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Analysis and Optimization of Tendinous Actuation
for Biomorphically Designed Robotic Systems.

Antonio Bicchi, Domenico Prattichizzo

Abstract—We present a general framework for modeling a
class of mechanical systems for robotic manipulation, con-
sisting of articulated limbs with redundant tendinous actu-
ation and unilateral constraints. Such systems, that include
biomorphically designed devices, are regarded as a collec-
tion of rigid bodies, interacting through connections that
model both joints and contacts with virtual springs. Meth-
ods previously developed for the analysis of force distribu-
tion in multiple whole-limb manipulation are generalized to
this broader class of mechanisms, and are shown to provide
a basis for the control of co–contraction and internal forces
that guarantee proper operation of the system. In particu-
lar, in the presence of constraints such as those due to lim-
ited friction between surfaces or object fragility, the choice
of tendon tensions is crucial to the success of manipulation.
An algorithm is described that allows to evaluate efficiently
set–points for the control of tendon actuators that “opti-
mally” (in a sense to be described) comply with the given
constraints.

I. Introduction

The articular and tendinous structure of animal limbs
provide an outstanding example of mechanical systems
with extremely high performance, that attracts the inter-
est of researchers in physiology, biomaterials, and robotics.
The extremely low friction in articular joints and the re-
motization of actuators made possible by tendon structures
are two of the prominent advantages of biomorphic struc-
tures over conventional mechanical design. Besides the ex-
ceptional lubrication properties of synovial fluid, low fric-
tion in articular joints is achieved through the use of rolling
pairs between bone processes. The large redundancy of the
tendinous system allows actuators (muscles) to be located
far away from articular joints, and offers the possibility of
“co–contracting” the limbs so as to optimally tune their
stiffness and configure the limbs for different tasks (preci-
sion movements, force exertion, etc.)

The analysis of both the kinematics of articular joints
and the redundancy in tendinous actuation offer non-trivial
difficulties. Among these are the non-holonomy of rolling
pairs, and the unilateral action of tendons (no “pushing” is
allowed). The literature on tendon-actuated mechanisms
is relatively rich in robotics, where they have been used
especially in the design of dextrous robotic hands. The ne-
cessity to avoid tendon cables to go slack has been often
solved most simply by using two tendons per joint in push-
pull (or agonistic–antagonistic) configuration [1]. The use
of 2n cables and actuators for n joints however hampers
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the practicality of the design and affects its cost. In [2] and
[3], authors described the use of co–contraction in mecha-
nisms using n+1 tendons. Among the novel applications of
tendon actuation systems, are those to minimally–invasive
surgery [4], and to haptic displays [5].

A general analysis of tendon driven mechanisms has been
attempted in most cases for systems where tendons are
routed through joints by means of pulleys (see e.g. [6]). A
qualitative description of more general systems composed
of nets of tendons and actuators has been presented by Bar-
bieri and Bergamasco [7]. In [8] authors modeled a tendon
as a transmission line. Although the tendon model is real-
istic, its integration into the complete dynamics of the ma-
nipulator results to be complex. Shen et al. [9] studied ma-
nipulation forces in tendon–driven manipulation systems,
while Kurtz and Hayward [10] studied dexterity measures
under the unilateral constraint implied by tendons. In [11],
authors discussed dynamics of a 1 DOF tendon-driven ma-
nipulator and provided a parameter sensitivity analysis.
Kobayashi et al. [12] developed a redundant 2–DOF ma-
nipulator with 6 tendons and showed that the mechanism
safely works even if 3 tendons are broken. Kobayashi et al.
[13] analyzed structural properties of mechanisms with a
kinematically redundant set of tendons, and showed that a
redundant number of tendons allows to adjust the manipu-
lator stiffness and increase the mechanims fault tolerance.
Prisco and Bergamasco [14] investigated the dynamics of
a multi DOF tendon-driven manipulator taking into ac-
count viscoelasticity of tendons, inertia and transmission
kinematics.

More complex models of tendon-actuated systems have
been considered in the biomechanical literature [15], [16],
[17], [18], [19]. Some authors used anthropomorphic models
to attack the design of robot hands [20], [21], [22], [23].

The approach proposed in this paper is meant to en-
compass a wide variety of configurations that can be en-
countered in biological systems or conceived for artificial
devices. For the sake of the widest generality, we model
articulated limbs with tendinous actuation and manipu-
lated objects as a collection of rigid bodies, interacting
through contacts with characteristic kinematic and visco-
elastic properties [24]. Distinction between manipulator
“links” and “objects” to be manipulated is not intrinsic to
the model, but can be recovered in the final stage of analy-
sis. Contacts of any of the bodies with others are allowed,
so that whole–limb manipulation is naturally investigated
in this framework. Also, kinematic rolling pairs are allowed
not only between a link and the manipulated object, but
also between links in the same limb chain, so as to permit
the above mentioned, high–efficiency biomorphic joints to
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Fig. 1. A finger with two phalanges and three tendons manipulating
an object against a wall.

be included in the analysis.
A quasi–static, small–displacement analysis of force dis-

tribution between contacts and through tendons for these
systems is proposed that follows the lines of [25]. As a re-
sult of the proposed analysis, one is able to describe how
external and internal forces are distributed in the system in
a given configuration. Internal forces are defined (as usual
in grasp literature) as the set of tendon tensions and con-
tact forces that are self–balanced, i.e., do not affect motions
of any part of the system. Among internal forces, “co–
contraction” forces are further distinguished as those com-
binations of tendon tensions that influence contact forces
between finger links, but do not act upon manipulated ob-
jects. The actual capability of the system to actively con-
trol such forces is investigated. By these means, a basis
for the choice of internal forces that allow to avoid loos-
ing the grip on manipulated objects, as well as a basis for
co–contraction forces to avoid tendon backlash and joint
disruption, is provided. The actual choice of actuating ac-
tions on the system can be eventually made based on an
optimality criterion that embodies some measure of the dis-
tance between the present configuration of forces and ten-
sions and the constraint boundaries. An implementation of
such an approach is described in this paper, along with an
algorithm that allows to efficiently implement the optimal
choice. A proof of the global asymptotic convergence of the
algorithm to the desired optimum value is given. Finally,
the proposed analysis method and optimization algorithm
are illustrated in an example of a finger–like manipulating
system.

II. System Description

We consider tendon–actuated robotic structures as sys-
tems comprised of an arbitrary number n of rigid objects
that may be connected one with any of the others, and/or
with the environment, through contacts or rotoidal or pris-
matic joints. An example of a tendon–driven robotic ma-
nipulator is reported in fig.1. Bodies are numbered from 1
to n, while the environment is assigned the index 0. Let

Fig. 2. Characteristic connection points, tendon conduits, and forces
applied on the i-th body.

the location in base frame of the characteristic point of the
connection between the i-th and j-th objects be ci,j ∈ IR3.
For prismatic or rotoidal joints, the characteristic point can
be chosen as the joint origin in usual Denavit-Hartenberg
conventions, while the contact centroid definition of [26] is
used for contacts.

The actuation system is comprised of q motors and r
tendons. Tendons always have one end fixed to one of the
objects, while the other end may be connected to a motor or
to another object (r ≥ q). Tendons may be routed through
idle pulleys or sheaths, possibly fixed to some of the bodies,
cf. fig.II. The point on body i where tendon j is fixed or is
passed through is vi,j . According to the indexing of bod-
ies, the position of the j-th tendon actuator is denoted by
v0,j . Tendons are supposed uniformly stressed (frictionless
transmission), and tensions applied to each tendon are col-
lected in a vector r = (r1, r2, . . . , rr)T ∈ IRr. We introduce
the shorthand notation r = [ri]r1 for similar juxtaposed
vectors and matrices to be encountered.

Denote with t̃i,j ∈ IR6 the force/torque (wrench) exerted
on the i-th object by the j-th object. Further, let t̃i ∈ IR6n

contains all vectors t̃i,j with j �= i, t̃i = [t̃i,j ]n1,j �=i, and let
the external wrench applied on the i-th object be wi ∈ IR6

(see fig.II). Balance equation for the i-th body can be
written in matrix form as

wi = −G̃it̃i − Tir

where
G̃i = [G̃T

i,j ]
T n

1,j �=i ∈ IR6×6n

Ti = [TT
i,j ]

T r
1 ∈ IR6×r

being Ti,j described in the appendix and G̃i,j =(
I3 0

ci,j× I3

)
∈ IR6×6 if the i–th object is in contact with

the j–th object, or G̃i,j = 06×6 otherwise.
The overall system balance equation can be written as

w = −G̃t̃ − Tr

where w = [wi]n1 ∈ IR6n, t̃ = [t̃i]n1 ∈ IR6n2
, and

G̃ = diag [G̃i]n1 ∈ IR6n×6n2

T = [Ti]n1 ∈ IR6n×r.
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To take into account that not all tendons are directly
actuated, a suitable selection matrix Γ ∈ IRq×r which maps
tendon tensions r to vector of forces τ applied on tendons
by the q motors is introduced as

τ = Γr

where Γi,j = 1 if the j–th tendon is directly connected to
the i–th motor, and Γi,j = 0 otherwise.

To model constraints due to joints, and to contacts be-
tween bodies, consider two reference frames Ci,j and Cj,i

fixed with the object i and the object j, respectively, and
centered in ci,j . Corresponding to a small displacement
∆li and rotation ∆Φi of the i-th object (summarized in
the twist vector ∆ui = (∆lTi ,∆ΦT

i )T ∈ IR6), frame Ci,j is
displaced by ∆vi,j and rotated by ∆φi,j

∆xi,j =
(

∆vi,j

∆φi,j

)
= G̃T

i,j∆ui (1)

and analogously for ∆xj,i. Connection (joint or contact)
constraints impose that some components of the relative
displacement ∆xi,j − ∆xj,i are opposed by reaction forces
while others are left free, depending upon the type of con-
nection. The structure of the connection between the i–
th and j–th bodies is summarized by a selection matrix,
Hi,j ∈ IRtij×6 such that forces and torques mutually ex-
erted at the connection are written as

ti,j = Ki,jHi,j(∆xi,j − ∆xj,i) + t̂i,j (2)

where the stiffness matrix Ki,j ∈ IRti,j×ti,j incorporates
the structural elasticity of the connection elements (“vir-
tual springs”), and t̂i,j is the contact force when the relative
displacement is zero. Note that in eq. (2), ti,j ∈ IRtij dif-
fers from t̃i,j = HT

i,jti,j ∈ IR6 in that only the components
of the connection wrench that are relevant to the interac-
tion are present. The n2 equation (2) can be summarized,
using eq. (1), as

t = KHX∆x + t̂ = KHXG̃T ∆u + t̂

where ∆x = [∆xi]n1 and ∆xi = [∆xi,j ]n1,j �=i. Matrix

X ∈ IR6n2×6n2
selects appropriate combinations of dis-

placements ∆xi,j . The structure of H ∈ IRs×6n2
, K ∈

IRs×s, and X is described in the appendix.
The model of tendon elasticity is obtained introducing

the tendon relative displacement ∆xr and the displace-
ments imposed by motors on tendon ends, ∆q. Accord-
ingly, the tension of tendons r is

r = Kr∆xr + r̂ = Kr(TT ∆u − ΓT ∆q) + r̂.

where r̂ are the tensions in the reference configuration
∆xr = 0. The diagonal stiffness matrix Kr ∈ IRr×r de-
pends on the elastic characteristics of tendons.

According to the above definitions and notations, the
model of the system to be studied can be summarized by

the following equations:

w = −G̃t̃ − Tr = −
(
G̃HT T

)(
t
r

)
def= −Ḡt̄ (3)

τ = Γr (4)
t = KHX∆x + t̂ = KHXG̃T ∆u + t̂ (5)
r = Kr∆xr + r̂ = Kr(TT ∆u − ΓT ∆q) + r̂. (6)

III. Force Distribution

The force distribution problem consists of describing the
general solution to eq. (3), a linear system of 6n equation
in s + r unknowns. Note that eq. (3) admits solution only
if w belongs to the range space of Ḡ. A wrench outside
such range could not be counterbalanced by any actuator
action: this situation is usually avoided by design. Thus,
we assume that R(Ḡ) = IR6n. The general solution of eq.
(3) can be written as the sum of a particular solution and
an homogeneous solution.

A. Particular solution

The particular solution is in general not unique, since Ḡ
admits infinitely many right inverses. However, we expect
a unique solution to the following problem:

Assume the system is in an equilibrium configuration,
under a set of external loads ŵ, with contact forces t̂ and
tensions of tendons r̂. Determine the contact forces and
tendon tensions at the equilibrium that the system reaches
when an additional load w is applied, while the actuator
position q is kept constant.

Eq.(5) and (6) with ∆q = 0, can be rewritten as follows

t̄ =
(

t
r

)
=

(
K 0
0 Kr

) (
GT

x

TT

)
∆u +

(
t̂
r̂

)
def= K̄ḠT

x ∆u + ˆ̄t,(7)

where Gx = HXG̃T . Substituting eq.(7) in eq.(3), we
have

w + ŵ = −ḠK̄ḠT
x ∆u − Ḡˆ̄t.

Hence, being ŵ = −Ḡˆ̄t and recalling that Ḡ is assumed
full row rank and K̄ is invertible, one gets

t̄ =
(

t
r

)
= −K̄ḠT

x (ḠK̄ḠT
x )−1w+ˆ̄t def= −ḠR

Kw+ˆ̄t (8)

where ḠR
K is the K̄–weighted right inverse of Ḡ. It ensues

that the particular solution for tendon tensions and contact
forces between any pair of bodies caused by the external
wrench w can be easily recovered from (8).

B. Homogeneous solution

Homogeneous solutions of eq. (3) correspond to tendon
tensions and connection forces that counterbalance each
other, thus not affecting the overall equilibrium of the sys-
tem. These forces and tensions are usually referred to as in-
ternal. Internal forces are of fundamental concern in grasp
planning, since disruption of rolling–pair joints or slippage
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and loss of grasp stability can often be avoided only through
effective management of internal forces. In analogy with
systems of whole-limb manipulators without tendons dis-
cussed in [25], in the present case we may be confronted
with the impossibility of arbitrarily controlling every com-
bination of internal forces in the nullspace of Ḡ. Among in-
ternal tensions–forces, co–contraction tendon tensions can
be further distinguished as those that do not affect con-
tact forces between the links and the manipulated objects.
Co–contraction tensions must be used to keep tensions pos-
itive in each tendon (to avoid them to go slack), and to keep
contact between different links in the limbs (when e.g. a
rolling–pair joint is used).

B.1 Active internal tensions and forces

Let us rewrite eq.(5) and (6) as

t̄ =
(

t
r

)
=

(
KGT

x 0
KrTT −KrΓT

)(
∆u
∆q

)
def= M

(
∆u
∆q

)

We now prove that every active internal (contact and
tendon) force can be written as the product of a basis ma-
trix E times an arbitrary coefficient vector y of suitable
dimension. In fact, consider an equilibrium configuration
of the system under the wrench ŵ and let ˆ̄t, q̂ be the
connection/tendon forces and positions of tendon actuated
ends, respectively. Let δu be a vector containing virtual
displacements of the objects compatible with all connec-
tion constraints. Applying the principle of virtual work
(PVW) and eq.(3), we have

ŵT δu = ˆ̄t
T
ḠT δu = 0, ∀δu.

Perturb the equilibrium configuration by imposing dis-
placements of the actuated ends of tendons by ∆q, and
let ∆t̄, ∆u be the change of tensions and forces and the
change of position of bodies, respectively. A new equilib-
rium configuration, under the same set of external forces
ŵ, will be reached on condition that the PVW is satisfied:

ŵT δu = (̂̄t
T

+ ∆t̄T )ḠT δu = ∆t̄T ḠT δu = 0, ∀δu.

Substituting eq.(III-B.1), the PVW condition is rewritten
as

ḠM
(

∆u
∆q

)
= 0.

Let B ∈ IR(6n+q)×b be a matrix whose columns span the
nullspace of ḠM. According to (III-B.1), the subspace of
internal forces that can be obtained at steady–state after
a displacement of the tendon ends is commanded, i.e. the
subspace of active internal forces Fha, is given by the range
space of MB whose basis matrix E ∈ IRs×e is obtained by
using only the independent columns of the product MB.
Therefore,

Fha = {t̄ : Ey,y ∈ IRe} .

The basis matrix E can be partitioned as E = ([Ei]n1 Er),
with Ei = [Ei,j ]n1,j �=i. Blocks Ei,j ∈ IRti,j×e correspond to
contact forces between the i–th and the j–th body con-
tributing to active internal forces, while block Er con-
tains the corresponding tensions of tendons necessary to

apply the internal forces. Note that the set of the ”co–
contraction” forces Fcc is the subspace of active internal
forces that do not change the forces between links and the
manipulated object:

Fcc = {t̄ : t̄ = Ey,y ∈ IRe,Ei,jy = 0, if body i or j is the “object”

B.2 Preload internal forces

We consider preload tensions and forces as those inter-
nal tensions and forces that can not be actively controlled
by means of motor displacements. Preloading a system
can avoid slippage due to a low value of non controllable
normal forces. In the analysis of systems with tendinous
structure and rolling pairs, preloading can be used to model
the effects of articular ligaments.

Letting ΓT = (0 Γ) ∈ IRq×(s+r), eq. (4) is rewritten as
τ = ΓT t̄ and eq. (5) and (6) can be assembled as

t̄ =
(

t
r

)
=

(
KHx 0

0 Kr

)(
∆x
∆xr

)
def= K′

(
∆x
∆xr

)
.

Because every preload force is internal and not controllable
by motors, the following relations must be verified

ḠK′
(

∆x
∆xr

)
= 0;

ΓT K′
(

∆x
∆xr

)
= 0.

The subspace of preload tensions and forces Fhp is therefore
given by

Fhp =
{
t̄ : t̄ = K′y,y ∈ N (ḠK′) ∩N (ΓT K′)

}
where N (·) indicates the nullspace of the argument.

IV. Optimization of tendon tensions

In this section, we assume for simplicity that the system
is not preloaded (this assumption implies no loss of gener-
ality, as preload effects could be easily taken into account
by superimposing them to the effects of external wrenches).
The general solution of eq.(3) can be written as

t̄ = ḠR
Kw + Ey.

where y is a free vector parameterizing the internal ten-
sions/forces (including tendinous tensions used in co–
contraction), which may be chosen according to the system
constraints, among which the most important are typically
those listed in the following.
Maximum contact forces A delicate object could be dam-
aged by too large forces; in some cases, it is some parts
of the robot system (e.g. the force sensors) that might be
hurt. A safety threshold, depending on the objects involved
in the contact interaction, should be chosen to limit the in-
tensity of contact forces. These bounds can be summarized
as

‖pi,j‖ ≤ fi,j,max > 0, i = 1, 2, . . . , n, j = 0, 2, . . . , n, i �= j.
(9)
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where pij is the contact force exerted on the i-th object by
the j-th object and ‖·‖ indicates the euclidean norm of the
argument.
Minimum contact forces There are also reasons to keep
contact forces above a minimum value. One is of practical
nature: contact sensors work better in a certain range of
forces, and cannot distinguish too small forces from noise.
Another, perhaps deeper, reason is that one would like to
avoid the temporal discontinuity of contacts. Klein and
Kittivatcharapong [1990] designed with this term a phe-
nomenon, consisting in a low-frequency sequence of impacts
between some links of the manipulators and the object.
This highly undesirable “chattering” of the contact forces
has been encountered e.g. by Cheng and Orin [1990], who
explained it as due to a substantial freedom in the solution
of (3) while yet meeting some underconstraining optimality
criterion.
A lower bound on the normal component of contact forces
can be imposed as

pT
ijni,j ≥ fi,j,min > 0, i = 1, 2, . . . , n, j = 0, 1, . . . , n, i �= j.

(10)
where ni,j is the unit normal vector pointing toward the
surface of object i at the contact point between objects i
and j.
Friction limits. In the absence of local contact torques, the
normal and tangential components of each contact force
pi,j must comply with Coulomb’s law of friction

pT
i,jni,j ≥ 1

µi,j
‖ (

I − nijnT
i,j

)
pi,j‖ = αi,j ‖pi,j‖, (11)

where µi,j is the static friction coefficient in the current
contact conditions, and αi,j = (1 + µ2

i,j)
−1/2.

When more realistic models of contact are assumed, fric-
tion limits involve much more complex relationships. For
the case of “soft–finger” contacts [3], a simplified linear
relationship can be assumed as

pT
i,jni,j ≥ αi,j‖pi,j‖+βi,j‖qi,j‖ i = 1, 2, . . . , n, j = 0, 1, . . . , n, i �= j.

where αi,j = (1 + µ2
i,j)

−1/2 and βi,j = 1/µi,j , and µi,j

is the rotational friction coefficient. For a more accurate
discussion of related questions, see e.g. [Goyal, 1989].
Maximum tendon tension. The tendon stress amplitude
must be less then a maximum fixed value. This value de-
pends of the made of tendons. We have:

ri ≤ ri,max i = 1, 2, . . . , r.

Minimum tendon tension. The tendon stress amplitude
must be grater then a minimum fixed value. We have:

ri ≥ ri,min i = 1, 2, . . . , r.

A. Cost function

In this subsection, we proceed to construct a cost func-
tion whose minimzation can guarantee fulfilling all con-
straints introduced above. Following the approach of [27],
the constraints eq. (9), eq. (10), and eq. (11) relative to

the contact between object i and j, can all be written in
the same form as

σi,j,k(y,w) = αi,j,k ‖pi,j‖+βi,j,k ‖qi,j‖+γi,j,k pT
i,jni,j+δi,j,k ≤ 0,

(12)
where αi,j,1 = 1, βi,j,1 = 0, γi,j,1 = 0, and δi,j,1 = −fi,j,max

for maximum force constraints; αi,j,2 = 0, βi,j,2 = 0,
γi,j,2 = −1, and δi,j,2 = fi,j,min for minimum force con-
straints; and αi,j,3 = αi,j , βi,j,3 = βi,j , γi,3 = −1, and
δi,3 = 0 for friction constraints. Also tendon constrains
can be summarized in a single expression as

νi,j(y,w) = ρi,jri + ηi,j (13)

where ρi,1 = −1 and ηi,1 = fi,min for minimum stress con-
straints; ρi,1 = 1 and ηi,1 = −fi,max for maximum stress
constraints.

Let Ωκ
i,j,k ⊂ 	e (resp., Γκ

i,j ⊂ 	e) indicate the sets of
free parameters y that, in the presence of a given load
w, satisfy constraints in eq. (12) (resp., eq. (13)) of cor-
responding indices with a (small, positive) margin κ. In
other words, let Ωκ

i,j,k := {y | σi,j,k(y) < −κ} and
Γκ

i,j := {y | νi,j(y) < −κ}. Notice explicitely that the
region where all constraints are satisfied, Ω0 ∩ Γ0, with

Ω0 def
=

⋂
i,j,k

Ω0
i,j,k, Γ0 def

=
⋂
i,j

Γ0
i,j ,

contains Ωκ ∩ Γκ, where

Ωκ =
⋂
i,j,k

Ωκ
i,j,k, Γκ =

⋂
i,j

Γκ
i,j

i.e., the set of parameters which fulfill constraints with a
guaranteed margin k.

For the contact between object i and j and for the k-th
constraint, consider the cost function

V κ
ci,j,k

(y,w) =
{

(2 σ2
i,j,k)−1 y ∈ Ωκ

i,j,k

a σ2
i,j,k + b σi,j,k + c y �∈ Ωκ

i,j,k
,

(14)
For the i-th tendon and j-th constraint consider

V κ
ti,j

(y,w) =
{

(2 ν2
i,j)

−1 y ∈ Γκ
i,j

a ν2
i,j + b νi,j + c y �∈ Γκ

i,j
. (15)

An overall cost function is defined as the weighted sum

V κ(y,w) =
n∑

i=1

n∑
j = 0
j �= i

3∑
k=1

wci,j,k
V κ

ci,j,k
(y)+

r∑
i=1

2∑
j=1

wti,j
V κ

ti,j
(y),

(16)
where wci,j,k

> 0 and wci,j
> 0 are positive weights. Notice

that, for k = 0, each addend V κ
ci,j,k

turns into

Vci,j,k
(y,w) =

{
(2 σ2

i,j)
−1 y ∈ Ω0

i,j,k;
∞ y �∈ Ω0

i,j,k.
,

and similarly for V κ
ti,j

. The following proposition can be
shown to hold (arguments are similar to those used in [27],
and are omitted here for brevity).
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Proposition 1: For κ = 0, the cost function defined in eq.
(16), restricted to Ω0 ∩ Γ0, is strictly convex with respect
to y ∈ 	h. For κ �= 0, with the choice a = 3

2κ4 , b = 4
κ3 ,

and c = 3
κ2 , the cost is twice continuously differentiable

and globally strictly convex with respect to y ∈ 	h.
Given the convexity of the cost functions with κ �= 0 over

the whole space of free parameters, standard techniques can
be employed to search the unique minimizer

ŷκ = arg minyV κ(y, w̃).

For instance, the following update law:

ẏ(t) = −ζ
∂2V κ

∂y2

−1
∂V κ

∂y
; (17)

where

ζ = λ +
∂V κ

∂w

T
ẇ(t)

∂V κ

∂y

T ∂2V κ

∂y2

−1 ∂V κ

∂y

, λ > 0.

provides a globally asymptotically convergent algorithm, in
the presence of time–varying external wrenches w. A proof
of convergence is straightforwardly obtained by considering
the time derivative of the positive–definite Lyapunov can-
didate function V κ

V̇ κ =
∂V κ

∂y

T

ẏ +
∂V κ

∂w

T

ẇ

= −ζ
∂V κ

∂y

T ∂2V κ

∂y2

−1
∂V κ

∂y
+

∂V κ

∂w

T

ẇ

= − λ
∂V κ

∂y

T ∂2V κ

∂y2

−1
∂V κ

∂y
≤ 0. (18)

Recalling that ∂2V κ

∂y2 is positive definite for any y ∈ 	h, the
only possible equilibrium point is for ∂V κ

∂y = 0, i.e., at the
optimum.

The optimization algorithm can be efficiently imple-
mented exploiting the simple structure of V : explicit ex-
pressions for ∂V κ

∂y and ∂2V κ

∂y2 are in fact easily obtained
(compare e.g. with those reported in [27]. If an initial feasi-
ble solution is available (i.e., a parameter y(0) ∈ Ω0 ∩ Γ0),
then the algorithm can be used directly with κ = 0. If
otherwise no such guess is available, to guarantee global
asymptotic convergence of the algorithm is necessary to
choose κ > 0. If a minimizer is found to this problem such
that ŷκ ∈ Ωk, then it follows from the discussion above that
ŷκ = ŷ0. If such condition is not verified, it is necessary to
proceed to a new optimization with smaller κ.

Although the algorithm has been discussed in the contin-
uous time domain, it is straightforward to derive its discrete
time analog. In this case, however, the global asymptotic
convergence of the algorithm can be proven only for values
of λ smaller than a limit value, whose evaluation in real-
time is possible, but not easy. Such limitations on λ will
only allow the convergence to a finite neighborhood of the
optimal grasp. Suitable policies for varying the step length
λ to maximize convergence rate can be realized, albeit con-
vergence proofs may be involved in this case.

V. Example

The tendon-driven manipulator of fig.1 consists of a fin-
ger with two phalanges, pushing an object against the floor.
The actuation system is comprised of three tendons, with
an end fixed to a phalanx and the other connected to a
motor. Two tendons go through sheaths fixed to the pha-
langes.

Assume the contact centroids coordinates to be (the mea-
sure unit is cm)

c1,0 = (0 20 0)T ; c1,2 = c2,1 = (10.4 14 0)T ;

c2,3 = c3,2 = (14.6 9.76 0)T ; c3,0 = (14.6 0 0)T

Rolling pairs (hinge–type) contacts c1,0 and c1,2 allow the
rotation only around z axis, hence

n1,0 = n1,2 = (0 0 1)T .

Contacts c2,3 and c3,0 are ”soft finger” type, cf. [3] with
normal direction

n2,3 = (0 − 1 0)T ; n3,0 = (0 1 0)T ,

respectively. The tendon arrangment is described as follows
• Tendon 1 is connected to finger 2 at v2,1 = (14.5 9.9 0)T ,
goes through a conduit fixed to finger 1 at v1,1 =
(9.4 12.3 0)T , and is connected to motor 1 at v0,1 =
(0 12.3 0)T ;
• Tendon 2 is connected to finger 1 and to motor 2 at
v1,2 = (10.3 14.1 0)T and v0,2 = (0 17 0)T ;
• Tendon 3 is connected to object 4 (fictitious) at v4,3 =
(3.2 20.5 0)T and to motor 3 at v0,3 = (0 23.7 0)T ;
• Tendon 4 is connected to object 4 (fictitious) at v4,4 =
(3.2 20.5 0)T and to finger 1 at v0,3 = (5.2 17 0)T ;
• Tendon 5 is connected to finger 2 at v2,5 = (10.513.90)T ,
goes through a sheath fixed to finger 1 at v1,5 =
(11.4 15.7 0)T , and is connected to object 4 (fictitious) at
v4,5 = (3.21 20.5 0)T .

Dimensions of vectors and matrices are as follows: t =
[t]41 ∈ IR37; G ∈ IR24×37; H ∈ IR37×96; K ∈ IR37×37; X ∈
IR96×96; T ∈ IR24×5; Γ ∈ IR3×5. Note that all the vectors
ti4 and t4i are zero because the (fictitious) link 4 is not in
contact with the other links and/or the environment.

We assume a value of 100N/cm for stiffness of linear
springs, 20N/cm for the stiffness of rotoidal springs, and
10N/cm for stiffness of tendons. Applying the algorithm
shown in Section III-B.1, the basis of active internal forces
is found as:

E1,0 =




1.9 0.76
−1.2 −0.45

0 0
0 0
0 0




E1,2 = −E2,1 =




−0.29 0.05
0.82 0.13
0 0
0 0
0 0



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E2,3 = −E3,2 = E3,0 =




0 0
0.23 0
0 0
0 0




Er =




0.52 0.01
0.63 0.63
0.79 0.26
0.40 0.13
0.40 0.13




E1,3 = E3,1 = E1,4 = E4,1 = 0
E2,0 = E2,4 = E4,2 = E3,4 = E4,3 = 0
E4,0 = E4,1 = E4,2 = E4,3 = 0.

Note that the second column of E forms a basis of the
active internal co–contraction forces because no forces are
applied to object 3 (manipulated object). To distinguish
active internal co–contraction forces from the other active
internal forces a suitable algorithm can be implemented.

The preload force basis matrix P for this example results

P1,0 = P1,2 = −P2,1 =
(

0 0 0 0 −1
)T

P2,3 = −P3,2 = −P3,0 =
(

0 0 0 1
)T

P1,3 = P1,4 = P2,0 = P2,4 = P3,1 = P3,4 = 0

P4,0 = P4,1 = P4,2 = P4,3 = 0 Pr = 05×1.

Allowed preload forces correspond to torsion of the object
between two soft–finger contacts, and is of no concern for
the tendinous actuation system.

We finally report the results of the optimization algo-
rithm described in the text, when used to calculate the
combination of internal forces to minimize the distance
from violation of contact and tension constraints. An ex-
ternal unit force vector is applied to the centre of object
3 along the x-axis direction in this example. The follow-
ing values of optimal contact forces and tensions have been
obtained:

t1,0 = (22.8 − 14.5 0 0 0)T ; t1,2 = −t2,1 = (−4.4 11 0 0 0)T

t3,0 = (−0.59 3.07 0 0)T ; t2,3 = −t3,2 = (0.41 3.07 0 0)T

t1,3 = t3,1 = t1,4 = t4,1 = t2,0 = t2,4 = t4,2 = 0

t3,4 = t4,3 = t4,0 = t4,1 = t4,2 = t4,3 = 0

r1 = 7.8, r2 = 4.26, r3 = 10.02, r4 = 5.18, r5 = 5.18.

This results show that all tendons are correctly stretched,
that forces at the hinges are compressive (so that a rolling–
pair joint can be adopted in the design), and that slippage
of the object relative to the finger and to the wall is pre-
vented.

VI. Conclusions

We presented a method for analyzing the system of forces
necessary to balance a mechanical structure, composed of
rigid bodies and tendons in arbitrary combinations, and for
optimizing their choice. The method is very general and
allows to attack in a unified manner a very broad variety
of mechanism. Although only discussed in a quasi–static
setting, the method should be easily modified to model the
dynamics of such systems. One of the main drawbacks of
the method is the introduction of rather large matrices even
for simple systems, as shown in the example above. This is
a price we pay to generality, and more computationally–
efficient formulations can be derived by specializing the
treatment of particular cases.

Appendix

Matrix T. Matrix T ∈ IR6n×r can be partitioned in
(6 × 1)–blocks Ti,j , i = 1, . . . , n, j = 1, . . . , r, that can be
evaluated by the following rule:
• if the tendon j is not connected to the i-th link and does

not pass through a sheath fixed to the i-th link, Ti,j = 06×1

• if the tendon j is connected to the i-th link and suc-
cessively passes through a sheath fixed to the k-th link,

Ti,j =
1

‖vk,j − vi,j‖
(

vk,j − vi,j

vi,j × vk,j

)

• if the tendon j is connected to (or passes through)
link h, passes through link i and is connected to (or passes
through) link k,

Ti,j =
1

‖vh,j + vk,j − 2vi,j‖
(

vh,j + vk,j − 2vi,j

vi,j × (vh,j + vk,j)

)
.

Matrix H. Matrix H ∈ IRs×6n2
is nested block–diagonal,

with diagonal blocks Hi ∈ IRsi×6n defined as Hi =
diag [Hi,j ]n1,j �=i. Blocks Hi,j ∈ IRti,j×6 embody the motion
constraints imposed by the particular type of connection
between bodies i and j. Common contact types are

Hi,j = I3 for ”hard finger”;
Hi,j = I6 for ”complete costraint”;

Hi,j =
(

I3 0
0 ni,j

)
for ”soft finger”;

where ni,j is the direction of the normal between the ob-
jects i and j. Another important type of connection is the
”hinge” joint that only allows relative rotation around the
axis ni,j :

Hi,j =


 I3 0

0
ai,j

bi,j




where ai,j e bi,j form a basis of the plane perpendicular to
the direction ni,j .

Matrix K. The stiffness matrix K ∈ IRs×s has the same
block structure as H. Blocks Ki,j ∈ IRti,j×ti,j are diagonal,
and depend upon the type of contact and the stiffness of
the virtual spring interposed between objects i and j. In
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the easiest cases the elements of the matrix Ki,j are equal
to µt for linear springs and to µr for rotoidal springs. Some
examples follow:

Ki,j = µtI3 for ”hard finger”;

Ki,j =
(

µtI3 0
0 µrI3

)
for ”complete costraint”;

Ki,j =
(

µtI3 0
0 µr

)
for ”soft finger”;

Ki,j =
(

µtI3 0
0 µrI2

)
for ”hinge” joints;

Kr ∈ IRr×r, the matrix of tendon’s elasticity, is also diag-
onal.

Matrix X: The selection matrix X ∈ IR6n2×6n2
can be

partitioned as follows:

X =


 X1,1 . . . X1,n

. . . . . . . . .
Xn,1 . . . Xn,n




where the blocks Xi,j ∈ IR6n×6n are defined as:

Xi,j =


 X1,1

i,j . . . X1,n
i,j

. . . . . . . . .

Xn,1
i,j . . . Xn,n

i,j




• If i = j (diagonal blocks), Xi,i is evaluated according to
the following rules:
– blocks Xh,k

i,i with h �= k (non diagonal blocks) are null
6 × 6 matrices;
– blocks Xh,h

i,i (diagonal blocks):
∗ if i-th object is in contact with the environment, X1,1

i,i =
I6;
∗ if i-th object is in contact with j-th object:
· if i > j, Xj,j

i,i = I6;

· if i < j, X(j+1),(j+1)
i,i = I6;

• If i �= j (non diagonal block) matrix Xi,j :
– if i-th object is not in contact with j-th object, Xi,j =

06n×6n;
– if i-th object is in contact with j-th object then just

one block of Xi,j is not void. In particular we have:
∗ if j > i Xj,(i+1)

i,j = −I6;

∗ if j < i X(j+1),i
i,j = −I6.

• blocks which do not hold the above properties are null
6 × 6 matrices.
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