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Force/Torque-Sensorless Joint Stiffness Estimation
in Articulated Soft Robots

Maja Trumić1, Giorgio Grioli2, Kosta Jovanović3, and Adriano Fagiolini4

Abstract—Currently, the access to the knowledge of stiffness
values is typically constrained to a-priori identified models or
datasheet information, which either do not usually take into
account the full range of possible stiffness values or need
extensive experiments. This work tackles the challenge of stiffness
estimation in articulated soft manipulators, and it proposes an
innovative solution adding value to the previous research by
removing the necessity for force/torque sensors and generaliz-
ing to multi-degree-of-freedom robots. Built upon the theory
of unknown input-state observers and recursive least-square
algorithms, the solution is independent of the actuator model
parameters and its internal control signals. The validity of the
approach is proven analytically for single and multiple degree-of-
freedom robots. The obtained estimators are first evaluated via
simulations on articulated soft robots with different actuations
and then tested in experiments with real robotic setups using
antagonistic variable stiffness actuators.

Index Terms—Calibration and Identification, Compliant Joints
and Mechanisms, Flexible Robots, Safety in HRI

I. INTRODUCTION

THERE is a growing interest in exploiting the full potential
of articulated soft robots, i.e. vertebrate-inspired systems

consisting of rigid links interconnected by compliant joints [1].
However, to fully let these robots reach the edge with respect
to their rigid counterparts, both in terms of performance and
safe human-robot interaction, consistent and accurate knowl-
edge of joint stiffness is paramount, which is a challenge for
the fact that stiffness itself is not measurable [2]. A common
practice for stiffness assessment is to rely on mathematical
models, experimentally determined prior to the robot utiliza-
tion. Some manufacturers of joint actuators provide this infor-
mation in the form of a function of the internal configuration
of the actuation device. However, the provided model can only
describe a nominal characterization of the joint stiffness, which
in fact depends on the device temperature and whose accuracy
degrades with the increase of the elastic elements’ wear [3],
thus possibly leading to unacceptable performance loss and
safety degradation. Moreover, if such a model is unavailable,
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an articulated-robot designer has to spend considerable time
for its identification, which may involve understanding which
nonlinearities can be neglected so as to trade between model
complexity and accuracy.

This limitation is now motivating the shift toward the
adoption of online and adaptive stiffness estimators. Along
this line, the problem of estimating stiffness in the Cartesian
space has been tackled in [4] for robots in contact with the
environment. Successive works have successfully addressed
the estimation problem in the joint space both from the so-
called motor side [5]–[8] and link side [9], [10], which is
crucial for ensuring the safety of humans who can collide
with the robot sideways. With regard to these methods, full
motor-side approaches avoid using information about the robot
dynamics but require knowledge of the actuation device motor
controls (in terms of torques or currents) for which they are
considered invasive solutions. Contrarily, a link-side solution
such as in [9] uses information about the robot kinematics,
dynamics, and external forces, and is thus regarded as noninva-
sive, but tend to suffer from observability issues. Interestingly,
according to recent trends in rehabilitation robotics, link-side
stiffness approaches are believed to become advantageous for
parameter estimation in human-robot cooperation [11], as well
as for assessing human stiffness during teleoperation [12].
Concerning this last perspective, they also avoid the need to
install sensors in the human body. Yet, all the aforementioned
approaches rely on the availability of force/torque sensor data,
whose placement is often impractical or even impossible due
to its invasiveness, as well as more expensive. Also, link-
side solutions have considered stiffness estimation for a single
degree-of-freedom (DoF) structure only.

To overcome current limitations and simplify the usage of
stiffness estimators in various spheres of robotics, the present
work addresses the problem of joint stiffness estimation with
force/torque sensorless techniques. We consider here the joint
stiffness that is the passive, or internal, stiffness of a robot
joint, indicating the amount of joint torque change that is
necessary to produce a deformation of the joint’s elastic
transmission from the current value. Joint torque is, in turn,
the elastic torque transferred from the actuator motors to the
robot link via elastic transmission. The letter proposes an
innovative solution that can be viewed as semi-invasive for
needing only the motor positions and speeds of the used
actuators, but being independent of their dynamic models
and internal controls. Specifically, the independence from the
actuation control commands is obtained by suitably decoupling
the reconstruction of the elastic torque time-derivative via a
delayed Unknown Input-state Observer (UIO) [13]. In this
respect, a first theoretical contribution of this letter is to
show how the joint stiffness estimation can be resolved into
that of the elastic rotatum pe, which in turn is possible by
using UIO theory provided that the robot’s dynamic model is
suitably reformulated. Moreover, by presenting a general way
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to factorize each VSA model as the product of a regressor
matrix and a coefficient vector, the letter presents an instru-
mental connection between elastic rotatum and joint stiffness,
which is a crucial enabler for applying Recursive Least-Square
(RLS)-based learning [14] that allows extracting the sought
stiffness signal and achieving independence from the actuation
model. Lastly, capitalizing on the decentralized nature of the
elastic torque time-derivative, a third theoretical contribution
of the letter is an analytical proof that n identical copies of a
universal 1-DoF stiffness estimator can be used.

The letter contributes to the state-of-the-art by presenting
an innovative solution with the following advantages: 1) In
a broad manner, it substantially reduces cost and complexity
by avoiding the installation and calibration of force/torque
sensors, a choice recently advocated in works such as [15];
2) it presents a semi-invasive, link-side stiffness estimator for
n-joint articulated soft robots; 3) it offers a unifying frame-
work that extends to the wide range of compliant actuators:
Series Elastic Actuators (SEA) [16], serial Variable Stiffness
Actuators (sVSA) (e.g. AwAS [17], SVSA-II [18], vsaUT-
II [19]) and antagonistic Variable Stiffness Actuators (aVSA)
(e.g. VSA-HD [20], QA-Joint [21], qbmove [22]); 4) it does
not need link speed and acceleration at the only expense of a
few sample delays [13]. The proposed estimator is validated in
simulation, by applying it to three robots with different types
of actuators, and then through experimental tests on real robot
setups with different configurations.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider an n-DoF articulated soft robot consisting of n
pairs of rigid links and elastically-decoupled flexible joints.
Assuming a negligible inertia coupling between motors and
joints and link-position dependent gravity potential and mass
matrix, the robot’s dynamic model reads [2]:

M(q) q̈ + C(q, q̇) q̇ +G(q) + γ(q̇) + ∂V (q,θ)T

∂q = τext ,

B θ̈ +D θ̇ + ∂V (q,θ)T

∂θ = τ ,
(1)

where q = (q1, · · · , qn)T is the link position vector, θ =
(θ1, · · · , θm)T is the motor position vector, M(q) is the
robot inertia matrix, C(q, q̇) is a matrix formed of Coriolis
and centrifugal terms, G(q) is the gravity vector, γ(q̇) is a
vector comprising static and viscous friction terms, V (q, θ)
is the elastic potential energy, τext is an external torque,
B = diag(b1, · · · ,bn) is the motor inertia matrix, and
D = diag(d1, · · · ,dn) is the motor damping matrix, and,
finally, τ = (τ1, · · · , τn)T is the actuator input torque vector.
This model is broad enough to accommodate the description
of a wide range of articulated soft robots. Three different
instances of the proposed model are considered in this letter:

1) SEA-driven robots. The constant elasticity of these
robots’ joints arises from the linear spring that connects in
series a single, directly-actuated motor and a robot joint.
They have a negligible stiffness adjusting mechanism and,
hence, their potential energy reduces to V (ϕ) = 1

2ϕ
TKϕ,

where K ∈ Rn,n is a diagonal matrix, whose i-th entry
is the i-th actuator spring constant, and ϕ = q − θ is the
transmission deflection vector with q, θ ∈ Rn. The elastic
torque vector and joint stiffness matrix become consequently
τe(ϕ) =

∂V (ϕ)T

∂ϕ = Kϕ , σ(ϕ) = ∂τe(ϕ)
∂ϕ = K . Since

∂V (q,θ)
∂q = −∂V (q,θ)

∂θ = ∂V (ϕ)
∂ϕ , a SEA-driven robot’s dynamics

can be written in the form
M(q) q̈ + C(q, q̇) q̇ +G(q) + γ(q̇) + τe(ϕ) = τext ,

B θ̈ +D θ̇ − τe(ϕ) = τ .
(2)

2) Serial VSA-driven robots. Besides having a motor that
directly sets the link position, these robots are equipped
with the stiffness adjusting mechanism that allows online and
independent setting of both position and stiffness. Thus, their
potential energy is V (q, θ) = V (θc, ϕ) = Vθc(θc)Vϕ(ϕ),
where ϕ = q − θa, with θa ∈ Rn being the configuration
of a first motor, which determines the link position, and
θc ∈ Rn configuration of a second motor, that adjusts stiffness.
Again, considering that ∂V (q,θ)

∂q = −∂V (q,θ)
∂θa

= ∂V (θc,ϕ)
∂ϕ , their

dynamics reads
M(q) q̈ + C(q, q̇) q̇ +G(q) + γ(q̇) + τe(θc, ϕ) = τext ,

Ba θ̈a +Da θ̇a − τe(θc, ϕ) = τa ,

Bc θ̈c +Dc θ̇c + ψe(θc, ϕ) = τb ,
(3)

where the elastic torque, the coupling elastic torque, and the
joint stiffness matrix σ ∈ Rn,n are

τe =
∂V (θc,ϕ)

T

∂ϕ , ψe =
∂V (θc,ϕ)

T

∂θc
, σ = ∂τe(θc,ϕ)

∂ϕ ,

with σ being a diagonal matrix due to the joints’ elastic
decoupling. The independence of the motor roles, for every
i-th joint, let the expression of the elastic torque be factorized
as τei = τθcei (θci) τ

ϕ
ei(ϕi) [23].

3) Agonistic-Antagonistic VSA-driven robots. Their main ad-
vantage stems in the nonlinear antagonistic coupling between
two motors and the joint, allowing simultaneous position
and stiffness setting. According to [8], their potential energy
satisfies the condition V (q, θ) =

∑
j V (ϕj), with ϕj = q− θj

where j = a, b indicates the agonistic and antagonistic motors,
which induces the relation ∂V (q,θ)

∂q = −
∑

j
∂V (q,θj)

∂θj
=∑

j
∂V (ϕj)
∂ϕj

, and their dynamics is

M(q) q̈ + C(q, q̇) q̇ +G(q) + γ(q̇) + τea(ϕa) + τeb(ϕb) = τext ,

Ba θ̈a +Da θ̇a − τea(ϕa) = τa, Bb θ̈b +Db θ̇b − τeb(ϕb) = τb ,
(4)

with q, θa, θb ∈ Rn, τej (ϕj) =
∂V (ϕj)

T

∂ϕj
and σj(ϕj) =

∂τej (ϕj)

∂ϕj
being the local elastic torque and local diagonal

stiffness matrix, so the total stiffness matrix is σ =
∑

j σj .
Assuming for simplicity that the external torque and friction

are null, τext = 0, γ(q̇) = 0, and recalling that stiffness is not
measurable, this letter addresses the following:

Problem 1 (Joint Stiffness Estimation): Given an articulated
soft robot as in (1), find a force/torque-sensorless estimation
strategy of the joint stiffness matrix σ = diag(σ1, · · · , σn), us-
ing only motor state information, link positions and dynamics.
Implicitly, the sought solution is required to be independent
of the commanded motor torque τ .

III. STIFFNESS ESTIMATION

A. Mathematical Framework of delayed UIOs

Consider a discrete-time linear system of the form
Xk+1 = ĀXk + B̄ Uk , Yk = C̄ Xk + D̄ Uk , (5)

where Xk ∈ Rn̄ is a state vector, Uk ∈ Rm̄ is an unknown
input vector, Yk ∈ Rp is an output vector. If (B̄T , D̄T )T is
full-column rank, the following holds [13]:

Proposition 1 (Delayed Unknown-Input Observer): Given a
system as in (5) and a delay L ∈ N+, the discrete-time linear
system

X̂k+1 = E X̂k + F YL
k , Ûk = J

(
X̂k+1 − Ā X̂k

Yk − C̄ X̂k

)
, (6)
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Fig. 1. Block diagram depiction of the semi-invasive stiffness estimator for
flexible robot joints, actuated by electromechanical actuators. The solution
comprises n identical copies of a 1-DoF UIO estimator and n identical copies
of a 1-DoF RLS filter.

where YL
k =

(
Y T
k−L, · · · , Y T

k

)T
is the system output history

recorded over L+1 time samples, J is the left-pseudoinverse
of (B̄T , D̄T )T , and E and F satisfy the conditions:
A1) F HL = (B̄, 0n̄,m̄) (input decoupling),
A2) E = Ā− F OL (initial state decoupling),
A3) E is Schur, i.e. all its eigenvalues are within the unit

circle (free solution convergence),
where HL and OL are the L-step invertibility and observability
matrices, can generate state and input estimates, X̂k ∈ Rn̄

and Ûk ∈ Rm̄, asymptotically tracking the real ones, i.e.
limk→∞(X̂k −Xk) = 0 , limk→∞(Ûk − Uk) = 0. □

A system as in (6) allows estimating the system state
regardless of the unknown input Uk with a delay L. The
choice of L is not heuristic, yet system dependent, thus it
is a-priorly calculated to meet the system’s invertibility and
strong observability properties (5) [13].

B. Joint Stiffness Estimation in Articulated Soft Robots
The estimator for online joint stiffness reconstruction in n-
DoF robots as in (1) is described here. Referring to Fig. 1,
the solution comprises a UIO, computing an estimate of
the elastic rotatum vector pe[k] = (pe1 [k], · · · , pen [k])T ,
i.e. the time derivative of the elastic torque vector, and an
RLS filter, retrieving the entries of the joint stiffness matrix,
σ̂ = diag(σ̂1, · · · , σ̂n); the RLS filter initially learns the
coefficients of a polynomial approximation of σ. Noticeably,
the estimator has a decentralized form consisting of n copies
of a 1-DoF UIO and of 1-DoF RLS filter, both using i-th joint
and actuator data only: the i-th joint position qi[k] is the only
input to the i-th UIO, and the estimated i-th joint speed ˆ̇qi[k],
and the i-th motor states are the inputs to the i-th RLS filter.
The involved components are presented below.

1) Elastic rotatum vector estimation: The derivation of this
component leverages on the decentralized nature of the elastic
potential energy V , which induces two useful properties: a)
∂V (qi,θ)

∂qj
= 0 for all i ̸= j; b) the i-th elastic rotatum, i.e. the

first time derivative of V ’s partial derivative in q, is pei =
d
dt

∂V (qi,θ)
∂qi

and hence it contains information about the i-th
joint stiffness [5]. The explicit formulas following from the
latter property are reported in Table I for the three actuation
principles. Then, the following main result can be stated:

SEA pei = τ̇ei =
d
dt

(
∂V (qi,θi)

∂qi

)
= d

dt

(
∂V (ϕi)
∂ϕi

)
=

∂τei
∂ϕi

ϕ̇i = σiϕ̇i

sVSA
pei = τ̇ei =

d
dt

(
∂V (qi,θi)

∂qi

)
= d

dt

(
∂V (θci ,ϕi)

∂ϕi

)
=

=
∂τei
∂ϕi

ϕ̇i +
∂τei
∂θci

θ̇ci = σiϕ̇i +
∂τei
∂θci

θ̇ci

aVSA
pei = τ̇ei =

d
dt

(
∂V (qi,θi)

∂qi

)
= d

dt

(
∂V (ϕai

)

∂ϕai
+

∂V (ϕbi
)

∂ϕbi

)
=

=
∂τeai
∂ϕai

ϕ̇ai +
∂τebi
∂ϕbi

ϕ̇bi = σai ϕ̇ai + σbi ϕ̇bi

TABLE I
EXPLICIT RELATION BETWEEN THE ELASTIC ROTATUM pei AND JOINT

STIFFNESS σi FOR EACH ACTUATION PRINCIPLE.

Theorem 1 (Elastic Rotatum Vector Estimator): Given
a sampling period T , the discrete-time linear system

X̂k+1 =E X̂k+F Yk, Ûk =J
(
X̂k+1−AnX̂k

q[k]− q̂[k]

)
, (7)

with Yk = (q[k − 3]T , q[k − 2]T , q[k − 1]T , q[k]T )T , X̂k =
(q̂[k]T , ˆ̇q[k]T , ˆ̈q[k]T )T , and

E=

( In T In 0n
0n In T In

−In/T 2 −3In/T −2 In

)
, An=

(In T In 0n
0n In T In
0n 0n In

)
,

F =

(
02n,3n 02n,n
0n,3n In/T 2

)
, J = (0n,2n In/T 0n) ,

(8)
estimates in finite time the elastic rotatum vector as
p̂e[k] = −M(q̂[k]) Ûk−Ṁ(q[k], ˆ̇q[k]) ˆ̈q[k] +

− Ċ(q[k], ˆ̇q[k]) ˆ̇q[k]−C(q̂[k], ˆ̇q[k]) ˆ̈q[k]−Ġ(q[k], ˆ̇q[k]) .
(9)

Proof 1: To connect the stiffness to the link dynamics, one
can differentiate the first equation of (1) as follows:

Mq(3) + Ṁ q̈ + Ċq̇ + Cq̈ + Ġ+ pe = 0 , (10)
and left-multiply both members of the obtained expression
by M−1 and lump all nonlinear terms into a virtual input

U = −M−1
(
pe + Ṁ q̈ + Ċq̇ + Cq̈ + Ġ

)
, (11)

which yields q(3) = U , that in state form is Ẋ = AcX+Bc U ,
q = C̄ X + D̄ U , with X = (qT , q̇T , q̈T )T and

Ac =

(
0n In 0n
0n 0n In
0n 0n 0n

)
, Bc =

(
0n
0n
In

)
,
C̄ = (In 0n,2n) ,

D̄ = 0n
.

Time-discretizing the above model according to Euler’s rule
with the sampling period T and defining the discrete-time
signals Xk = X(kT ), Uk = U(kT ), q[k] = q(kT ), where k is
a time-step, leads to Xk+1 = AnXk + B̄ Uk, q[k] = C̄ Xk +

D̄ Uk, with An as in (8) and B̄ = TBc = (0n, 0n, T In)T . The
above matrices An, B̄, C̄, and D̄ can be referred to the generic
system in (5) with n̄ = 3n and m̄ = n; also, they satisfy the
invertibility condition with a delay L = 3, which ensures the
feasibility of the UIO construction when the output history Yk

is as in the theorem’s statement, i.e. comprising 4 consecutive
samples of the link position q[k]. Direct computation of the
3-step invertibility and observability matrices defined in [13]
gives

H3 =

(
03n,n 03n,3n
T 3In 0n,3n

)
, O3 =

In 0n 0n
In T In 0n
In 2T In T 2In
In 3T In 3T 2In

 . (12)

The procedure to derive the rotatum estimator involves
satisfying the conditions of Prop. 1. Specifically, A1) for
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an n-DoF system is FH3 = (B̄, 03n,n). A convenient
way to solve it is finding F = F̂N with N so that

N H3 =

(
03n,n 03n,3n
In 0n,3n

)
. Direct inspection reveals that N =

diag
(
I3n, 1

T3 In
)

is a solution. Now, FH3 is rewritten as

F̂NH3 = F̂

(
03n,n 03n,3n
In 0n,3n

)
= (B̄, 03n,n). By partitioning F̂

in accordance with the right-hand side of the above relation,
i.e. as F̂ = (F̂1, F̂2) yields the condition F̂1 03n,n+F̂2 In = B̄
and hence F̂2 = (0n, 0n, T In)T , with undetermined F̂1, which
plugged into F satisfies A1). Then, according to A2), it must
hold E = An − (F̂1, B̄)N O3, where F̂1 can be used to
make E Schur and thus, also satisfy A3). It is direct to check
that the choice F̂1 = 03n leads to the matrices E and F in (8).
Lastly, choosing J as the left-pseudoinverse of (B̄T , D̄T )T

leads to (8). Finally, solving (11) for pe and replacing in it the
continuous-time quantities with the sampled measure q[k] and
the UIO estimates, q̂[k], ˆ̇q[k], ˆ̈q[k] and Ûk, gives the elastic
rotatum formula in (9).

Moreover, inspection of the UIO matrices suggests that pe
can be computed via n independent copies of 1-DoF UIO.
Appealingly, this implies that the solution scales with n, and
indeed that, for an n-DoF soft robot, it suffices to realize n
copies of the same 1-DoF UIO, as it is shown below:

Corollary 1 (Decentralized UIO): Under the hypotheses
of Th. 1, the elastic rotatum pe can be estimated via (9),
where each component ûi of the unknown input Ûk =
(û1[k], · · · , ûn[k])T is obtained by an i-th UIO whose state

X̂
(i)
k = (x̂

(i)
1 [k], x̂

(i)
2 [k], x̂

(i)
3 [k])T = (q̂i[k], ˆ̇qi[k], ˆ̈qi[k])

T

is updated as

x̂
(i)
j [k+1] = x̂

(i)
j [k]+T x̂

(i)
j+1[k] , for j=1, 2 ,

x̂
(i)
3 [k+1] =

α1

3
β[k]−α2 x̂

(i)
2 [k]−2 x̂

(i)
3 [k] ,

ui[k] = α3β[k]−α1 x̂
(i)
2 [k]−α2 x̂

(i)
3 [k] ,

(13)

with α1 = 3
T 2 , α2 = 3

T , α3 = 1
T 3 , and β[k] = qi[k]− x̂

(i)
1 [k].

Proof 2: Given the UIO described by (7) and (8), the change
of coordinates obtained via the permutation matrix
P = (e1, e1+n, e1+2n, · · · , ei, ei+n, ei+2n , · · · , en, e2n, e3n) ,
where ei is the i-th vector of the canonical basis, leads to
the new state vector Z = PX̂ = (q̂1, ˆ̇q1, ˆ̈q1, · · · , q̂n, ˆ̇qn, ˆ̈qn)T .
The UIO dynamics in the new coordinates reads

Zk+1 = E′ Zk + F ′ Yk , Ûk = J ′
(
Zk+1 −A′Zk

q[k]− q̂[k]

)
,

where E′ = PEPT , A′ = PAnP
T , matrix F ′ can be found

by imposing

PFYk =
(
0 0 1

T 2 q1[k] · · · 0 0 1
T 2 qn[k]

)T
= F ′Yk

and matrix J ′ via the following steps:

Ûk = J
(
X̂k+1−AnX̂k

q[k]− q̂[k]

)
=J

(
PTZk+1−An P

TZk

q[k]− q̂[k]

)
= J

(
PT 03n,n
0n,3n In

)(
Zk+1−PAn P

TZk

q[k]− q̂[k]

)
=

= J ′
(
Zk+1−A′Zk

q[k]− q̂[k]

)
.

It is straightforward to verify, via direct calculation, that
the following block-diagonal matrices are obtained: E′ =
diag(E1, · · · ,En) , F′ = diag(F1, · · · ,Fn) , J ′ =
diag(J1, · · · ,Jn) , A′ = diag(A′

1, · · · ,A′
n) , where Ei = Ē,

SEA τei = πi ϕi, pei = πi ϕ̇i , σi = πi ,

sVSA

τei ≈
∑κϕ

j=0 π
τ
j,ϕi

ϕj
i

∑κθc
j=0 π

τ
j,θci

θjci ,

pei ≈
(∑κϕ

j=1 πj,ϕi
ϕj−1
i

)(∑κθc
j=1 π

τ
j,θci

θjci

)
ϕ̇i +

+
(∑κϕ

j=1 π
τ
j,ϕi

ϕj
i

)(∑κθc
j=1 πj,θci

θj−1
ci

)
θ̇ci ,

σi ≈
(∑κϕ

j=1 πj,ϕi
ϕj−1
i

)(∑κθc
j=1 π

τ
j,θci

θjci

)
,

aVSA

τei ≈
∑κ

j=0 π
τ
j,ai

ϕj
ai

+
∑κ

j=0 π
τ
j,bi

ϕj
bi

,

pei ≈
(∑κ

j=1 πj,ai ϕ
j−1
ai

)
ϕ̇ai +

(∑κ
j=1 πj,bi ϕ

j−1
bi

)
ϕ̇bi ,

σi ≈
∑κ

j=1 πj,ai ϕ
j−1
ai

+
∑κ

j=1 πj,bi ϕ
j−1
bi

.

TABLE II
APPROXIMATION FUNCTIONS OF ELASTIC TORQUE τei , ELASTIC

ROTATUM pei AND JOINT STIFFNESS σi FOR EACH ACTUATION
PRINCIPLES. FOR SVSA AND AVSA, IT STANDS THAT πj = j πτ

j .

Fi = F̄ , Ji = J̄ , A′
i = Ā, and

Ē =

(
1 T 0
0 1 T

−1/T 2 −3/T −2

)
, Ā =

(
1 T 0
0 1 T
0 0 1

)
,

F̄ =

(
02,3 02,1
01,3 1/T 2

)
, J̄ =

(
0 0 1

T 0
)
.

(14)

The block-diagonal form above shows that the UIO consists
of n independent subsystems all described by the matrices Ē,
F̄ , J̄ , and Ā. The i-th subsystem state, X̂

(i)
k , contains

the i-th link position, speed, and acceleration estimates, i.e.
X̂

(i)
k = (q̂i[k], ˆ̇qi[k], ˆ̈qi[k])

T . Renaming the subsystem state
components as x̂(i)1 , x̂(i)2 , and x̂

(i)
3 , and expanding the state

form expressions yield the decentralized rule in (13).
2) Stiffness Matrix Estimation: Since joints are elastically-

decoupled, once the i-th elastic rotatum component, pei , has
been computed, the i-th diagonal entry of the joint stiffness
matrix can be reconstructed by leveraging on the relations
described in Tab. II. It can be seen that the i-th elastic rotatum
and joint stiffness expressions are connected through the same
coefficient vector Πi, which is however unknown.

A strategy to find it is to use the i-th sequence of re-
constructed elastic rotatum, {p̂ei}k, for k = 0, 1, · · · , and
minimize the approximation error between it and a regressor-
based approximation of the form p̂ei = Ψi Π̂i, where the
specific regressor and coefficient vector expressions depend
on the actuation principle as follows:
Ψi,SEA = ϕ̇i, Π̂i,SEA = π̂i ,

Ψi,sVSA =
(
(Mκϕ−1 ⊗Nκθc

) ϕ̇i, (Mκϕ
⊗Nκθc−1) θ̇ci

)
,

Π̂i,sVSA =

(
Π̂ϕi

Π̂θci

)
=

(
(Mκϕ,π ⊗N τ

κθc ,π
)T

(Mτ
κϕ,π

⊗Nκθc ,π
)T

)
Ψi,aVSA =

(
(1, ϕai

, · · · , ϕκ−1
ai

) ϕ̇ai
, (1, ϕbi , · · · , ϕκ−1

bi
) ϕ̇bi

)
,

Π̂i,aVSA = (π̂1,ai
, · · · , π̂κ,ai

, π̂1,bi , · · · , π̂κ,bi)
T
,

with Mα = (1, ϕi, · · · , ϕαi ) , Nα = (1, θci , · · · , θαci) ,
Mα,π = (π1,ϕi

, · · · , πα,ϕi
) , Nα,π = (π1,θci , · · · , πα,θci ) ,

Mτ
α,π = (πτ

1,ϕi
, · · · , πτ

α,ϕi
) , N τ

α,π = (πτ
1,θci

, · · · , πτ
α,θci

) .

Afterward, once an estimate Π̂i of the coefficient vector Πi

is iteratively obtained via the RLS, the i-th component of the
joint stiffness can be estimated as σ̂i[k] = Φi Π̂

σ
i [k], where

Φi,SEA = 1, Π̂σ
i,SEA = Π̂i,SEA ,

Φi,sVSA = Mκϕ−1 ⊗Nκθc
, Π̂σ

i,sVSA = Π̂ϕi
,

Φi,aVSA =
(
1, · · · , ϕκ−1

ai
, 1, · · · , ϕκ−1

bi

)
, Π̂σ

i,aVSA = Π̂i,aVSA.

Remark 1: The UIO uses only the robot’s link positions
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and leans on the knowledge of inertia matrix, Coriolis and
centrifugal terms, and gravity vector, but neither force/torque
sensor nor control input signal are required. The RLS filter
uses motor positions and speeds to estimate stiffness.

Remark 2 (Cartesian stiffness): While we focus here on
estimating the joint stiffness matrix σ, it is worth connecting
it to the stiffness σc in the Cartesian task-space. Assume for
simplicity that the interaction with the environment occurs
at the robot’s tip through a constant Cartesian force f̄ext =
J(q)−T τ̄ext, and that the robot itself is at a point q̄ satisfying
the equilibrium condition τ̄e = J(q̄)T f̄ext − G(q̄), where τ̄e
is a constant elastic torque and J is the robot’s Jacobian
matrix, assumed to be square and invertible without loosing
the generality. Along the lines of [24], suppose that the system
is perturbed by variations δτe and δfext of the elastic torque
and external Cartesian force, respectively, and that a new
nearby equilibrium q = q̄ + δq is reached. Taylor’s expansion
to the first-order of the new equilibrium condition gives,
τ̄e + δτe = J(q̄ + δq)T (f̄ext + δfext) − G(q̄ + δq) and then
δτe =

(
Jq(q̄)

T f̄ext −Gq(q̄)
)
J(q̄)−1δx+ J(q̄)T δfext, where

Jq(q̄) =
∂J(q)
∂q |q=q̄, Gq(q̄) =

∂G(q)
∂q |q=q̄ and the relation δx =

J(q̄) δq for the tip position variation is used. By the joint
stiffness definition, δτe = σ(q̄) δq = σ(q̄) J(q̄)−1δx, and
the Cartesian stiffness definition, δfext = σc δx, one finally
gets σc = J(q̄)−T

(
σ(q̄)− Jq(q̄)

T f̄ext +Gq(q̄)
)
J(q̄)−1. The

value f̄ext, needed to evaluate the formula, can be found using
force/torque sensors mounted at the tip or retrieved via virtual
sensors [25]. Moreover, since the considered articulated soft
robots have elastically decoupled joints, σ is diagonal and
hence symmetric by construction. Yet, the stiffness in the task
space may include an asymmetric part, σa = 1

2 (σc − σT
c ),

whose importance is discussed in [26].
Remark 3 (Choice of T ): The ability to deal with tasks

where stiffness is dynamically changing is connected to the
sampling period T . After the initial transient where the RLS
learns the stiffness model parameters, the only estimation
delay is of the L = 3 samples or, equivalently, 3T seconds
due to the UIO (Th. 1). Thus, the frequency range for tasks
that are manageable by the solution reaches f = 1

3T Hz. For
instance, if T = 5 · 10−3 seconds, f = 67 Hz.

Remark 4 (Model uncertainty): Compared to fully sensor-
based approaches, this method relies on accurate knowledge
of the system model. When only incomplete knowledge is
available, the achieved performance reduces. Unmeasured
external force/torque, non-negligible friction, and parametric
uncertainty lead to the perturbed elastic rotatum estimate,
p̂∗e[k] = p̂e[k]− d

dt

(
JT (q)fext − γ(q̇)− Y (q, q̇, q̈) π̃

)
,

where π̃ depends on the parametric uncertainty and Y is a
suitable regressor, and, hence, yield bounded but non-zero
steady-state error in the estimated joint stiffness. Here,
traditional system identification methods used to mitigate the
model uncertainties are not an immediate solution because
precise torque/current measurement is required [27]. A
qualitative strategy to evaluate the impact of uncertainty is
obtained by assuming that the robot tracks a trajectory qd(t)
while also an unmodeled friction γ(q̇) = µssgn(q̇) + µv q̇

acts. In this case, (10) becomes M(qd) q
(3)
d + Ṁ(qd) q̈d +

Ċ(qd, q̇d) q̇d+C(qd, q̇d)q̈d+Ġ(qd, q̇d)+pe+γ̇(q̈d) = 0. If qd(t)
contains frequencies up to 1 rad

s , its time derivatives have
progressively smaller amplitudes; so, uncertain parameters
multiplying higher derivatives have less impact. Similar
reasoning stands for viscous friction, while static friction
can be handled by selective RLS that stops the update when

the link speed is close to a sign change. Quantization error
introduced by encoders is filtered out by the RLS and is not
an issue.

Remark 5 (Computational complexity): The approach scales
linearly with n on a single-processing machine and sub-
linearly on the paralleled one. Indeed, computing Ûk requires
n independent executions of the 1-DoF UIO described in
Corollary 1, whose complexity is O(1); evaluating p̂e[k] in
(9) amounts to computing the robot’s inverse dynamics whose
complexity is O(n) or O(log2 n) for single or paralleled units;
finally, estimating σk requires n independent executions of
a 1-DoF RLS whose complexity depends on the involved
polynomials and is O(η2) with η = 1 for SEA, η = κϕκθc for
sVSA, and η = κ for aVSA. Hence, the total complexity is
O(n+n+nη2) = O(nη2) on a single and O(1+log2 n+η

2) =
O(log2 n + η2) on a paralleled machine. To exemplify, on a
single-process machine with 1.8GHz, the computation times
are always below 1 ms, which ensures method’s real-time
applicability.

IV. SIMULATION RESULTS

Herein, we show the solution’s effectiveness in simulation with
a 1-DoF articulated soft robot that is actuated, alternatively, by
a SEA, an sVSA, or an aVSA and then show the sensitivity
of the solution to various uncertainties on a 2-DoF robot
actuated by aVSA. The stiffness estimator is obtained by
designing a UIO as in Th. 1 for 1-DoF and an RLS filter
as described in [14]. Precisely, the former reconstructs the
elastic rotatum signal pe1 , and the latter finds the sought link
stiffness signal σ1. In all three cases, the robot link position
follows a sinusoidal trajectory. Effectiveness of the results is
assessed by using the Mean Square Error (MSE) and Mean
Square Relative Error Percentage (MSREP) indices,

MSE = 1
n2−n1+1

∑n2

n=n1
(χ(n)− χ̂(n))2 ,

MSREP = 1
n2−n1+1

∑n2

n=n1
(χ(n)− χ̂(n))

2
/χ2(n) ,

where χ indicates the real quantity, χ̂ the estimated one, n1
and n2 the initial and final times. For all simulations the time
interval is t ∈ [20, 100] s. In the figures, the ordinate’s labels
are placed within the sub-figure titles, and the time axis is
shared for all subfigures in the same column for compactness.

A. Series elastic actuation
We adopt here a series elastic actuator with a spring constant
K = 103 Nm/rad [28]. The elastic torque, elastic rotatum,
and joint stiffness expressions for this actuator are given by
τe1 = K(q1 − θ1), pe1 = K(q̇1 − θ̇1) , and σ1 = K,
respectively. As in Sec. III-B, the elastic rotatum pe1 is
first reconstructed by a UIO, and afterwards, the unknown
parameter π1, also representing the sought stiffness σ1, is
estimated via an RLS based on the equation p̂e1 = ϕ̇1π̂1. As
no a-priori information on the stiffness value is used, the RLS
filter is initialized with an estimate and a covariance matrix
being π̂1[0] = 0 and P [0] = 107. The stiffness estimation
results are depicted in the leftmost part of Fig. 2, showing that
the solution manages to learn precisely the value of σ1, which
is in line with the performance indices MSE = 2.2·10−4 N2m2

rad2

and MSREP = 2.1 · 10−6 %.

B. Serial variable stiffness actuation
To illustrate the stiffness estimation performance for sVSA
type of actuators, we choose herein the actuator AwAS [17],
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Fig. 2. Simulation #1 (1-DoF articulated soft robot actuated by SEA, sVSA and aVSA mechanisms) - From top to bottom, position of the robot link q1,
temporal evolution of the RLS parameters vector, real stiffness σ1 and estimated stiffness σ̂1, and the corresponding relative estimation error w.r.t the stiffness
model, i.e. σ̃1 = |σ1 − σ̂1|/σ1. After an initial period, the stiffness is accurately estimated with small relative error, with the RLS parameters converging
and then remaining constant. In case of SEA-driven robots, RLS parameter has a physical meaning of SEA spring constant that is also a joint stiffness, while
for sVSA and aVSA-driven robots, RLS parameters determine the coefficients of elastic rotatum and joint stiffness polynomial models.

whose elastic torque, elastic rotatum, and stiffness functions
are defined as: τe1 = ks(r0 − bθc1)

2 sin 2ϕ1, pe1 = 2ks(r0 −
bθc1)

2 cos 2ϕ1 ϕ̇1−2ksb(r0−bθc1) sin 2ϕ1 θ̇c1 , σ1 = 2ks(r0−
bθc1)

2 cos 2ϕ1, where ks is the spring constant, r0 is the
initial lever arm length, and b is transmission ratio between
the second motor and the ball screw.

We start with the assumption that initial value of parameters
is null, i.e. Π̂ϕ1

[0] = 06,1 and Π̂θc1
[0] = 04,1 and that the

covariance matrix is P [0] = 107. The Taylor expansion of
elastic rotatum comprises terms obtained for κϕ = 3 and
κθc = 2. Only even powers of ϕ1 have been considered since
the function to be approximated is even with respect to it.
The simulation outcome is shown in the middle part of Fig. 2,
where it is easily observed that the estimator successfully picks
up the stiffness information. Indices MSE = 1.5 · 10−3 N2m2

rad2

and MSREP = 6 · 10−3 % show the good performance also
from the numerical perspective.

C. Antagonistic variable stiffness actuation
Adopting, as an example, the commercially available aVSA,
qbmove, the elastic torque, elastic rotatum, and joint stiff-
ness functions are τe1 = k sinh (aϕa1

) + k sinh (aϕb1),
pe1 = a k cosh (aϕa1

) ϕ̇a1
+ a k cosh (aϕb1) ϕ̇b1 , σ1 =

a k cosh (aϕa1) + a k cosh (aϕb1), where ϕa1 = q1 − θa1 ,
ϕb1 = q1 − θb1 , and where k and a are spring constants
of suitable values [22]. The RLS is based on a 6-th order
Taylor expansion of the elastic rotatum expression. Only even
powers of ϕa1

and ϕb1 are considered since the function to be
approximated is even. Complete lack of knowledge of Π1 is
assumed, i.e. Π̂1[0] = 08,1 and P1[0] = 107. Fig. 2 rightmost
part shows the simulation results and reveals that, after an
initial transient, the joint stiffness is successfully tracked
over time. Specifically, indices MSE and MSREP result in
1 · 10−4 N2m2

rad2 and 3.4 · 10−4 %, respectively.
Finally, we illustrate Remark 4 in Fig. 3 by showing the

influence of parametric and structural model uncertainties on
a 2-DoF setup of robot driven by aVSA qbmove actuators. A
parametric deviation of 20% from nominal values is consid-
ered and qd(t) is set to change with frequency of π

6
rad
s .

V. EXPERIMENTAL RESULTS

We now move on to the experimental validation of our method
with real articulated soft robots actuated by qbmove aVSA

Fig. 3. Relative stiffness estimation errors in percentage due to uncertainty
for a 2-DoF robot actuated by aVSA. The graphs separately report the effect
of a 20% deviation of links’ inertia, mass, length, and center of mass and
presence of static and viscous friction (µs = µv = 0.2). The quantization
noise mimics an encoder with the resolution of 2 · 10−4 rad. Black and red
lines refer to 1st and 2nd joints’ stiffness. Plots show that the estimation is
stable and that inertia has the least effect since it multiplies the jerk (10).

devices. The Reader may refer to [22] for a detailed description
of these actuators. We first characterize the elastic torque and
stiffness models for each actuator used, to obtain ground-truth
information. Then, we proceed with testing the UIO+RLS-
based solution on the real robots with different configurations,
when the robot is moving and when it is in co-contraction
mode, i.e. when only the joint stiffness is changing while the
joint position is still.

A. Stiffness Characterization
A characterization of the qbmove actuators is carried out
according to the procedure described in [29]. First, the data
needed for the characterization is acquired. To this aim, an ATI
Axia80-M20 torque sensor has been installed on the shaft of
each VSA, to record ground-truth values of the actual elastic
torque. Synchronized measures of motor and link positions
along with the applied torque are repeatedly collected for
stiffness presets ranging from 0% to 100%.

Next, we derive a fitted model for the elastic torque. We
adopt here a method that consists of obtaining an analytical
model of the elastic torque and then symbolically differen-
tiating it in the deflection. Following the suggestion from
the datasheet, we have chosen to use the following reference
model for the elastic torque: Te,i = ki sinh(ai(qi − θai

)) +
ki sinh(ai(qi− θbi)) , where ai and ki are spring constants to
be learnt, while qi, θai

, and θbi are the independent variables.
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Fig. 4. Graphical representations of the fitting functions Te,i for the elastic
torque models of the two used qbmove actuators.

Fig. 5. The three hardware setups used to validate the proposed approach.
From left to right: a 1-DoF setup; a 2-DoF setup on the vertical plane (“A”)
with DH parameters (ai, αi, di, θi) = {(l, 0, 0, q1), (l, 0, 0, q2)} where l is
the link length; and a 2-DoF setup in the 3D space (“B”) with DH parameters
(ai, αi, di, θi) = {(l,−π

2
, 0, q1), (l, 0, 0, q2)}. In all configurations, the last

actuator in the chain is passive and acts as a load.
They comprise qbmove Maker Pro VSAs that are connected

via rigid links.
The estimator is implemented in Matlab/Simulink and the

link and motor positions are acquired with a sampling period
T = 5 · 10−3 seconds by using software library blocks

provided by the manufacturer.

The results of fitting the data are shown in Fig. 4. Finally,
by applying the Trust-Region-Reflective fitting algorithm, a
confidence interval for the validity of the obtained function
is calculated. Given the elastic torque samples, τ̄ (j)e,i , for j =
1, · · · , N , where N is the number of samples, collected for all
stiffness presets, one convenient way to quantify this interval
is to calculate the Root Mean Square Relative error ci between
the samples and the fitted function Te,i. In formula we have

ci =
√

1
N

∑N
j=1(τ̄

(j)
e,i − Te,i)2/(τ̄ (j)e,i )

2, 100 % . The inter-
pretation of the confidence interval is that all values that
differ, in absolute sense, from the nominal value of Te,i
of at most the root mean square relative error are to be
considered correct. In closing, the experimental data used to
fit the elastic torque models of the two qbmove actuators leads
to the functions illustrated in Fig. 4, that have confidence
intervals c1 = 19.96 % and c2 = 21.06 %. For simplicity, they
are rounded to ci = 20 % in the remainder. The hypothesis we
make here is that the same interval is translated to the stiffness
model [6]. Thus, stiffness estimation errors below 20 % will
be considered as satisfactory.

B. Validation of the proposed stiffness estimation approach
The hardware setups used for the validation are illustrated in
Fig. 5. The approach is first validated on a 1-DoF setup, which
is the leftmost hardware setup in Fig. 5. The robot’s mass, in-
ertia, and link length are m = 0.26 kg, I = 2.1·10−3 kgm2, and

Fig. 6. Experiment #1 (1-DoF setup) - The figure shows the link position,
the learned RLS parameters, the real and estimated stiffness, and finally the
relative estimation error. For t ∈ [0, 420], the robot’s position and stiffness are
both moving. After an initial transient during which the RLS algorithm learns
appropriate values for Taylor coefficients, the joint stiffness relative estimation
error |σ1 − σ̂1|/σ1 nicely converges to within a threshold of 20% from the
nominal value, which is consistent with the confidence interval c1 of the first
actuator. During the first phase (and more precisely after the convergence of
the RLS parameters, i.e. for t ∈ [150, 420]), the indices MSE and MSREP
amount to 0.23 N2m2/rad2 and 0.71%, respectively.
Subsequently, for t ∈ (420, 800], the robot is required to have a co-
contraction behavior for two purposes: first to show that our method does not
suffer from observability issues, even when the robot position is steady [9],
and then to display the RLS performance even under fewer excitation. The
experiment shows that a simple algorithmic modification, where the RLS
parameters’ update is temporarily stopped, whenever the robot’s position
becomes steady, allows maintaining the estimation error below the confidence
interval threshold. During this second phase, the MSE and MSREP coefficients
lower down to 0.06 N2m2/rad2 and 0.26%.

l = 0.09 m. The Taylor coefficients of the elastic rotatum and
stiffness are assumed to be fully unknown, which is obtained
by choosing null initial values for the RLS parameters, i.e.
Π̂1[0] = 08,1, and an initial covariance matrix P1[0] = 102.
As in the simulation part, since the elastic rotatum and the
stiffness are even functions, the regressor only uses even
powers of the deflections up to the sixth order. The experiment
details are reported in Fig. 6.

Let us now proceed with testing the multi-DoF stiffness
estimator on a real 2-DoF soft robot in two different configu-
rations (see the middle and the rightmost setup in Fig. 5). It
can be observed that, due to the coupled terms in the robot’s
dynamics, the present test represents a greater challenge for the
noninvasive stiffness estimation. The inertia, mass, and length
parameters of both links are equivalent and have the same
values as provided in the previous paragraph. The obtained
estimator consists of two identical copies of the UIO, as in
Corollary 1, and the same number of instances of the RLS
algorithm. Again, complete lack of knowledge about Taylor
expansions’ coefficients of the elastic rotatum and stiffness
functions is assumed. Consequently, both RLS algorithms are
initialized with parameter vectors Π1[0] = Π2[0] = 08,1 and
covariance matrices P1[0] = P2[0] = 104.

The results obtained during the test with the two con-
figurations are reported in Fig. 7 and Fig. 8. Despite the
simultaneous motions of position and stiffness for both links,
and the different configurations, the proposed approach can
accurately estimate the joints’ stiffness within the confidence
intervals of the two qbmove actuators, c1 and c2. After an
initial transient, the two RLS learn proper Taylor coefficients
and accurately track the real stiffness.
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Fig. 7. Experiment #2 (2-DoF “A” setup). After an initial
transient when Taylor’s coefficients are learned, the joint
stiffness estimation errors, |σi − σ̂i|/σi, smoothly con-
verge to within the 20%-threshold from the nominal value.
The decentralized UIO+RLS-based solution successfully
estimates the sought signal. The obtained performance
indices, MSE and MSREP, evaluated after the transient
(t ∈ (300, 500]), are, for the first joint, 0.5 N2m2/rad2

and 1 % and, for the second one, 0.8 N2m2/rad2 and
4.8 %, respectively.

Fig. 8. Experiment #3 (2-DoF “B” setup). After an initial
transient when Taylor’s coefficients are learned, the joint
stiffness estimation errors, |σi − σ̂i|/σi, smoothly con-
verge to within the 20%-threshold from the nominal value.
The decentralized UIO+RLS-based solution successfully
estimates the sought signal. The obtained performance
indices, MSE and MSREP, evaluated after the transient
(t ∈ (300, 500]), are, for the first joint, 0.9 N2m2/rad2

and 3.6 % and, for the second one, 0.1 N2m2/rad2 and
7.1 %, respectively.

VI. CONCLUSION

A new approach to stiffness estimation in articulated soft
robots was introduced, which needs no a-priori knowledge
of the actuation model parameters and uses only motor
states, link position, and dynamics. Its validation was done
with multi-DoF configurations, different actuator types, in
simulation and with experiments. Results confirmed accurate
estimation even when the robot is co-contracting. An important
benefit, confirmed by the experiments, is the avoidance of
installing force/torque sensors. Future work will expand the
approach to estimate Cartesian stiffness and deal with possible
environment interaction, model uncertainty, and measurement
noise.
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