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Dynamic Analysis of Mobility and Graspability
of General Manipulation Systems

Domenico PrattichizzoMember, IEEE,and Antonio Bicchi,Member, IEEE

Abstract—We present a geometric approach to the dynamic kinematically defective. Similar considerations apply to other
analysis of manipulation systems of a rather general class, includ- manipulation structures, such as bracing systems (see e.g., [8])
ing some important types of manipulators as, e.g., cooperating, 5nq parallel manipulators, pioneered by Stewart [35].

super-articulated, and whole-arm manipulators. The focus is Thi ) d t attacking th vsi
in particular on simple industry-oriented devices, for which a IS paper reports on an endeavour at attacking the analysis

minimalistic design approach requires a clear understanding of Of such diverse styles of manipulation uniformly.
mobility and graspability properties in the presence of kinematic

defectivity. The paper discusses the dynamics of these systems,

and considers how their structural properties (in the classical A. Previous Work

system-theoretic sense, i.e., stability, controllability, observability, . . . .
etc.) are related to frequently used concepts in robotics such as 1 he origin of the analysis of general mampulaﬁon systems
“redundancy,” “graspability,” “mobility,” and “indeterminacy.” can be traced back to three Ph.D. dissertations studying

Less common or novel concepts, such as those of “defectivity,” multifingered hands. Salisbury [30] set up the foundations of a
“hyperstaticity,” and “dynamic graspability,” are elicited and/or |inear algebraic approach to the problem. Kerr [17] considered

enlightened by this study. Some important practical consequences : . . . . .
of the limited control possibilities of defective systems are thus put a wide spectrum of manipulation systems, including explicit

into evidence. Finally, a standard form of the dynamics of general reference to their defectivity, indeterminacy, redundancy, etc.
manipulation systems is provided as a compact and readable Trinkle [36] studied the mechanics of enveloping grasps, and
synopsis of the dynamic structure. The form is a valuable tool provided planning strategies for such systems. Most of these
for synthesizing dynamic controllers for such systems, especially yorks were based on quasistatic assumptions.
suited to geometric control design methods. While literature on nondefective manipulation systems has
since then grown extensively, less work has been devoted to
] ] ) .the general case, almost always restricting to quasistatic as-
ONE of the main avenues of research in robotic maniymntions. Pettinato and Stephanou [26] described a tentacle-
ulation is the development of robot systems whose Mgageq manipulator and analyzed its manipulability and con-
chanical structure is more complex than that of conventional stability. Mirza and Orin [21] described a multiple arm
serial-linkage arms. One instance of this is the coordinated YR&nipulation system (DIGITS), and discussed the improved
of mu_ltiple finger_s in a robot hand, or, similarly, of mu_ltiplerobustness of power grasping. Huettal. [15] considered the
arms in cooperating tasks and of multiple legs in a vehicle ff,ematics of composite serial/in-parallel manipulators, while
locomotion. Unilateral contact phenomena between differefif,qron and Hunt [38] discussed the series/parallel duality
members of the system are also often encountered. Thil§y the kineto-static viewpoint. Bicchi [6] made explicit the
in a robot hand, each finger acts on the manipulated objgglitations to the arbitrariness in distributing manipulation
through a passive (not directly actuated) “joint” consisting of @ -ag among cooperating limbs due to the presence of de-
mechanical contact, which is subject to inequality constrainigive elements (a problem which was previously noticed by
on the direction of forces, and to kinematic constraints q@, [17] and Trinkle [37]). Bicchi, Melchiorri, and Balluchi

rolling and sliding motions. Passive joints may also be presem studied the rigid-body kinematics of WAM systems and
in the mechanism on purpose as, e.g., happens in the clasg§iof,;ssed their manipulability.

super-articulated systems studied by Seto and Baillieul [33]. Dynamic analysis of manipulation systems has attracted

A recent innovation consists in the exploitation of all link$g|atively less attention so far. This is partly justified by the
of the limbs to manipulate objects, rather than using oni .t that most cooperative manipulation tasks are slow enough
their end-effectors (whole-arm manipulation, see [32]). £ render dynamic effects negligible (notable exception to
peculiarity of whole-limb systems is that inner links general%iS are discussed in [10], [24]. Although dynamics may not
have fewer degrees-of-freedom than necessary to achigy& 5 gominant role in the performance of slow cooperative
arbitrary configurations in their operational space, i.e., affanipulation tasks, it is true that only a full dynamical model
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Example 1 Example 2 Example 3 I

@) (b) (©

Fig. 2. Kerr and Roth’'s example (a). Any linear combination of forces as in
(b) and (c) is internal, but only forces as in (b) are controllable internal.

for solving some important problems (such as the disturbance-
decoupling and the noninteractive control problem, see e.g.,
[29]) through the usage of geometric control design techniques
[2], [39].

To the best of our knowledge, no such systematic dynamic
analysis exists to date, due in part to the novelty of the subject,
and in part to the apparent intractability of the computations in

Fig. 1. Six simple examples of robotic manipulators. the full nonlinear case. Our approach to the problem is based
on the use of geometric system-theoretical tools on a linearized
B. Contributions model. Although only local results can be inferred by this

. . . .. method, linearized dynamic analysis certainly represents a
The purpose of this paper is to contribute to building a ... ) R .
: i . . significant advancement with respect to quasistatic studies (a

theory for a class of robotic manipulation systems that is gen: . . S . .
scussion on this point is reported in Section VII).

eral enough to include most practical manipulation syste Th hout th for t t simpl t of
The paper is an extension of previous work on coordinated roughout the paper, we reter to a most simple set o

manipulation system analysis [17], [30], [37], to includgxamples' reported in .F'g' L. The ;et -contalns examples of
dynamics and structural properties other than stability. mar_npulators representing an |dea_l|zat|on_of more complex
particular, restrictions to controllability/observability entailecgJevlces that "may be encountergd n practice, and also some
by kinematic defectivity are enlightened. As an instance of t igatho_loglcal cases of no pract|cgl interest besides their il-
problem, consider the example in Fig. 2, redrawn from ug#stratlve purpose. Releyant numerical data for such examples
In that important early paper, authors were concerned withe "ePorted in Appendix C.

choosing optimal internal forces to grasp the object, and did so I
by choosing (by linear programming methods) a combination ) ) ) )
of all possible internal forces/moments, including opposite The class of “general manipulation systems” this paper is
torques about the line through the contacts. On the other haf@ncermned with is comprised of mechanisms with any number
it is intuitive to observe that there is no possibility of actuallpf limbs (open kinematic chains), of joints (prismatic, rotoidal,
applying such torsion to the object by the depicted mechanispiherical, etc.) and of contacts (hard and soft finger, complete-
The analysis presented in this paper allows to thorougmpnstraint, etc.) between a reference member called “object”
describe and understand this situation (see Section IV-B), a#ed links in any position in the limb chains. This includes in
accordingly restrict the search for optimal grasping forcgarticular defective and hyperstatic systems, whose treatment
within the proper sets. is seldom considered in the literature.

To solve this and other problems, the paper uses classicaf\s @ paradigm for general manipulation systems, we refer
system-theoretic concepts of dynamic system analysis (df@-the case of a multifingered hand manipulating an object
bility, controllability, observability etc.) and relates them tdhrough contacts on its finger parts and palm (see Fig. 3).
frequently used concepts in robotics such as “redundanciet ¢ € R? denote the vector of joint positions, and let
“graspability,” “mobility,” “indeterminacy,” “defectivity,” and » € R¢ be the vector locally describing the position and
“hyperstaticity.” Less common concepts such as those of “codrientation of a frame attached to the objett{ 3 for planar
trollable internal forces” and “dynamically internal forces,’systemsd = 6 for systems in three-dimensional (3-D) space].
are introduced, and their important practical implications afeorrespondingly, let € R? be the vector of forces and torques
enlightened by this study. of the joint actuators, anar € R4 the vector of forces and

Furthermore, a finely decoupled standard form of the dyerques resultant from actions applied directly at the object.
namics of general manipulation systems is provided as aHand and object dynamics are linked throughigid-body
compact and readable synopsis of the dynamic structure. Tiélateral contact constraints that, according to Appendix A,
main application of this result is in the synthesis of controllesan be written in terms of the grasp mat® and hand

. DYNAMIC MODEL
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Example 2 Example 3

Y Jq T
ql’Tl ( / 44
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7

Fig. 3. Introducing some notation for a general manipulation system
gce R, T ecR ue R, we RS

JacobianJ as

[J —GT] |:Z':| =0. 1) D, D, Ny D,

Notice that the number of constraint equations depends offrig. 4. Representative motions for the subsets defined in Section IL.
the contact models used to describe theontact interactions

[3% ['11t]).d . di ional ¢ - . literature, forces belonging to the nullspacefare usually
y Introducing a¢-dimensional vector, of Lagrangian  ocerreq to as “internal” or “squeezing” forces. Such forces

muItlpt)_Ilers and Ei/_dlffderentlatlng (1), rigid-body dynamlcs‘playafundamental role in controlling manipulation tasks when
equations are obtained as Coulomb-type limitations on frictional forces are in order.
M (q)q+ Qplq,q) + JTt =71 Definition 4: A grasp is said kinematicallydefective if

M, (wit+ Qpu,u) — Gt =w ker J* # 0. . . : :
i T ovm T In a defective system, there exist constraint reactions which
JGg— G+ Qclg: g uw) =0 () do not influence the manipulator dynamics, cf. (2). Since

where Q. = (0J4/9q)q — (G 4/ou)yu and M,(-) and JT € R?*t, whenever the manipulation system has less
M ,(-) are symmetric and positive definite inertia matrices arfifgrees of freedom (DoF’s) than the numbet of contact
Q,(-.-) and Q,(-,-) are terms including velocity-dependenfonstraints, it exhibits a defective grasp.
and gravity forces of the hand and of the object, respectively. _

From (1) and (2), it appears the central role played by tie Hyperstatic Grasps

Jacobian and grasp matrices. With respect to their structureThe rigid-body dynamics equation (2) can be rewritten as
some relevant characteristics of the manipulation system are

introduced. q T—Qp
Definition 1: A manipulation system is saicedundantif Moy, |2 | = |lw—Qp 3)
kerJ # 0. b Q¢

In a redundant system, there exist “internal” motions of tr\ﬁhere
fingers alone that do not violate the contact constraint (1).

For a given configuration of the grasped object, an infinity My, 0 JT
of neighboring hand configurations are feasible. The part of Myn=| 0 Mo, -G |. (4)
Fig. 4, labeled\/;, illustrates a redundant motion. J -G' o

Definition 2: A manipulation system is said kinematically In order for this equation to completely determine the law

indeterminateif kerG' # 0. . o
In an indeterminate grasp, there exist motions of the objeﬁ:}f{/ Zr(t)itklacl)en OSfJBE ingrir;’ golis?fgrisds?;ygggiI”E)awfﬂgly;rlr:e Li
alone that do not violate (1). Indeterminacy implies that thend Sast.r [23], who discussed the dynamics {)f multii‘/i,n e,r
object is not firmly grasped, because for a given configuratign . Y e, y uiting
P . : . . manipulation in the hypotheses that the hand Jacobian is full
of the hand, an infinity of neighboring configurations of the

object are feasible. The part of Fig. 4, labelggr, illustrates fow: rank. Fo_r all manlpulafuon systgms with n(_)nmvernble
; . . M ,,,, the rigid-body dynamics (3) fails to determine the law
an indeterminate motion. Y

Definition 3: A manipulation system is saidraspableif of motion of the whole system. By observing that

kerG # 0. N _ ker Mgyn = {(¢,i,1)"]§g = 0,4 = 0,t € ker J* N ker G}
Graspable systems exhibit self-balanced constraint forces
t, resulting in zero net force on the object, cf. (2). In théhe following definition naturally ensues.
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t = Kéc + Bée. )

For the analysis of most of the structural properties of gen-
eral manipulation systems, the model (5)—(7) is still intractable.
Henceforth, then, we will deal with the linearized dynamic

&= Ax+ B, 7 + Byw' (8)

where the state vectar € R24+9  inputs 7 € R?, and

disturbanceay’ € R® are defined as the departures from a
reference equilibrium configuration

-'L'eq = [quq ueTq OT OT]T
at which contact forces arz.q) = teq, as
T = [6qT 6‘U.T qT ,aT]T

= [(q - qeq)T (’U, - u’eq)T qT ,aT]T

Example 3 Example 4
model
t,
g \

Defective:

tq € ker JT
Graspable: Hyperstatic:

t; € kerG th €EkerJT NkerG #£0

Hyperstatic:
kerJ" NkerG =0

Fig. 5. Examples of defective, graspable and hyperstatic grasps. Numer
analysis has been reported in Appendix C.

7 =7 — JTteq

w =w+ Gheq.

(9)

_ |Under the assumptions reported in Appendix A, the dy-
1{8mics matrixA, joint torque input matrixB,, and external

wrench disturbance matriB,, have the form (see Appendix

A
Definition 5: A grasp is saichyperstaticif )

ker JT N kerG # 0. A:[_%k _I{b}

Defectivity and graspability are necessary conditions for the 0 0
hyperstaticity of a manipulation system. Note that the above B 0 B — 0 (10)
definition of hyperstaticity could be obtained also by qua- T M,_Ll ' w 0
sistatic arguments, as for instance in [37], who found that 0 Mgl
t > q + d is a sufficient condition for hyperstaticity. where

Fig. 5 pictorially describes the notions of defectivity, gras-
pability and hyperstaticity for Examples 3 and 4 of Fig. 1. Lp=M"'Pp; Ly=M'P, (11)

Rigid-body dynamics are not satisfactory to the purposgsy
of this paper. In fact, many interesting manipulation sys- -
tems are indeed hyperstatic, e.g., whole-arm robots, and the M= My 0O }
rigid-body modelization would leave the system dynamics |0 Mo

. .. . r T

undetermined. Moreover rigid-body dynamics do not allow Py = J }K[J el
proper modelization, and hence control, of contact forces k | -G
(closed-loop control of forces would in fact entail algebraic A T
loops). Because contact force control is a central point in Py = -G }B[J -G7]. (12)

grasping, this is certainly an important drawback of the rigid

body dynamics approach. Finally, systems with significant . STABILITY

inherent compliance are sometimes encountered, especiallfhe importance of the study of stability to the theory and
in applications where stable and accurate force control is bl practice of robotic grasping is witnessed by the relatively
concern. large attention devoted to the topic in the robotics literature.

To address such more general cases, we introduce a lumpedrhe characteristic polynomial of the linearized system is
parameter compliant model for the hand-object dynamics sl _I }

(see Appendix A). In such model, Lagrange multipliers I I+
are interpreted as constraint forces deriving from generalized ko shtLp
virtual springs K; and dampersB;, whose endpoints are =57 det (s (s’ ] + sLy + Ly))
though of as attached at thth contact points on the object and = det (SQM + sPp + Pp).
on the finger, respectively, and are loaded by compenetration . . -
é¢ of the two bodies. The model of a general manipulatio Ince, from (12)M. IS posmvg d?f!”"e (p.d.) andy, Py, are
systems we will refer to is therefore either p.d. or positive semidefinite (p.s.d.) or the following
cases are in order.
§=M; (-Q, = It +7); (5)

1) P andPy p.d.: the eigenvalues of the linearized system
w=M,'(-Q, + Gt +w) (6) lie in the open left-half-plane;

det (sI — A) = det [
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2) P and Py p.s.d. (i.e.ker [J —GT] # 0): the eigen- matrix A) may be unstabilizing. System instability may result
values of the linearized system lie in the in the union dfom those effects, as is usually noticed in manipulating,
the open left-half-plane and the origin. e.g., a soap bar. The influence on system stability of relative

From (10)—(12), the eigenspace associated with the poggirvature along with that of other parameters has been studied
ble eigenvalue in the origin corresponds to the subspace¥fMontana [22] for the special case of a grasp by two fixed

indifferent displacements from the equilibrium configuratiorfingers, and for more fingers by Howard and Kumar [14].
defined as Unfortunately, however, in general cases the kinematic or

Te TNT . geometric parameters of the system enter the dynamics in such
D, ={z|(6q"éu")" € ker[J —-G7],g=u=0}. (13) 4 complex fashion, that only dead-reckoning of the eigenvalues

It is interesting to consider the following decomposition off the dynamic matrix for given parameter values can be done,
this subspace: and little structural insight is gained by stability analysis.

D, =Ny +Ngr + D, V. CONTROLLABILITY AND STABILIZABILITY
where We recall from elementary systems theory that, for a linear
systemz = Az+ Bu, the subspace of states that are pointwise-
Ny ={z|éq € ker J,éu=¢g=u= 0} (14) controllable from inputs (denoted byA, B)) corresponds
) o _ to the image space of the controllability matri¢d, B) =
is the subspace atdundantjoint displacements im [B7AB7___7A’IL—1B]' An useful geometric characteriza-

Ngr = {z|6g =0,6u € ker G*,q = u = 0} (15) tion of the controllability subspace is that it is the minimal
A-invariant subspace containing .
is the subspace afnder-actuateabject displacements. Alter-  Accordingly, the subspace of states that can be reached at
natively, according to Definition 2, this subspace is referred & given time by using joint torques as inputs in our model
asindeterminatesubspace. A general framework for studyingan be obtained (by some rather lengthy calculation reported
and controlling systems exhibiting an indeterminate subspdge[27]) as
of motions has been presented by Seto and Baillieul [33], with

; . ; q
reference tesuper-articulatednechanisms. Furthermore .4 €R

(A,B;) =<z
D.=D, - (Nj&Ngr) (16) bu, € (My'GKG*Y , Mz 'GK J)

is the subset otoordinateddisplacements. (17)
Displacements representative of the subspa¢eandANgr  According to definitions of Section Il and to (18), the follow-

and of the SUbSd)c are illustrated in Flg 2, for the exampleﬁng cases may be encountered:

of Fig. 1. Note that for the manipulator of Example 1, no Non-defective and Indeterminat®eing J full row rank

indifferent displacement is possible; in Example 2, there {§r.r.) andker GT # 0, it follows:

the possibility of a combined displacement of the joint and

the object(D.) and of a displacement of the object alone (Mg 'GKG", M;'GKJ) = im (M4'G) C R%,

(NGT)’ \{vhose position is left qua3|stat|cglly mdetgrmlnate b¥he system is not completely controllable, the controllable

this device. In Examples 3-5, only coordinated dlsplacementsb bein

of joints and objects(D,.) represent possible neighboringSu space being

equilibria for the system, while in Example 6, besides such (A, B,) = {z|6q,q € RY, 6u,% € im (MglG)}.

combined displacements, there is the possibility of exploitin . ) N

the redundancy of the fingers to displace their links witho bserve that only object displacements and velocities belong-

affecting the object positionA(;). ing to im (M,'G) are reachable. In particular, sindd, is
Due to the presence of eigenvalues with null real part (caél-» theindeterminatesubspace
2), stability of the nonlinear system can not be discussed X, = {z]ég=q=0,6uuc kerGT} (18)

based on its linearization. However, it will be shown in the
next section that redundant and coordinated displacemeistsiot reachable. Notice that.= in (15) is the zero-velocity
can be stabilized by simple independent joint controllersection of A;.
thus guaranteeing the local asymptotic stability of determinateDefective and DeterminateBeingker J* # 0 andG f.r.r.,
(ker G* = 0) manipulation systems. the system may or may not loose complete controllability,
As already mentioned, removing some of the assumptiodsepending on the particular case considered. However, the
above leads to a much less intelligible dynamic behavior. dontrollability of defective systems igeneric: the subset of
can be observed for instance that the effect of rolling of tHenematic, inertial, and visco-elastic parameters for which con-
object surface on that of the links, when both are convetxpllability is lost has zero measure in the space of parameters
is to move poles rightwards in the complex plane. Also thentering the dynamic equations. For the device in Example 1
effect on the dynamics of nonnegligible forces at the referenoéFig. 1, controllability of vertical and rotational movements
equilibrium coupled with large variations of the Jacobianf the object is lost due to the particular symmetry of inertia,
and/or grasp matrix about the reference configuration (i.e., gifffness and damping parameters that were assumed in the
terms 8JTteq/8q and 0Gt.q/0u appearing in the dynamic introduction. The same holds for the Example 3 of Fig. 1.
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at their kinematic singularities. Defective modes are damped

xample 1 Example 2 Example 3 periodic oscillations.

pj% A. Stabilizability

\: e By introducing a constant state feedback in the form
5 T =7 — Rz, R=[Rgq Ry Rq Ry

the eigenvalues of the controllable subsystem can be relocated
arbitrarily while indeterminate and defective modes are unaf-
fected by control [see (19)]. In practical applications, however,
the only state variables that can be reasonably assumed to be
accessible to measurement are joint displacements and rates.
In fact, object position/orientations and their rates are difficult
ﬁr)g?measure and to observe. Thus, it is of practical relevance

a) Defective b) Defective

indeterminate

c) Defective

determinate determinate

Fig. 6. Uncontrollable modes for three examples of Fig. 1.

Fig. 6 reports graphical illustrations of the uncontrollabl . ) o

modes in these two cases. From Appendix C it is an ea f°"°W'”9 :‘esr:ncted staplllzab|l!t)/(Ijemma: is f

matter to verify that for the defective system of Example 4 Lemm'a L:1f the syste_m IS not in eterm|na(e’}.|s' .r.(.),

due to the f.r.r. ofGK.J, the system is controllable. there exists a constant linear state feedback of joint displace-
Defective and IndeterminateBeing neitherJ nor G f.r.r., ments and rates only

a subset of the state space is not controllable because of R = [Rg © Rq 0]

system indeterminacy while a different subset is generically

not controllable because of the system defectivity. This is t§&ch thatdr = A — B R’ is asymptotically stable.

case of Example 2 (see Fig. 6). Proof: 'Remind, from Section llI, that
Non-Defective and DeterminateBeing J and@ f.r.r., the det (sI — Af) = det (s2M + sP}, +P’k>

system is completely controllable. Such is the case for Exam-

ples 5 and 6 in Fig. 1. where
Observing that the indeterminate subspagés A-invariant,

and applying a state space transformatibn= [T.|T;|T;]

whereof T is a basis matrix(b.m.) of (4, B,), T; is a b.m.

of A;, and T is a complementary basis matffigc.b.m.) of and

(A, B,) @ X; to the state spacR*(?t9) we have that the P_p o+ |Bqg O

dynamics of general robotic systems can be rewritten in the b= b 0 0}

(controllability) form The thesis follows fromPy, P, being p.d.(Rq, Ry are p.d.).

, Ry 0
k:PkJr{oq 0}

TA 0 *
T 'AT; = | 0 ‘A 5
0 0 4

where the symbolé

T{'B, =

o |

(=N

stands for a nonzero element, while the

In fact form (12), by puttingk = K*/2K*/? we have
:cTP/k:c
J'KJ+Rq -J'KG'| [z
_ .7 T q L
=t ‘”2]{ ~GKJ  GKG' } LJ
= (KY*Jz, — K**G%2) " (KY?Jx, — KY*G"x,)
+ zi Rgz1 >0,

(19)

symbol “” represents blocks that may be zero or not. Lemma ,
8 in Appendix B provides a convenient choice Bfj which ~and analogously fof%,. u
annihilates thex elements in (19).

The above form of the dynamics of a general roboti- Output Controllability
system points out that uncontrollable modes may appeamBeing the goal of dextrous manipulation to control the
because of two reasons. The modes associated witire the position of the manipulated object through the contact forces
“indeterminate modes” of the system, and are strictly relatgdth the fingers, it is natural to consider two outputs for a
to the existence of a nullspace of the transpose of the grageral manipulation system, namely the object positon
matrix, in the sense that they correspond to motions left freg@éd the contact force vector In the linearized model under
by the grasp. Indeterminate modes are double integrators. Ba@sideration, from (9), (36), and (40), one has
uncontrollable modes associated witih are the “defective
modes” of the system, since a necessary condition for their Cu=[0 I 0 0] (20)
existence is that the hand Jacobian has not full row rank. This 6t =Ciz, C,=[KJ -KG' BJ -BG']. (21)

case occurs in WAM systems but also in conventional roboﬁ]e pointwise output controllable subspace for contact forces

1V is called a basis matrix of a subspaksf it is f.c.r. andimV = V. can be evaluated (details are reported in [27]) as
2W is called a complementary basis matrix Wfto X if it is f.c.r. and
mWaoVv=24a. C, <A, BT> = <A, KJ>

u = Cyz,
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whereA = —K(JM}*J*" + G*M4'G).

As already mentioned, a particularly important concern in - — T
manipulation is to avoid slippage at the contacts by controlling - Ty T T
. . . . . I I[IIII T T 1
internal forces. It is therefore most interesting to determine the *{)k o o L
subspace of internal forces which are actually controllable, E=ms Lo oo
defined as

Frr = C{A,B;) N ker G. (22)
) . . . ker G imJ Fr=20 Fhr
By doing some calculations (reported in [29]), an explicit and
synthetic formula can be obtained as o~
Finr = im (I — KG(GKGY) ' QK J). »& )— T NI -

By applying such formula to the example of Fig. 2, it is -
easily checked that only internal forces as in (b) are actually
controllable interna) and the intuition that torsion of the object
as in (c) can not be modified by acting on the joints is ker G imJ £ For
confirmed.

If object motions are considered as outputs, on the othgg. 7. Iiiustration of the subspace of internal contact fortes G) and
hand, it holds of the subspace of dynamically internal contact foré&gsfor the systems of

Examples 1 (first row) and 3 (second row) of Fig. 1. Note that the existence
Cu(A,B,) =My'G(C\(A, B,)) of a nonzero dynamically internal subspace for Example 3 depends on the
_1 particular values assigned to geometric and inertial parameters. Reported is
:Mo G<A7 KJ>- also illustrations of the subspace of controllable internal fot€gs, (22).

Notice that arbitrary object positions can be reached if and

only if the grasp mag is onto and the force controllability ~ Graspable and Nonredundantker G # 0, and J is f.c.r..

map C(A, B;) is injective onim G” . The term “graspable” follows from the fact that contact forces

in ker G are usually calledyrasping or internal, forces, and

play a fundamental role in resisting external disturbances
The twofold definition of outputs for a manipulation systenyith unilateral friction contact constraints. The system may or

introduced above reflects in the following considerations gfay not loose complete observability from object positions,

V. OBSERVABILITY

observability. depending on the particular case considered. Observability is
generic for graspable, nonredundant systems, as in Examples
A. Observability from Object Motions 1, 3-5 (see Appendix C).

The subspace of states unobservable frers evaluated Graspable and RedundantNeither J nor G are f.c.r. (see

by recurrently computing the rows of the observability matrig-9- Example 6 in Appendix C). A subspace of the state space
Oy (see [27] for details) as is not observable because of redundancy, while a different

one is generically not observable because of the system
ker Oy, = {x|6q € Vp,6u = 0,4 € Vp,, i = 0} (23)  graspability. Notice that the subspace of redundant motions
is mapped in null contact forces Wy;.
By mapping the unobservable subspace from object motions
on the space of contact forces throu@h those internal forces

where V), is the maximal(M;'J K J)-invariant subspace
contained inker (GKJ), i.e.,

1 1T - that can be exerted without affecting the motions of the object
Vi =[] ker [GKJ(M}ITK )™, 24 are obtained:

i=1 Definition 6: The subspaceF;, = C, ker Oy is called the
According to definitions of Section Il and to (23), the follow-subspace of “dynamically internal contact forces.”
ing remarks apply here: The possibility of exerting internal forces without affecting

Non-Graspable and Nonredundan8inceJ andG are full the motions of the object is of great practical relevance to cases

column rank (f.c.r),ker(GKJ) = 0 and the system is when the demand of accuracy of manipulation is highest, as
completely observable from object motions, as in Exampfer instance when the object of manipulation is a surgical tool.
2 of Fig. 1. In the apparently similar systems of Examples 1 and 3, the

Non-Graspable and Redundan is f.c.r. andker J # 0, possibility of exerting dynamically internal forces is illustrated.
thus the subspace unobservable from object motions is e dynamically internal force can be exerted in Example 1,
redundant subspaceefined as being void the intersection between the column spacd of

. P . and the nullspace off as depicted in Fig. 7, first row. In
Ay = {zléq € ker J,6u =0, € ker ;4 =0} (25) Example 3, however, this intersection is not void and, due to
Notice thatA\; in (14) is the zero-velocity section ¢¥,.. The the particular symmetry of kinematic and inertial parameters, a
existence of an unobservable subspace in redundant systdgrsamically internal contact force can be exerted as illustrated
is generic. in Fig. 7, second row.
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Observing that the subspagg is A-invariant, and applying
a state space transformati@a = [Ty |Ty| T} ], whereofTy is
a b.m. ofX,., Ty is a c.b.m. ofker Oy to IRQJLW), andTy, isa
c.b.m. of &,. to ker Oy, we have that the dynamics of general
manipulation systems can be rewritten in the (observability)
form

“A | 0 0
T;1AT, = | + "A .

* 0 h A
CyTo=] | 0 | 0] (26)

m [T7 r7]" im [o17]"

. . . . Fig. 8. lllustration of rigid body motions for Example 2 in Fig. 1.
By Lemma 4 in Appendix B, ifTy, is chosen as a b.m. of 9 g Y P 9

(A,B;), and Ty, is put in the convenient form suggested

by Lemma 7 in Appendix B, all the elements in (26) are the object may only result from deformations of the compliant

annihilated. elements at the contacts. For the system of Example 2, link
Modes that are unobservable from object displacements n&yd object motions corresponding 14, I'.., and I'; are

arise because of two reasons. “Redundant modes” associgtistbrially represented in Fig. 8. Bicchdt al. [7] derived a

with "A are present whenever the Jacobian matrix hass#nilar description of rigid-body kinematics from quasistatic

nullspace as in Example 6. The redundant modes are dougésiderations, and had a detailed discussion on mobility and

integrators, but can be arbitrarily relocated by feedback tfanipulability properties.

joint variables only. The modes associated With are called  Notice that the redundant and indeterminate subspates,

“dynamically internal modes” of the system, because of thei25) and; (18), belong toker O, thus their basis matrices

relation with dynamically internal forces. Ty andT; can be built in terms of,. and[l’;, respectively, as
B. Observability from Contact Forces 1;’ 8 19 8

The analysis of state observability from contact forces Tr = o I, I; = 0Z ol (28)
provides further insight in the kinematics of robotic systems. 0 O 0 I,

By recurrently computing the rows of the observability matrix
from the contact forceq),, the subspace of states unobseni-et T¢ be a c.b.m. oft,.®X; toker Oy, in particular, according

able fromt is obtained as (see [27]) to the previous discussion, choose
kerOy =<z oq 9] € ker [J -G*] r,, 0
bu U _ r, o0 2)
€= lo I, (

and corresponds to displacements and velocities that leave the
virtual springs and dampers unsolicited, i.e., to the rigid-body
kinematics of the system. and define the subspace afordinated rigidmotions ast, =

Rigid-body kinematics are of particular interest in the cong, T... Thus it is an easy matter to verify that
trol of manipulation systems. Since they do not involve

0 Fuc

visco-elastic deformations of bodies, they can be regarded as im [Ty T, Te] = ker Oy (30)
low-energy motions. In a sense, they represent the natural way
to change the object posture. and that the column spaces ‘¢, Tr, T; are A-invariant.

Rigid kinematics can be characterized in terms of a matrix Finally, applying a state space transformatidiy =
I' whose columns form a basis faer[J —G'], and that [T|Ty|T;|T¢], whereT, is a c.b.m. ofker O, to R2(4+d) a

can be written as standard observability form is obtained as
|y 0 Ty t
r= [0 r, F'uc:| (27) A 0 0 0
i x | TA | O 0
whereT', is a b.m. ofker J,I'; is a b.m. ofker G*, and T, T3 AT;s = o i o
andT,. are conformal partitions of a c.b.m. ker [J —GT] *
of diag (ker J,ker GT). The analysis of the dimensions and * 0 0 cA
the geometry of the subspaces spanned by the blocks of CTs=[e | O | O | O]

matrix I' is instrumental in describing fundamental kinematic

characteristics of robotic manipulation systems, such as theModes that are unobservable from contact forces arise
mobility, connectivity, and manipulability of manipulationwhenever theker [J —GT] is nonzero, i.e., whenever there
systems. For instance, the structure described in Exampl@Xist rigid-body redundant, indeterminate or coordinate mo-
of Fig. 1 has no possible rigid motigii" = 0), as motions of tions.
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VI. STANDARD FORMS and outputs (complete observability from contact forces is

The dynamic structure of a general manipulation systefiot guaranteed). We also recall th&; and Tr are bases
analyzed from different viewpoints in the preceding section@f the subspaces of indeterminate and redundant motions,
is summarized in this section in a standard form of th¥hile Tp and Ty are bases of the subspaces that generate
dynamics equations. As a necessary preliminary, however, fhramically mt_ernal forces and noncontrollable (defective)
briefly consider here the dual properties to controllability frofPTceS, respectively. _
joint torques and to observability from object displacements 1€ description of the geometric structure of the state space
that were discussed previously. Such duals are observabiffydeneral manipulation systems offered by Theorem 1 can be
from the position of jointsy (i.e., with output matrixCq = further refined by studylng the dynamlps of cqo'rdlnatt.ad rigid
I 0 0 o0]),and controllability from disturbances (i.e., motions. As alre_ady pomted_ out, cgordlqated rigid motions are
with input matrix RBy = [0 0 0 Mal])7 respectively. of fund_amental |mporte_mce in man_lpulatlon and therefore their
In fact, one has analysis deserves particular attention. In the most general case,

due to possible gyroscopic effects, coordinated rigid modes

ker Og = {x|6g = 0,6u € Wy, g =0,4 € W} (31) may not be dynamically decoupled from redundant and/or
indeterminate modes, and may be not completely controllable
and/or observable. However, Lemmas 9 and 10 in Appendix

d ‘ B offer necessary and sufficient conditions for such dynamic
Wi = ket JTKGT(M5g'GKG")'™']  (32) decoupling indeed to occur.

where

i=1 A finer decomposition of the state space can be achieved
and in this case as
(A, Byy) T=[Tr T Te Ta T; Ty
bg.q € (M} JTKJ, M} JTKG") o _ _ _
. ) whereT¢ is defined as in Section V-B, arifiy is a c.b.m. of
Su, it € RY im T¢ to im Ty, such that imTg = M~ imT¢ N im To.

33) To such decomposition corresponds a second, more articulated
standard form:
All structural properties of general manipulation systems Theorem 2: The condition
concerning controllability and observability are summarized in r
the following theorem which provides a rather interesting stan- im Lﬂc} C M ‘tim {
dard form of the dynamics of general manipulation systems. we
Consider a new basis of the state space defined as

0o C (34)

Jt 0}
is necessary and sufficient for the linearized dynamics in the
T=[Tr Tp To T; T4l new coordinates = Tz, to take on the form shown on the
bottom of the next page.

where T; is defined as in Section IV]» as in Section V-  We remark here that irfi'¢ is the subspace of all rigid-body

A, Tp, and T4 as in Appendix B, andl'y is a b.m. of the coordinated motions of the system, whileifg is controllable

A-invariant subspacéA, B;) N (A, By). from any of the inputs and observable from any of the outputs
Theorem 1:In the coordinatez = Tz, system matrices considered, and corresponds to motions in presence of elastic

of the linearized dynamics takes on the standard form seend®formations.

the bottom of the page. Structural properties of the dynamics, highlighted by The-
The subspace inily is controllable from joint torques orems 1 and 2, for the examples of Fig. 1 are reported in

and external wrenches, and observable from object positiohgpendix C.

A | 0 0 0 0 1 N 07

0 A |0 0 0 * 0

T1AT =] 0 0 A | 0 0 |T'B, = |o| T 'By=|"

0 0 0 iA | o o .

L0 0 0 0 dA | _ R

0. -®-
CuT=[0 | 0 | o | o | o]
CqT:[ . | . | . | 0 | 0]
CT=[0 | e | @ | 0 | o]
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VII. DIscuUssION rolling in 3-D between fingers and objects). In fact, driftless

The standard forms in which the dynamics of a generdPnholonomic systems may exhibit complete controllability
manipulation system can be written by using suitable codpver a state-space with higher dimension than the number of

dinates for representing its states, as reported in Theorem&RULS: which fact is clearly not possible for their linearized

and 2, summarizes most results of this paper, and repres nrﬁrpfrtt'h fort ¢ wre th ith of
perhaps its main contribution. Such form synthetically contaln% s'tl)'T't'claJ; oefFeeret(j)rl;s atrheenﬁgﬁls_ﬁgg r?a(t:arrt)a u(;fe th: Wri?)len?
information relating to the structural properties of the vario SSIDIH y the ! ure €p '
) e tools developed in this paper on the linearized model
subsystems. It can be seen, for instance, that the free evolufioh | . . ) )
o - ; are believed to be useful in the design of control algorithms
of the system from nonzero initial conditions belonging to a . . . . N
- Tor general manipulation systems notwithstanding the intrinsic
one of the fundamental subspaces (redundant, dynamically 3. : . g
) . . : L nlinearity of robotic devices.
internal, indeterminate, and defective), remains inside the

same subspace. In other words, the fundamental modes are APPENDIX A
dynamically decoupled and can be independently exmted.We discuss in some detail the contact constraints (1), the

In the standard forms, presence ofeablock in an input : . .
o - . umped-parameter visco-elastic model (5)—(6) of dynamics and
(output) matrix indicates the controllability (observability) og ; o B , )
. . . |}]s linearization (8)—(11) about equilibrium configurations.

the corresponding subsystem, while a zero block indicates the
lack of the same property (this comes easily by applying the
P.B.H. test) property ( y Dy apping A. Rigid-Body Contact Constraints

In most part of this paper (except for Section IV-A), the A hand-object system is a constrained mechanical system,
manipulation system has been assumed in open-loop, or Wieose dynamical description can be derived using Euler-
feedback gains were assumed to be fixed and given. Howevtgrange’s equations along with constraint equations.
exploitation of feedback design (in particular, of the available The disjoint dynamics of the hand and of the object are
states through matricddg and Rg) in order to modify the ge- Written as

ometry of the system and match particular task specifications,

. . T
such as e.g., disturbance decoupling or noninteracting control, <i aL’L(?’ ) _ 9Ln(g, q>)
is a most interesting and promising extension of the approach dt  9q dq
followed in this paper [29], [28]. =Mn(@)i+Qplg.a4) =7
Being robotic systems highly nonlinear in nature, one may d OLy(u,%) OL,(u,1) T
guestion the validity of the linearization approach to the <@ on  ou )

analysis. The simplicity of results achievable by linearization . .
- ; . =M, ) =
appears to be important at this rather early stage of inves- (Wit + Qo (u, i) = w

tigation of complex manipulation systems. Moreover, it ighere 1,(.,-) and L,(-,-) are the Lagrangians¥y,(-) and
well known that some of the results on the linearized SYStef (.) are symmetric and p.d. inertia matrices af(-, )
(e.g., asymptotic stability and pointwise controllability) implyanon(,7 ) are terms including velocity-dependent and gravity
analogous local properties for the real system. Conditions f§tces of the hand and of the object, respectively.

the linearized system are only sufficient in general, and widerfand and object dynamics are linked throughigid-body

applicability of some property may hold for the nonlineagontact constraints, i.e., unilateral constraints of the type
system. This is the case for instance when constraints of non-

holonomic type are present (as it happens when considering C;(q,u,q,u) >0, i=1,---.,m.
"o- 01
A 0 0 0 0 07 —
. 0
0 kA 0 0 0 0 B
. . 0 0 cA 0 0 0. * . *
T71AT = TB,=|_| T 'By=|_
0 0 0 A 0 0 . .
0 0 0 0 A 0 —
0 .
L0 0 0 0 0 4A ] B
LO Le |
CuT = [0 ] O | o | e | o | o]
CqT=[e | o | | e« | 0 ] 0]
CIT=[0 ] o [ 0| e | 0 | o]
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This inequality relationship reflects the fact that tHecontact and dissipation terms

can be lost if the contacting bodies are brought away from each L , , . , ,
other. This involves an abrupt change of the structure of the Bi = 5& ("¢, "¢, 765, "¢) By (%cy, "6, 764, ;)
model under consideration. To avoid inessential difficulties, _ - . ) )
we assume that manipulation is studied during time intervaid'ere K;, B; are symmetric, p_05|f‘|vg defm,!te me‘\‘trlces_ln-”
when constraints hold with the equality sign. Assuming afiorporating (hand/object) material “stiffness” and “damping
contact constraints are either holonomic or Pfaffian, the whdiBaracteristics, ang(-, -) is a suitable displacement functibn

set of contact constraints can be rewritten as applied to the position of the Gauss frames on the object and
. finger surfaces at théth contact point.

C(q,u) {q} =0. Having included the elastic energy and dissipation terms in

u the model of the whole system, the standard derivation of the

Several types of contact models can be used to describe g4 decoupled dynamics can now be applied and gives
interaction between the links and the object, among which the

1 3 T
most useful are probably the point-contact-with-friction model Mui+Q, + [ 98 e | 9 ic} K¢
(or “hard-finger”), the “soft-finger” model, and the complete- ' |9°c 9g  d'c dq
constraint model (or “very-soft-finger”) [31], [11]. In each of ¢ of ot T
case, theth contact constraint consists in imposing that some l = Y ] BE=r (37)
components of the relative velocity between the surfaces are 9’¢ 9q ~ d"¢ Oq
zero . 9¢ 9°c  o¢ de]”
h: o, MO'U, + QO + |:80§ a ah£ a :| KS (38)
H;("¢;—%¢)=0 (35) cou CT u
f 9o * ah;
wherehci, °¢; ared-dimensional vectors locally describing the a§ 9 ‘C 85‘ 9 ‘C Bé —w (39)
position and orientation of a frame attached to the surface of ¢ on  Ohé Ju

the robot link and of the object, respectively. These frames
are centered at the contact point and oriented accordingtfere K and B are the aggregated stiffness and damping
the Gauss frame rule, being regularity of surfaces taken fé@trices for the manipulation system. Computation of these
granted. The selection matrikl; is constant and dependsmatrices based on knowledge of visco-elastic parameters of
on the model assumed for thigh contact. Details on the contacting bodies is possible along the lines of [12]. Although
construction of matrixd can be found, e.g., in [7]. in practice such knowledge might be difficult to obtain,
As the two Gauss reference frames are fixed on the obj@épcedures similar to those currently used to identify inertial
and the robot, respectively, their velocities can be expresgi@fameters of robot arms can be conceivably used to estimate
as a linear function of the velocities of the object and of thésco-elastic parameters.

manipulator joints as The following assumptions are introduced.
" ) Al: ¢("e,%¢) = H("c — °¢). This amounts to assuming a
°t; =G u; e = Jig. (36) linear elastic model for the bodies.

, . ) A2: Contact points do not change by rolling. From (36)
Notice that the elements &; depend in general upowand 544 from the identity

on (a parametrization of) the position of tite point of contact

on the object surface; and analogously ﬁ;ruponqi and on 9% 0 (9% 9% .\ 0%

the position of theith contact on the robot link. du @( at - du u) ou
Similar relationships hold for each contact point, and a

single equation can be built to represent all (spthe contact gpe gets(9°¢/0u) = éT(u)_ Similarly, (3"¢/dq) = J(q).

constraints of the system. From (35) and (36), by propemyrther, (9hc/du) = (9°¢/dq) = 0. Non-rolling contacts

juxtaposing vectors and block matrices, the constraint matg4n be reasonably assumed when the relative curvature of the

C(g,u) takes on the following form: contacting bodies is high. Neglecting the effects of rolling
q ¢ pairs affects the generality of the following results, as will be
C(q,u) LJ =J -G ]LJ =0 remarked later. Rather than by the mathematical difficulties in

dealing with rolling contacts (that can be satisfactorily treated
where matricesd = GHT ¢ R%<t andJ = HJ € R**4 are in a rigid-body setting, see, e.g., [4], [23], this assumption
customarily referred to as “grasp matrix” and “hand Jacobiarl® motivated by the lack of a tractable model of rolling and

respectively. compliant contacts [16].
In this setting, the Lagrange multiplietsan be interpreted
B. A Lumped-Parameter Compliant Model as representing the vector of constraint forces deriving from

virtual “springs” and “dampers” with endpoints attached at the

To address hyperstatic manipulation systems, it is Necessaty tact points’e;’s and hci’s. Denoting the displacement at
to introduce further structure in the mechanical model, namely,

elastic energy terms 3The proper choice of this displacement function is actually a hard problem
T } } in the analysis of contact mechanics, see e.g., [16]. A detailed discussion of
K, = %SZ (°¢;, ") K;6i(°c;, " ep) this point may be found in [34].
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the ith contact byéc; = Hi(hc-,: - °¢;), we have therefore The first-order approximation of the second term of the

t; = K;H;("c; — °c;) + BH;("e; — °¢;) right-hand side of (5) is as follows:
=K ;oc; + B;oc;. (40) _ -
199 T Pt M It & M T e

Accordingly, the aggregated compliant dynamic and contact 8MﬁlJTt 3MﬁlJTt .
force model are derived as in (5)—(7). + T oa 6q+ o | ¢
q eq q eq
C. Linearization oM LIt OMLJTt
. ) . - | —2 | bug | —B | &
Consider first the hand dynamics (5), and let the Coriolis Ou . Ou N
and centrifugal terms matrix be denoted 6Y,(q,q), while 4 4
the gravitational term iwy,(q), so that where
Qule:9) = Cpla, )a + vp(9)- [aM,;lJTt laM;fJT - {M_l JT 81
— = |— eq —_—
Observe that, due to its particular structu,(q,0) = 0. 9 eq & eq b og e
The first-order approximation of the first term on the right aM}—LlJT
hand side of (5) is = teq
Oq
M;Q o
h “h 1T 0K &g
OMTQ OM7LQ + {Mh J <KJ+
-~ -1 h h h h . eq
N[Mh Qpleq + | —o—| g+ |—F— . LT
Oq . o4 . OMy I —M_IJT M _aigrp
- 9q n' gy ~Mpd Bl
Since eq
_ iy - - oMt gt r
(M} Qpleq = M} Chi + My vpleq = My vpleq [gi - MﬁlJTg—t}
-1 Faaf—Lley. - -1 u L U],
8Mh Qh _ 8Mh C’hq n 8Mh vh eq -~ 4 oK
aq eq - aq aq eq - _M}_"l JT <KGT ’U:Seq ) :|
- -1 L eq
_ | oMy n oM I Lot
dq — M, J"—
L eq 8u L L 8u eq
OM;'Q Y “
h “h| _|p-19Re| _ =[-M;'J'BG*
___n " — |7 =nt — eq-
[ 94 ] _ h o Lq 0 [ h Jeq
eq
Hence
we have
oMoy M My egbeq
M;'Qp ~ M3 vpleq + | —2—"| &q. oMt gt
Bk R TR oq |, | ey gt (kg )| g
a g h q
In order to evaluate the first-order approximation of terms OK¢ b
involving contact forces, recall that from hypotheges and + {—MEIJT <KGT - Teqﬂ ou
A2 it holds LT T . Teq
FouT K¢ 5t + [—M,‘l J BG ]eqqur[M,‘l J " BJleqq.
R K+ [ ﬂ : [_} = [BJ]eq
L 9q ] eq dq eq 9q eq The last term of (5) is first-order approximated as
[ 9% ] OKE,
= =—[KG ey + Seq 1
[Ou ] eq Ju eq -1 -1 h -1
F ot T Mh T%[Mh T]eq+ ey T 5Q+[Mh ]eq‘ST-
| =BG “

eq

Note that in local (contact) frames, stiffness can be assume
be invariant with the configuration. However, terms involving
the derivatives of the stiffness matr{¥) appear in general
due to the fact that it relates contact forces and displacements
in the base frame, then its representation does depend on
system configuration.

J?t%calling that, at the equilibrium
vy + JYh—r=0

and proceeding to some simplification, we finally get the
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first-order approximation of the hand dynamics (5) has the same effect on the linearizing approximation.
dup,  OJ Accordingly, the simplified linearized dynamics (10)—(12)
parw -1 __n _ ZY "eq . .
g~ [Mh < Bq Bq is obtained.
K APPENDIX B
- JT<KJ+ 0K 5‘*‘))} éq
q eq In order to prove Theorems 1 and 2, some preparatory
o v 0K lemmas are needed. For the sake of simplicity, we assume in
- {Mh J <KG T T a )} 6 the following that the representation of states is normalized so
eq

1T . T Ty as to have homogeneous physical dimensions for all states.
+[-M; J BJlegqg+ M, J BG |qu

h h Under this assumption, it is possible to define an internal
+ [M}_"l]eq(ST. (41) product in the state spacé'z: R24+9 x R2@+d) _ R),
Linearization of object dynamics (6) proceeds along simil&nd the notion of orthogonality between subspaces. Since such
lines. Putting a normalization of the state space can always be obtained by
means of a linear transformation of coordinates that is positive
Q,(u,u) = Co(u, )i + vo(u) definite, no loss of generality will ensue fom this assumption.
and noting thatCy(u,0) = 0 and that(dve/u) = 0, the Lemma 2: The subspace unobservable from object dis-
first-order approximation of (6) is placements is controllable from joint torques, iler O C
(A, B;).
i~ |:M51G<KJ + %)} 5q Proof: Directly from comparison of (23) and (18). =
q eq Lemma 3: The subspace unobservable from joint displace-

ou du (A, By).
Proof: Directly from comparison of to (31) and (33

n [MEI <% n IGheq G<KGT 3 8If£§eq>>} ments is controllable from external wrenches, ike; Og C
eq

- 6u+ [MytGBJeqq + [~Mgy*GBG! .yt : :
u+_[1 0 GBJleaq +[-Mo GBG Jeqis Lemma 4: Inertia matrix M maps the subspace control-
+ [Mg Jeqéw. (42) |aple from joint torques in the orthogonal complement to

Rewriting (41) and (42) in the state-space description (8)—(18)€ subspace unobiervable from joint displacements, i.e.,
one gets (43), shown at the bottom of the page, whgrévo) (4,B;) = kerOg. Moreover, (A, B;) @ kerOq =
denotes the gravitational parts €, (Q). All the matrices R2(g+d),
of the linearized dynamic model are implicitly assumed to be Proof: By comparing (18) and (31), the thesis is proved
evaluated at the equilibrium configuration. by showing that

In the general case, block. still has a rather involved
expression in terms of the system’s kinematic parameters and
material properties, and depends on the intensity of forces at Wik — <
equilibrium. To the purpose of obtaining clearly intelligible b
results relating structural properties of manipulation systems
to their more intrinsic parameters, the linearized model is
considered under further assumptions as follows.

A3: Terms due to gravityy, andwve are null. d
_ A4: Stlffne_ss and (_:Igmpmg are isotropic at each co_ntact, M"Z im((MglG'KGT)k—lMglGKJ)
i.e., there exists positive constamts and 3; such that, in P
a local frame,K; = k;I and B; = f;1I, with 3;/k; = i T ap—1
const. This implzies th;t, in ba;e frar%éE)K/a(q,u)) = Mo(My GKG™ . My GKJ).
(0B/d(q,w)) = 0 and thatB « K. This assumption is

"=

L
ker [JTKGT(MglaKGT)i—1]>
1

<.
Il

im ((GKGTMZ -Gk J)

[l
AM&

?.
Il
=

customary in mechanical vibration analysis [20]. The rest of the proof follows from inertia matrid being
A5: J(q) andG(u) are slowly varying functions of their ar- positive definite. ]
guments, so that term®J Fte,/9q), (0Gteq/Ou) are negligi- Lemma 5: Inertia matrixM maps the subspace controllable

ble. Note that assuming small contact forces at the equilibriinom external wrenches in the orthogonal complement to

Ay, — J T, . .
Mﬁl _ (Tlh CI) —JT<KJ+ aKS q) M}_LIJT<KGT— aKS q)
My K+ Ko 5‘”) M5 <—a(”0 ; Gleq) _ G<KGT _ 0Ky 5‘”‘))
U u

q
_M—l TB M—l TBGT
LITBS M } @3)

Ly =—
b [MglGBJ ~M,;'GBG"
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the subspace unobservable from object displacements, i(an (M 1JT N Vp) + kerJ = V. The rest of the proof

M(A,By) = kerO. Moreover, (A, By) @ kerOy = follows from observing that
R2(q+d)

Proof: Similar to proof of Lemma 4, with reference to 0 Iy,
(33) and (23). [ | 0 0

Lemma 6: The inverse of inertia matrixM maps the im (ATp) = im My JTKIT, 0 C im Ty,
orthogonal complement to the sum of the unobservable M-lGKJT 0
. .. . . 0 h
subspaces from object and joint displacements in the
invariant subspace of states controllable from both input

torques and external wrenches, i.€4,B,) N (A, By) = In fact, by definition of I',, M;'GKJI, = 0, and
M ™" (ker Oy & ker Og)*. Moreover,((A, B;) N (A, By))& im (M J KJT'p,) C im (My*J"), hence thed-invariance
(ker Oy, @ ker Og) = R+, of im T, is proved. n
Proof: From Lemmas 4 and 5 Lemma 8: The subspace unobservable from joint displace-
ments can be decomposed in the direct sum of Aniavariant
—1(ker0u@ ker Oq)J_ subspaces, one of which is the indeterminate subspéce

Equivalently, there exist a matriX'; such that
= (M tkerOg)N (Mt kerOé‘) f Y d
= (4, B-) N (A, Buy). ker Og =imT; + im Ty
L N imT; N imTyz=0
Thg r_est of the proof follows from matridd ~* being positive im AT  Cim'T
definite. [ |

We prove now two previously anticipated results: o

Lemma 7: The subspace unobservable from object dis- Proof: Defining Ty as
placements can be decomposed in the direct sum of two

A-invariant subspaces, one of which is the redundant subspace

A, (25). Equivalently, there exists a matfi¥, such that 0 0
. . S IRt
ker Oy = im Ty + im T,
imTrNimTp =0 0 Iy
im ATy, C im Ty, I'y =b.m. of im (M5 G) N W, (45)
Proof: Remind from (28) and (23) that
the proof is similar to that of Lemma 7. [ |
r o v, 0 Proof: (Theorem 1) Lemmas 7 and 8 prove the struc-
0’ 0 . 0 0 tures of C¢T and CyT and the A-invariance of the col-
Tr=|o . |} ktOu=im| o umn spaces of block matrice§y, Ty, T;, and Tg. The
0 0’ 0 Oh A-invariance ofim T, follows directly from its definition: it is

the intersection oft-invariant subspaces. From Lemmdlbis
invertible, hence a valid change of coordinates. The definition
of T together with Lemmas 2 and 3 prove the structure of
input and disturbance matrices. The proof ends by observing,
directly from (30), the presence of two zero block matrices in

wherel',. is a b.m. ofker J, andV, is a b.m. ofV}, (24). The
matrix Tp, satisfying the lemma is

r, O C.T. |
Ty = 8 FO with The following lemmas are instrumental to prove Theorem 2:
h

Lemma 9: A necessary and sufficient condition for the
coordinated rigid motion subspace to be controllable from
Iy, =b.m. ofim (M} *J") N V. (44) joint torques is that the image of its restriction to object
displacements under the object inertia matrix is contained in
The first two claims can be shown by restricting to the spatiee image of the grasp matrix, i.e.,
of joint displacementfk? as

ker J N im Dy, = O; imTe C (A,B;) © MgoimI',. C imG.
{ Vi, =imID,. + imI,.

. . _ I Proof: Necessity is straightforward from (18) and from
In fact, sinceMy, is p.d.,im(Mp"J") N kerJ = 0, and  the fact thatMoimI,. C Mo < My GKG®, M;'GKJ) C
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im G. The sufficient part follows from the definition df,,.
[see (27)] and the Cayley—Hamilton theorem. [ |

Lemma 10: A necessary and sufficient condition for the
coordinated rigid motion subspace to be controllable from
external wrenches is that the image of its restriction to joint
displacements under the manipulator inertia matrix is con- y :
tained in the image of the manipulator transpose Jacobian,
ie.,

imTe € (A, Bw) & MpimI;. C imJ*. %
Fig. 9. Manipulation system of example 1.

Proof: Similar to proof of Lemma 9. [ |

Proof: (Theorem 2) Lemmas 9 and 10 prove that con- Example 2: The manipulation system in Fig. 10 is nonre-
dition (34) is necessary and sufficient fan Te C imTo. dundant, indeterminate, nongraspable, defective, and nonhy-
Thus according to Theorem 1 and reminding thafl'¢ is not  perstatic
observable from contact forces (29), it remains to show the
A-invariance ofim Tq. From the structure of matrig (10)

and the following equivalence: 0 T 1 0 1
-1 0 1 -2
AM™! imTé‘ cCM! imTé‘ = A'MimTe € Mim Te T 1
kerJ* =im {0} kerG =0
it is an easy matter to verify thd-invariance ofM ! im T¢. ker JTAker G = 0
Thus, being the column space ©f, A-invariant as well, the
invariance ofim T¢q is shown and the proof ends. | . 1
kerJ =0; kerG~ = im | -2
-1
. *A 0
APPENDIX C T=[T; T,; T AT = o A

In this appendix numerical results are reported for the
examples of Fig. 1. All manipulators are planar, and the
manipulated object is assumed to be a disk of unit radius,
mass, and barycentral moment of inertia. Moreover links have . . . - .
unit mass which is concentrated at their tips, so that barycentralzx"’lmpIe 3 Th_e manipulation system_ln Fig. 11 is nonre- .
moments of inertia are zero. Links are assumed to have u%;[ndant, determinate, graspable, defective, and nonhyperstatic
length if there is no contacts with the object otherwise the

distance between the contact point and the nearest joint is

dim(imT;) =2; dim(imT,) =6.

. . . . -1 0 1 0 0
unitary. Stiffness and damping matrices at every contact are 0 0 0 1 -1
assumed to be normalized to the identity matrix. J= 0o -1’ G' = 10 0

Example 1: The manipulation system in Fig. 9 is nonre- 0 0 0 1 1
dundant, determinate, graspable, defective, and nonhyperstatic 0 0 1

-1 10 0 ker JT =im 1o ; kerG = im 0
0 0 1 -1 0 0 -1
J= - G =
1o | “J11 0 o0 0 1 0
0 01 1 ker J'Nker G =0
(1) 8 8 (1) kerJ =0; kerGY' =0
T . . _ . ~
ker J* =im 01 ol kerG = im RE T=[T;, Tyq T. T,
0 0 1 0 A | 0 0 0
ker JTNker G = 0 o 0 41 0 0
T T71AT =
keI'JIO; kerG* =0 0 0 <A 0
°A 0 B
T=[T, Td; T'AT= y ] 0 0 0 A
A dim (imTy) =2; dim(im Ty) = 4;

dim (imTq) =4; dim (imTy) =4. dim(imT,) =2; dim({imT,)=2.
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X

Fig. 10. Manipulation system of example 2.

Fig. 11. Manipulation system of example 3.

Example 4:
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@

7.

Fig. 12. Manipulation system of example 4.

[

The manipulation system in Fig. 12 is nonredundant, deter-

minate, graspable, defective, and hyperstatic

—1 0 07

0 0
-2 0

1 0
1
0
1 0 07
1 -1

[ NI i e B

ker JT =im

—0.1 -0.7
-0.5 0.1
0.2 -0.1
0.8 0
—0.1 0.8
.-0.3 —-0.1

ker G =im

ker J'Nker G = im _9
0

1
kerJ =0; kerGY =0

T:[Tc Ta]? T_lAT:

dim (imT.) = 2;

0.59
—-0.6
-0.3
—-0.4

0.2
—-0.4
—-0.2

0.7
—-0.2
—-0.2

0.4

dim (im T, ) = 10.

Fig. 13. Manipulation system of example 5.

a

Fig. 14. Manipulation system of example 6.

Example 5: The manipulation system in Fig. 13 is nonre-
dundant, determinate, graspable, nondefective, and nonhyper-

static
—1.9 —0.87 0 0
J_| 05 05 0 0
I ) 0 -19 -0.87
L 0 0 =05 =05
1T 0 0
T |0 1 -1
G =110 o
0 1 1
1
T . 0
kerJ* =0; kerG = im 1
0
kerJTNkerG =0
ker J =0; kerG' =0
. . . cA 0
T=[T. T.; T 'AT= ”

dim(imT.) =6; dim(imT,) =8.
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Example 6: The manipulation system in Fig. 14 is redun{10] A. A. Cole, P. Hsu, and S. S. Sastry, “Dynamic control of sliding by
dant, determinate, graspable, nondefective, and nonhyperstatic robot hands for regrasping/EEE Trans. Robot. Automatvol. 8, pp.

[11]
2.7 -1.7 -0.87 0 0 0 1
[ I 0 [12]
o 0 0 0 -27 -17 -0.87
0 0 0 -1 -1 -0.5 [13]
14
1 0 0 ol
r |01 -1 [15]
G = 1 0 0
01 1 [16]
(1) [17]
T _g. —
kerJ* =0; kerG = im 1 [18]
0 [19)
ker J'Nker G = 0
r o 0 [20]
-1 0 .-
2 0 T
kerJ = 0 0 kerG™ =0
0 -1 [22]
R -0 2 [23]
T=[T, T. T

i [24]

A 0 0
T-1AT =10 cA 0 [25]

LO 0 “A
dim(imT,)=4; dim(imT.)=6; dim({imT,)=38. [26]
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