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Abstract

The tracking control of linear MIMO systems with structured uncertainty is considered.

A necessary and su�cient condition for robust asymptotic tracking employing variable

structure techniques in the presence of multiplicative uncertainty is derived. The con-

structive proof of the theorem provides an explicit formula for controller synthesis.

1 Introduction

In this paper we investigate conditions under which a Variable Stucture Control (VSC) law

of a standard type, which achieves asymptotic tracking on a linear plantGD, is guaranteed

to accomplish the same performance on every plant in a given class of perturbed systems.
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Thomson E.E.I.G., by CNR PF{MADESSII SP3.1.2, and by the M.U.R.S.T. project on Control Systems

Engineering.
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We provide necessary and su�cient (Theorem 1) conditions for the existence of such VSC,

and a formula for the explicit synthesis of the controller.

The problem is formulated precisely in Section 2. The new dominance conditions for

decentralization and robustness are proposed in Section 3.

2 Problem formulation

Consider a family ofm{inputs,m{outputs MIMO systems with multiplicative uncertainty,

described in operator notation as

G = GD(I +�); (1)

We assume that the nominal plant GD is a strictly proper, n{th order linear operator,

described by its impulse response matrix GD(t) and transient response go(t) as

(GD�)(t) = GD(t) ? �(t) + go(t);

where ? denotes convolution. Uncertainty � is only supposed to be causal and L1 stable

with �nite gain ([1]). Denoting by L1q the space of functions f : IR! IRq such that

kf(t)k1 = max
k=1;q

sup
t�0

jfk(t)j <1;

such condition on � implies that, for all signals �(t) 2 L1m , there exist an L1{gain


� 2 IR+ and a �nite constant Zo 2 IR+ such that

k(��)(t)k1 � 
� k�(t)k1 + Zo:

Take a column{wise controllable canonical realization S of the nominal part GD,

S :

8><
>:

_x = Ax+B (u+ �); x(0) = xo

y = Cx
: (2)

where

A = diag
�
A(1); : : : ;A(m)

�
; B = diag

�
b(1); : : : ;b(m)

�
; C =

h
C(1); : : : ;C(m)

i
;

and (A(j);b(j);C(j)) are minimal realizations (of order n(j)) in controllable canonical form

of the j{th column of GD. Assume that initial conditions satisfy

kxok1 � � 2 IR+: (3)
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Input disturbances � represent process noise satisfying the so{called matching conditions

(cf. e.g. [2]). We assume � 2 L1m , with

k�(t)k1 � N 2 IR+: (4)

Let the class of desired trajectories to be followed be described by the linear system (of

order n =
Pm

j=1 n
(j)) R,

R :

8><
>:

_r = Arr+Brvr; r(0) = ro

yr = Crr
; (5)

with (Ar;Br;Cr) in compatible column{wise controllable canonical form (hence Br = B),

Ar Hurwitz, Cr = C, and vr 2 L
1
m with

kvr(t)k1 � V 2 IR+ and krok1 � �r 2 IR+: (6)

Restrictions on reference trajectories yr amount to boundedness and some mild regularity

conditions in case S is minimum{phase. If S has some zero in the closed right half{plane

(CRHP), reference trajectories are generated through a system with the same CRHP

zeroes. By this restriction on references perfect tracking is allowed also with nonminimum

phase nominal systems. We assume in what follows that states of S are accessible to

measurement, or that suitable observers are available (as e.g. in [3] and [4]). A combined

observer/controller synthesis that applies directly to the present setup is described in [5].

2.1 Standard VSC design for MIMO linear plants

A standard technique for the synthesis of a VS controller for linear MIMO plants is

succinctly reported below for reader's reference.

The dynamics of tracking error between reference states r and system states x (and

hence, the dynamics of output tracking errors) can be chosen by enforcing a sliding motion

on a linear manifold � = fx 2 IRnj� = 0g, where � 2 IRm is de�ned as

� = � (x� r) ; � 2 IRm�n: (7)

A convenient choice is � = diag
�
�(1); : : : ;�(m)

�
, �(j) 2 IR1�n(j)

such that �(j)b(j) = 1

(hence �B = Im). Pole assignment or LQ techniques can be employed for choosing the

remaining n(j) � 1 free parameters in �(j), as described e.g. by Dorling and Zinober [6].
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The dymanics of the state error x�r can be obtained by the equivalent control method

([7]). The equivalent control is the input signal ueq that solves _� = 0. We have

ueq = ��(Ax+B� � _r): (8)

Noticing that (I � B�)Ar = (I � B�)A, and using the form of the realizations of S

and R, the state error dynamics for the system restricted to the sliding surface � can be

expressed as

_x� _r = (I�B�)(Ax�Arr�Brvr) = (I�B�)A(x� r): (9)

Note that only the coe�cients of � actually appear in the sliding dynamics. Sliding

motion on � yields the convergence of the states x to the states r with the dynamics

imposed by the choice of �. With a suitable choice of �, then, outputs y during sliding

asymptotically track reference ouputs yri under the equivalent control (8).

However, being the disturbance unknown, the equivalent control can not be synthesized

directly. A common choice of the switching control law, which we will refer to as standard

VSC design, consists of putting

u = ��(Ax� _r)� k sign(�); (10)

with the sign(�) function taken componentwise.

One says that a stable sliding regime exists on � if all system trajectories originating

in a neighborhood of � point towards �, i.e. �(j) _�(j) < 0 for all components �(j) of �.

Such existence condition is met globally on the state space if and only if

k > k�(t)k1 : (11)

Furthermore, by choosing

k = N + � (12)

where � > 0, it is guaranteed that the sliding manifold is reached in �nite time, i.e. that

� = 0 for all t >
k�(0)k

1

�
.

In practical applications, it is very common that the plant is comprised of N � m, mi{

inputs, mi{outputs weakly interacting square subsystems, withm = m1+: : :+mN . Corre-

spondingly, the nominal plant has block{diagonal structure, GD = diag (G1; : : : ;GN) :
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The choice of a unique value of k for the switching part of inputs is possibly very con-

servative in this case. Smaller amplitude control signals can usually be obtained by

decentralization, which consists in repeating the above synthesis procedure for each diag-

onal block Gi independently. In what follows, we refer to such multiple channel synthesis.

The corresponding notation will di�er from that introduced above only by a subscript

referring to the input{output channel being considered (e.g., ki will denote the amplitude

of the switching control in channel i).

2.2 Problem statement

On these premises, we de�ne the tracking performance of a standard VSC as follows

De�nition 1 A VSC law of the standard type (10) is said to achieve performance PT
� on

a system G if it ensures the establishment within time T , and the stability for all t > T ,

of a sliding regime, during which outputs of G asymptotically track reference trajectories

(5), (6), with error dynamics determined by �i, in spite of input disturbances as in (4).

Furthermore, consider an N �N block partition of � in (1) conformal to that of GD,

i.e. with blocks �ij : L
1
mj
! L1mi

, and de�ne P 2 IRN�N
+ as

P = fPijg with Pij = 
�ij
; for i; j = 1; : : : ; N: (13)

We use matrix P to convey the information on the uncertainty structure by de�ning

classes of disturbances DP as

DP =
n
� = f�ijg : �ij causal, L1 stable with �nite gain 
�ij

� Pij

o
: (14)

Explicitly, a small element Pij in P indicates that all perturbations in DP have blocks �ij

which are \small" in the above L1{gain sense. Formally, then

De�nition 2 A VSC law achieves performance PT
� robustly with respect to DP if it

achieves PT
� on G = GD(I+�), for all � 2 DP .

The problem this paper is concerned with is the following:

Problem 1 Given a nominal plant GD, a VS control law (10), and a class of structured

multiplicative uncertainties DP , �nd conditions under which performance PT
� is achieved

robustly with respect to DP .
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3 Robustness Conditions

Consider the signal

�i(t) =
X

j=1;N

(�ij(uj + �j)) (t) ; (15)

For, by design (10), ui(t) 2 L
1
mi
, �i(t) 2 L

1
m . Notice that the perturbed plant outputs yi

can be written as

yi = Gi � (ui + �i + �i) + yoi ; (16)

with yoi a transient term due to initial conditions of the nominal plant. A necessary and

su�cient condition for robustness of VS control performance with respect to structured

uncertain perturbations in the given class is given in the following theorem.

Theorem 1 Given a nominal plant GD and a class of structured multiplicative uncer-

tainties DP , there exists a standard VSC law as in (10) achieving performance PT
� robustly

with respect to DP , if and only if for the Perron{Frobenius root of P it holds

�PF (P) < 1: (17)

Proof of su�ciency part.

Write the realization of system (16) under the VS control law (10) as
8><
>:

_wi = Aiwi +Bi(ui + �i + �i); wi(0) = xoi

yi = Ciwi

;

with wi 2 IRni, and

ui = u0i � ki sign(�i(wi � ri)) (18)

with �i 2 IRmi�ni and

u0i = ��i(Aiwi � _ri): (19)

The existence of a stable sliding regime on �i for t � T is guaranteed if and only if it

holds

ki > k� i(t+ T ) + �i(t+ T )k1 : (20)

Obviously, it holds k� i(t+ T )k1 � Ni. Furthermore, since for all � 2 DP 
�ij
� Pij,

from (15), we get

k�i(t+ T )k1 �
X

j=1;N

Pij

�
kuj(t+ T )k1 + k�j(t + T )k1

�
+ Zo

ij (21)
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An upper bound on the control signal (10) is given by kuj(t+ T )k1 �



u0j(t+ T )





1
+kj.

Consider the transformed state variables �j = Tj(xj � rj), with Tj 2 IRnj�nj given by

Tj =

2
64 Inj�mj

0

�1j �2j

3
75Mj; (22)

where Mj can be obtained (by QU decomposition of Bj) such that

MjBj =

2
64 0

B2
j

3
75 ; �jM

�1
j =

�
�1j �2

j

�
:

Notice that �2j and B
2
j are nonsingular (see e.g. [8]). Partitioning the transformed state

�j as

�j =

2
64 �

(1)
j

�
(2)
j

3
75 ; �

(1)
j 2 IRnj�mj ; �

(2)
j 2 IRmj ; TjAjT

�1
j =

2
64 A11

j A12
j

A21
j A22

j

3
75 ;

the sliding regime condition �i = 0 is rewritten as �
(2)
j = 0, while the evolution in the

(nj �mj) reduced state space is described by

�
(1)
j (t) = exp (A11

j (t� T ))Tj(xj(T )� rj(T )) :

By means of (19) and (5), signal u0j can be rewritten as

u0j = ��jAjT
�1
j �j � (�j(Aj �Arj) exp(Arjt)Brj � �(t)I) � vrj : (23)

Since A11
j is Hurwitz (this proceeds from the choice of stable tracking dynamics in �j),

for any xj(T ) such that kxj(T )� rj(T )k1 � �sj 2 IR+, control (19) is in L1mj
and


u0j(t+ T )





1
can be bounded by

Uj =



�jAjT

�1
j





1
�A11

j
kTjk1 �sj + k�j(Aj �Arj)k1 �Arj

�rj

+ k�j(Aj �Arj) exp (Arjt)Brj � �(t)IkA Vj ; (24)

where � : IRm�m ! fIR+;1g, �M = supt�0 k exp(Mt)k1. E�cient techniques for pro-

viding such bounds of matrix exponentials can be found e.g. in [9] and [10].

Recapitulating, bounds on the peak norm of the vector of equivalent input disturbances

�i(�) after time T are provided as

k�i(t + T )k1 �
X

j=1;N

Pij(Uj + kj +Nj) + Zo
i ; (25)
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with Zo
i =

P
j=1;N Zo

ij. Introducing the vector notation

z = [k�1(t + T )k1 ; � � � ; k�N (t+ T )k1]
T ; u = [U1; � � � ; UN ]

T ;

k = [k1; � � � ; kN ]
T ; n = [N1; � � � ; NN ]

T ; zo = [Zo
1 ; � � � ; Z

o
N ]

T ;

inequalities (25) are rewritten as

z � P(k+ u+ n) + zo (26)

(inequality signs in vectorial relations are meant elementwise). Accordingly, condition

(20) is veri�ed provided that

k > Pk+ (I+P)n+Pu+ zo � n+ z: (27)

Introducing � = [�1; � � � ; �N ]
T , the VSC law (10) with k = n + � guarantees the existence

of a sliding regime yielding performance P� on G, provided that

� > P�+P(u+ 2n) + zo;

or, equivalently,

� = P�+P(u+ 2n) + zo + �; � > 0 : (28)

From the theory of positive matrices (see e.g. [11]), a nonnegative solution � to this

equation exists for nonnegative P,n,u, and zo, if and only if the Perron{Frobenius root

of P is smaller than 1.

Under this hypothesis, the VS controller (10) is completely de�ned by the choice of

parameters k in the set

k = n + (I�P)�1 (2Pn+Pu+ zo + �); � > 0 : (29)

Such set is a cone in IRN
+ with vertex in n + (I � P)�1(2Pn + Pu + zo) and positively

spanned by the columns of (I � P)�1. In order to guarantee that sliding regimes are

established by time T for all channels, it will su�ce to pick

� such that �i � k�i(0)k1 =T; 8i: (30)

The existence of such � is guaranteed by the fact that (I�P) is a full rank matrix. Q.E.D.

8



Proof of necessity part. We need to show that, if �PF (P) � 1, there exist some

� 2 DP and some reference inputs vri, and input noise � i, such that conditions (20) for

a stable sliding regime are violated for some i.

In fact, take for simplicity Zo
ij = 0 and �i = 0 for all channels, and identically null

reference states ri(t) � 0, for all i = 1; : : : ; N . From (15) and (19), we get

�i(t) = �
X

j=1;N

�ij(�jAjzj + kjsign(�j))(t) :

A particular element in the class DP can be always chosen as a block{partitioned matrix

whose i; j{th block �ij is built such that

f(t) =
�
f1(t); � � � ; fmj

�
2 L1mj

! (�ijf)(t) = (Pijf1(t); � � � ; Pijf1(t)) 2 L
1
mi
:

By this choice, and considering at time t� a perturbation of the sliding regime in a vicinity

of the �j manifolds such that

�j = �jzj < 0

and

�jAjzj � 0

for all j, we have

k�i(t
�)k1 =

X
j=1;N

Pijkj + �j ;

where �j =



�P

j=1;N Pij�jAjzj





1
� 0. Necessary and su�cient conditions (20) are then

expressed in vector notation as k � Pk+ �, with � = [�1; � � � ; �N ]. The latter inequality,

by the Perron{Frobenius theorem, can not be satis�ed by any positive k if �PF (P) � 1.

Q.E.D.

4 Discussion

Remark 1. The robust performance condition �PF (P) < 1 does not depend on any

parameter of the plant or of the controller other than the structured disturbance bounds in

P. Di�erent speci�cations of PT
� , by changing the sliding regime onset time T or the sliding

dynamics �, would a�ect the actual value of the switching part of the control signals. If

bounds on available controls are present in the problem setup, the existence of a VS

control design is equivalent to the existence of an intersection between the cone (29), the
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regions de�ned by (30) and by control bound surfaces (typically, a convex programming

problem).

Remark 2. Conditions equivalent to (17) can be obtained from the theory of nonneg-

ative and M{matrices as

� there exists an induced norm k � k on IRN�N such that kPk < 1;

� W = I�P is an M{matrix,

Furthermore, easy{to{check su�cient conditions for (17) to be met are derived from

Gershgorin's theorem as

kPk1 < 1 kPk1 < 1 (31)

i.e., in terms of conventional row or column dominance. Note also that, according to

the theory of generalized diagonal dominance (see e.g. [12] ), conditions in Theorem 1

guarantee the existence of an input{output scaling matrix x with positive elements such

that x�1 Px satis�es one of the (31).

Remark 3. Condition (17) is related to well{known quasi{block diagonal dominance

conditions ([13], [14]). The latter have been traditionally formulated, in the hypothesis

that uncertainties are linear and time{invariant, such that blocks �ij can be described

by their transfer function matrix �ij(s), as

�
�n
(K�1

ii +Gi)
�1Gi�ij(s)

o�
< 1; 8s 2 D; (32)

�PF
�n


(K�1

ii +Gi)
�1Gi�ij(s)




o� < 1; 8s 2 D; (33)

where D is the Nyquist contour, �(�) is the spectral radius of a matrix on the complex

�eld, and k � k is any induced norm on the space of complex matrices of given dimensions.

In the interesting limit case that dominance is seeked for high gains Kii that enforce

arbitrary small tracking errors on minimum{phase nominal systems, in fact, from (33)

one gets

lim
kKk!1

�PF
�n


(K�1

ii +Gi)
�1Gi�ij(s)




o� < 1 , �PF (fk�ij(s)kg) < 1; 8s 2 D;

(34)

For linear time{invariant uncertainty, the L1{gain of blocks �ij can be replaced by the

A{norm of their impulse response matrices, denoted by k�ij(t)kA, such that condition
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(17) specializes in this case as

�PF (
n
k�ij(t)kA

o
) < 1: (35)

It follows (see e.g. [1]) that condition (35) is stricter than (34) in general. This could be

expected, as condition (34) only guarantees robust stability, while (35) achieves robust

performance.

Remark 4. An important result of Khammash [15] presents necessary and su�cient

conditions for robust steady{state tracking in a linear time{invariant system in the pres-

ence of linear, time{varying, norm{bounded, structured perturbations. The relation to

the above theorem 1, is interesting to discuss, especially in view of the resemblance of the

criteria (both are given in terms of the Perron{Frobenius root of a matrix of A{norms of

impulse response matrices, see remark 3).

The essential di�erence between Khammash's framework and the present one is in the

type of control action which is assumed. While in Khammash's work linear controls with

�nite gain are employed, the usage of switching control signals avails VSC techniques with

controls of bounded amplitude, but in�nite gain. One of the consequences of this fact is

that we were able to provide necessary and su�cient conditions for the robust asymptotic

tracking of arbitrary references (to within speci�cation (5)), while the Internal Model

Principle allows any �nite{gain controller to enforce asymptotic tracking of only a �nite

number of reference signals. This fact makes direct comparisons of the two methods

impossible. However, if we investigate by Khammash's method under what conditions it

is possible to obtain arbitrarily small steady state errors by increasing the controller gains,

the same condition �PF (P) < 1 is obtained. Ours is not a particular case of Khammash's

work, however, since his results only apply to linear plant/controller systems. Moreover,

our method explicitly provides a thorough controller synthesis procedure.
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