressure p(t);
Down{Left: Throttle valve angle �(t); Down{Center: Input mix Air-Fuel (k) ; Down{Right: Input control v(t).

are as in (64), then (k) 2 [min; max] and 2 [~pmin; ~pmax]. Consider the following cases:

� let (k) 2 (min; max) and ~p(k) 2 [min; max]. If �(k) = (k) = T̂ (k+2)
Gcp~p(k)

then u(k) =

(k)~p(k) = T̂ (k+2)
Gcp

2 (~pminmin; ~pmaxmax).

� let ~p(k) 2 (min; max) and (k) 2 [min; max]. Since ~p(k) = T̂ (k+2)
Gcp�(k)

, then choosing

�(k) = (k), we have u(k) = (k)~p(k) = T̂ (k+2)
Gcp

2 (~pminmin; ~pmaxmax).

� let ~p(k) = ~pmax and (k) = max. By (64) T̂ (k+2)
Gcp~pmax(k)

� max and, choosing � = max, we

have T̂ (k+2)
Gcp

� u(k) = ~pmaxmax.

� let ~p(k) = ~pmin and (k) = min. By (64)
T̂ (k+2)
Gcp~pmin

� min and, choosing � = min, we have
T̂ (k+2)
Gcp

� u(k) = ~pminmin.

� let ~p(k) = ~pmax and (k) = min. By (64) ~pmax �
T̂ (k+2)
Gcp�(k)

� T̂ (k+2)
Gcpmin

� ~pmax then choosing

� = T̂ (k+2)
Gcp~pmax

, u(k) = min~pmax =
T̂ (k+1)
Gcp

2 (~pminmin; ~pmaxmax)

� let ~p(k) = ~pmin and  = max(k). By (64) ~pmin �
T̂ (k+2)
Gcp�(k)

� T̂ (k+2)
Gcpmax

� ~pmin, then choosing

� = T̂ (k+2)
Gcp~pmin

, we have u(k) = max~pmin =
T̂ (k+1)
Gcp

2 (~pminmin; ~pmaxmax).

27



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

[sec]

[N
m

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0
x 10

−4

[sec]

[K
g]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8
x 10

4

[sec]

[P
a]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

[sec]

[g
ra

d]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
12

12.5

13

13.5

14

14.5

15

15.5

16

[sec]

A
/F

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

[sec]

[V
ol

t]

Figure 8: Simulation of hybrid model engine under control (80,81), excited by a short excursion sinusoid-signal reference.
Top{Left: Torque produced and torque reference signal; Top{Center: catalytic converter status l(k); Top{Right: Intake manifold
pressure p(t); Down{Left: Throttle valve angle �(t); Down{Center: Input mix Air-Fuel (k) ; Down{Right: Input control v(t).

Implication (63) ) (64) is trivial. Indeed, if for some u(k) (63) yields then any (k) and ~p(k)
that satisfy (k)~p(k) = u(k) can be written as in (64) for some � 2 [min; max]. 2

Proof of Lemma 3.2.2. Three cases are in order:
1: Let � > 1. We have � > 1 > min. Further, assume that � < max. Since l(k) +

cpp(k)(1� C(k)) = l(k + 1), then by (67) � = T̂ (k+2)

T̂ (k+2)�QGl(k+1)
> 1. Hence, since QG > 0 then

l(k + 1) > 0. The same holds when � = max. By (68),

max � 1�
lmin

cp~pmax

� 1�
lmin

cp~pmax

+
l(k + 1)

cp~pmax

� 1�
lmin

cp~p(k)
+
l(k + 1)

cp~p(k)
= max

� 1 +
l(k) + cpp(k)(1� C(k))� lmin

cp~p(k)

Then, by (66) bmax = max.
2: Let � = 1. We have l(k + 1) = 0 and by (66) bmax = max and bmin = min.
3: Let � < 1. Analogously to case 1., we have � < 1 < max. Further, by (67) l(k + 1) < 0

and

min � 1�
lmax

cp~pmin

� 1�
lmax

cp~pmin

+
l(k + 1)

cp~pmin

� 1�
lmax

cpq(k)
+
l(k + 1)

cp~p(k)
= min

� 1 +
l(k) + cpp(k)(1� C(k))� lmax

cp~p(k)
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Figure 9: Simulation of hybrid model engine under control (80,81), excited by a wide excursion sinusoid-signal reference.
Top{Left: Torque produced and torque reference signal; Top{Center: catalytic converter status l(k); Top{Right: Intake manifold
pressure p(t); Down{Left: Throttle valve angle �(t); Down{Center: Input mix Air-Fuel (k) ; Down{Right: Input control v(t).

Then, by (66) bmin = min.
Summarizing: if � 2 [1; max] then, � 2 [1; bmax], while if � 2 [min; 1] then � 2 [bmin; 1]. 2

Proof of Lemma 3.2.3. Let ��(k) = ( T̂ (k+2)

T̂ (k+2)�GQl(k+1)
) and consider the following cases:

1: Let T̂ (k+2)
Gcp�(k)

> ~pmax. By (69), it follows �(k) < T̂ (k+2)
Gcp~pmax

< 1. Further, since by (65)

(k) < 1 < bmax and by (67) �(k) < 1 < bmax, then

��(k) � �(k) �
T̂ (k + 2)

Gcp~pmax

� (k) < 1 (89)

Then, by (49),

l(k+1) > l(k+2) = l(k+1)+ cp~p(k)(1� (k)) � l(k+1)+ cp~p(k)(1� ��(k)) � l(k+1)(1�Q)

where the de�nition of ��(k) has been used. Further, since by (67), �(k) < 1 only if l(k+1) > 0,
then

l(k + 1) > l(k + 2) � l(k + 1)(1�Q) > 0

2: Let T̂ (k+2)
Gcp�(k)

< ~pmin. By (69), it follows �(k) > T̂ (k+2)
Gcp~pmax

> 1. Further, since by (65)

(k) > 1 > bmin and by (67) �(k) > 1 > bmin, then

��(k) � �(k) �
T̂ (k + 2)

Gcp~pmax

� (k) > 1 (90)
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Then, by (49),

l(k+1) < l(k+2) = l(k+1)+ cp~p(k)(1� (k)) � l(k+1)+ cp~p(k)(1� ��(k)) � l(k+1)(1�Q)

where the de�nition of ��(k) has been used. Further, since by (67), �(k) > 1 only if l(k+1) < 0,
then

l(k + 1) < l(k + 2) � l(k + 1)(1�Q) < 0

3: Let ~pmin �
T̂ (k+2)
Gcp�(k)

� ~pmax. By (65), we have (k) = �(k). Three cases are in order:

� Let min < �(k) < max. Then, by (67), (k) = ��(k) and l(k+2) = (1�Q)l(k+1) which
is stable for Q 2 (0; 1].

� Let �(k) � max. Since, by (67), ��(k) � (k) then by (49),

l(k+1) > l(k+2) = l(k+1)+cp~p(k)(1�(k)) � l(k+1)+cp~p(k)(1���(k)) � (1�Q)l(k+1) > 0

where the de�nition of ��(k) has been used.

� Let �(k) � min. Since, by (67), ��(k) � (k) then by (49),

l(k+1) < l(k+2) = l(k+1)+cp~p(k)(1�(k)) � l(k+1)+cp~p(k)(1���(k)) � (1�Q)l(k+1) < 0

where the de�nition of ��(k) has been used.

Summarizing we have

0 � (1�Q)jl(k + 1)j � jl(k + 2)j < jl(k + 1)j

as in (70). 2
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