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Abstract— Increasing attention has recently been devoted to
the multidisciplinary investigation of functional brain–heart
interplay (BHI), which has provided meaningful insights in neu-
roscience and clinical domains including cardiology, neurology,
clinical psychology, and psychiatry. While neural (brain) and
heartbeat series show high nonlinear and complex dynamics,
a complexity analysis on BHI series has not been performed
yet. To this end, in this preliminary study, we investigate BHI
complexity modulation in 17 healthy subjects undergoing a 3-
minute resting state and emotional elicitation through standard-
ized image slideshow. Electroencephalographic and heart rate
variability series were the inputs of an ad-hoc BHI model, which
provides directional (from-heart-to-brain and from-brain-to-
heart) estimates at different frequency bands. A Fuzzy entropy
analysis was performed channel-wise on the model output for
the two experimental conditions. Results suggest that BHI com-
plexity increases in the emotional elicitation phase with respect
to a resting state, especially in the functional direction from the
heart to the brain. We conclude that BHI complexity may be
a viable computational tool to characterize neurophysiological
and pathological states under different experimental conditions.

I. INTRODUCTION

The anatomical and functional links between the central
(CNS) and the autonomic nervous systems (ANS) define
the so-called central autonomic network (CAN) [1], whose
biochemical, electrical, and mechanical signalling have been
comprehensively referred to brain-heart interplay (BHI). This
functional and bidirectional interplay involves several cor-
tical and subcortical areas, as well as cardiac sympathetic
and parasympathetic activities that are deeply involved in
affective regulation and perceptual and cognitive processing,
among others [2].

The quantification of functional BHI may be performed
through several computational tools, which have recently
been categorized according to features including time-
varying estimation, linearity, ad-hoc and physiologically-
inspired modeling, and directionality [2]. For example, ad-
hoc computational models [3], or general purpose signal
processing methods [4], have been applied to quantify BHI,
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along with other directional [5] and non-directional estima-
tions [6], time-resolved [7] or non-dynamical measures [8].
An interesting feature of BHI models refers to their ability to
provide time-varying estimates. While such estimates may be
useful to characterize the BHI evolution in time, group-wise
statistics performed between different experimental popula-
tions and/or conditions usually take averaged measurements
into account. Furthermore, although brain and cardiovascular
series show high nonlinear and complex dynamics, and
functional BHI extends to the multifractal domain [6], it is
yet unknown whether BHI series show complex dynamics as
well.

To this end, in this preliminary study we perform a Fuzzy
Entropy (FuzzyEn) analysis on the output of the synthetic
data generation model [9], which properly combines EEG
and HRV series to provide directional BHI estimates at
different frequency bands. FuzzyEn was chosen because of
the provided advantages with respect to the more standard
approximate and sample entropies, such as a low dependency
on data length and robustness to noise [10].

FuzzyEn exploits fuzzy theory as embedded in the sample
entropy algorithm [11], [12] and relies on the definition of
fuzzy membership functions, which are a family of expo-
nential functions providing a smooth boundary for similarity
measures when compared to more rigid solutions (e.g., the
Heavyside function). Such advantages require the definition
and tuning of an extra parameter as the gradient of the
fuzzy membership function boundary, along with the stan-
dard parameter set comprising the length of the time series,
embedding dimension, and similarity tolerance.

Previous studies have investigated physiological complex-
ity on EEG and HRV series through FuzzyEn in different
experimental conditions [13], [14]. For example, an EEG
study reported a complexity decrease over the central cortex
and midline brain regions during motor imagery [13], and
complexity in HRV series is statistically different between
patients with heart failure and healthy controls [14].

In this preliminary study, BHI complexity is investigated
through EEG and HRV series gathered from healthy subjects
undergoing a resting state and an emotional elicitation ses-
sion; such an elicitation was performed through standardized
images gathered from the International Affective Picture
System (IAPS) database [15]. The IAPS database [15] is
a large collection of images associated with affective ratings
expressed in terms of arousal and valence scores [16].
Arousal represents the perceived intensity of an emotion, and
valence indicates how pleasant/unpleasant is the emotion.

Methodological details, as well as experimental results and



conclusions follow below.

II. MATERIALS AND METHODS

A. Experimental setup
Data from 17 healthy volunteers (10 women) aged from

21 to 28 were recruited after signing the study informed
consent, which was approved by the Department of General
Psychology Ethical Committee, University of Padua (Italy).
The experimental protocol comprises a 3-minute resting
state, during which subjects were seated on a comfortable
chair in a silent, soundproof, and dark environment, followed
by an emotional elicitation session. Such an elicitation was
performed through a sequence of 72 IAPS images projected
onto a screen. Every picture was shown for 0.6s, and a blank
interval (between 0.6s and 0.8s) was posed in the middle of
consecutive images. A group of images were chosen com-
prising pleasant, unpleasant, and neutral elicitation of several
valence and arousal levels. Projected images were grouped in
18 blocks of 4 images, where each block comprised similar
pictures (i.e., pleasant, unpleasant and neutral). Experimental
data comprised EEG and ECG recordings sampled at 500Hz.
EEG series were gathered through a 32-channel Electro-Cap
(Electrocap, Inc.) with thin electrodes placed according to
the 10−20 standard. The ECG was acquired using Ag/AgCl
shallow electrodes placed on the subject’s chest, following
a modified lead II configuration. Subjects were asked to sit
on a comfortable chair at a fixed distance of 70cm from the
screen configured with maximum brightness.

B. Signal preprocessing
The EEG series were preprocessed using a semi-automatic

pipeline, namely HAPPE [17]. First, the electrodes falling
into the 1% external tails of the distribution derived by the
average log-power normalized joint probability are marked
as bad channels and rejected. Then, physiological, motor
related, and electrical artifacts and discontinuities are de-
tected and rejected by a cascade of a wavelet-enhanced
independent component analysis (ICA)-based algorithm, fol-
lowed by a fast-ICA and a machine learning algorithm [17].
Finally, bad channels previously rejected are interpolated
through spherical approach, and the time-varying average
from all electrodes was derived and used for re-referencing,
as appropriate for a BHI study [18]. Regarding ECG series,
an automatic algorithm has been used to identify R peaks
[19]. Physiological and algorithmic artifacts were eventually
corrected using Kubios HRV software.

Time-resolved power spectral density (PSD) was estimated
on EEG series through short-time Fourier transform, with a
Hamming window of 2000 samples (i.e., 2s) and a 95%
overlap, achieving PSD series sampled at 10Hz. The PSD
was then integrated in four classical EEG frequency bands:
δ ∈ [1 − 4Hz), θ ∈ [4 − 8Hz), α ∈ [8 − 12Hz), and
β ∈ [12 − 30Hz). Time-resolved PSD on HRV series was
estimated through the smoothed pseudo-Wigner–Ville distri-
bution, which was integrated in the 0.04Hz-0.15Hz range
for the low frequency (LF) band power and in the 0.15Hz-
0.4Hz band for the high frequency (HF) band power. Both
LF and HF power series were sampled at 10Hz.

C. Brain-Heart Interplay estimation

The functional directional BHI was quantified through
the synthetic data generation (SDG) model, fully described
in [3], [9]. Briefly, the model embeds two coupled sets of
equations, which may generate synthetic brain and heartbeat
data. On the brain side, multiple oscillators generate syn-
thetic EEG whose amplitude is modeled as an exogenous
autoregressive model of the first order, and the exogenous
term measures the heart-to-brain interplay [3]. On the heart
side, an integral pulse frequency modulation model generates
synthetic HRV series, and the embedded parameters are
modulated by EEG activity and quantify the functional brain-
to-heart interplay.

The SDG model is fitted on EEG power and HRV power
series to provide time-varying BHI estimates throughout the
HRV-LF and HF bands, and different EEG frequency ranges
[2], [9]. Resulting BHI series have the same time resolution
of PSD series, with a 10Hz sampling rate.

D. Fuzzy Entropy

Complexity in BHI series u(i) : 1 ≤ i ≤ N from the SDG
model was quantified through the FuzzyEn algorithm. To
this end, the system phase space with a specific embedding
dimension m has to be reconstructed. The distance dmij
between two vectors in the phase space is defined as:

dmij = max
k∈(0,m−1)

{
|u(i+k)−E [u(i)]−(u(j+k)−E [u(j)])|

}
(1)

where (i, j = 1 : N −m, j 6= i), and E is the Expectation
operator. The similarity degree Dm

ij is defined using the fuzzy
membership function µ(dmij , n, r), as shown in eq. 2:

Dm
ij = µ(dmij , n, r) = exp

(
−(dmij )n

r

)
(2)

where n, r are the gradient of the boundary and the width
of the exponential function, respectively. The FuzzyEn of a
N -point time series can be defined as follows:

FuzzyEn(m,n, r,N) = lim
N→∞

[lnφm(n, r)−lnφm+1(n, r)]

(3)
where the function φ is:

φm(n, r) =
1

N −m

N−m∑
i=1

[
1

N −m− 1

N−m∑
j=1,j 6=i

Dm
ij

]
(4)

The parameter r was set to r = ρ · SD according to [20],
where ρ is the tolerance set to 0.2, and SD is the series stan-
dard deviation. The pseudo-optimal embedding dimension
m = 3 was calculated by maximizing the probability that
the estimate is valid [21]. FuzzyEn was calculated over BHI
time series of 50 seconds (i.e. 500 samples), corresponding
to the first 50s of resting state, and independently for each
of the 4 blocks of emotional images.



Fig. 1: Topographical representation of group-wise median
of Fuzzy Entropy estimates from BHI time series during the
resting state. Columns refer to EEG frequency bands (i.e., δ,
θ, α, and β), top two rows refer to the brain-to-heart interplay
in the HRV-LF and HRV-HF bands, and bottom rows refer
to the heart-to-brain interplay in the HRV-LF and HRV-HF
bands.

E. Statistical analysis

Average FuzzyEn was calculated intra-subject between
estimates of the 4 emotional image sessions, thus obtaining
a single estimate for each subject for both the emotional
elicitation and resting state sessions. In order to investigate
differences in BHI complexity between the two experimental
conditions (i.e., resting phase and emotional elicitation), a
non-parametric Wilcoxon test for paired samples has been
applied on FuzzyEn estimates for each EEG channel. To
account for multiple comparison, a p-value correction was
performed through a cluster-mass permutation correction,
also assessing the physiological plausibility of the results
[22].

III. EXPERIMENTAL RESULTS

Descriptive results are reported as topographic maps, and
Figures 1 and 2 show the group-wise median of FuzzyEn
estimates in the resting state and emotional elicitation ses-
sions, respectively. On both directions (from-brain-to-heart
and from-heart-to-brain), BHI complexity seems higher when
sustained by cardiac oscillations in the LF band with respect
to the HF band. BHI series associated with EEG oscillations
in the α band tend to show lower complexity with respect
to the other frequency bands, especially in the resting state,
whereas BHI series associated with EEG oscillations in the
β band tend to show higher complexity.

Results from the statistical analysis are shown in Fig. 3
and highlight significant differences between the two experi-
mental conditions, specifically in the heart-to-brain direction.
In fact, while such an ascending direction shows diffuse
scalp regions associated with statistical differences between
sessions at every frequency band, no significant differences
were found in the descending functional direction. Note

Fig. 2: Topographical representation of group-wise median
of Fuzzy Entropy estimates from BHI time series during
the emotional elicitation session. Columns refer to EEG
frequency bands (i.e., δ, θ, α, and β), top two rows refer
to the brain-to-heart interplay in the HRV-LF and HRV-HF
bands, and bottom rows refer to the heart-to-brain interplay
in the HRV-LF and HRV-HF bands.

that, in the heart-to-brain direction, the emotional elicitation
session is associated with higher BHI complexity than resting
state. Moreover, greater statistical difference is associated
with cardiac vagal activity as estimated through HRV-HF
power than the one of HRV-LF power.

IV. DISCUSSION AND CONCLUSIONS

While EEG and HRV complexity have extensively been
studied in previous research, physiological complexity at a
BHI level has not been properly assessed yet. To this end,
we investigated functional BHI series complexity modula-
tion in resting state and emotional elicitation sessions. BHI
series for both heart-to-brain and brain-to-heart directions
were gathered from an ad-hoc model combining EEG and
HRV series [9], and BHI complexity was then quantified
through FuzzyEn because of its robustness to noise and low
sensitivity to parameter selection.

Results, referring to data from 17 healthy subjects, confirm
that functional BHI series may be considered as the output of
a nonlinear system whose complexity may be modulated by
an emotional state induction. In particular, such a complexity
modulation seems to occur in the heart-to-brain direction
over non-specific brain regions and EEG frequency bands; a
more significant effect seems to be associated with cardiac
vagal activity, estimated through HRV-HF power. These
findings are in line with previous emotional research studies
reporting on a significant role of vagal activity (e.g., [23]),
as well as heart-to-brain interplay [24].

As brain and cardiovascular systems show nonlinear and
complex dynamics, complexity in BHI phenomena is not
surprising and may reasonably be associated with the multi-
ple feedback mechanisms occurring (but not limited to) at a
hormonal, mechanical, and electrical levels between central



Fig. 3: p-value topographic maps for BHI complexity esti-
mated through Fuzzy Entropy between resting phase (Rest)
VS emotional elicitation (EMO) sessions. Columns refer to
EEG frequency bands (i.e., δ, θ, α, and β), top two rows refer
to the brain-to-heart interplay in the HRV-LF and HRV-HF
bands, and bottom rows refer to the heart-to-brain interplay
in the HRV-LF and HRV-HF bands.

and peripheral nervous systems. In this frame, we remark
that functional BHI also extends to the multifractal domain
[6].

Limitations of this study mainly refer to the relatively
limited experimental data, and the use of a single functional
BHI model and a single complexity quantifier. Future works
will be directed to the application of the aforementioned
computation to larger experimental datasets, also considering
different pathophysiological and experimental conditions,
together with the application of different BHI models.

Nonetheless, the present study provides meaningful in-
sights on brain-heart neurophysiology and enrich the set of
biomarkers that may be used for a dynamical characterization
of the neural system as a whole.
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