
  

  

Abstract— The study of functional brain-heart interplay 
(BHI) aims to describe the dynamical interactions between 
central and peripheral autonomic nervous systems. Here, we 
introduce the Sympathovagal Synthetic Data Generation Model, 
which constitutes a new computational framework for the 
assessment of functional BHI. The model estimates the 
bidirectional interplay with novel quantifiers of cardiac 
sympathovagal activity gathered from Laguerre expansions of 
RR series (from the ECG), as an alternative to the classical 
spectral analysis. The main features of the model are time-
varying coupling coefficients linking Electroencephalography 
(EEG) oscillations and cardiac sympathetic or parasympathetic 
activity, for either ascending or descending direction of the 
information flow. In this proof-of-concept study, functional BHI 
is quantified in the from-heart-to-brain direction on data from 
16 human volunteers undergoing a cold-pressor test. Results 
show that thermal stress induces heart-to-brain functional 
interplay originating from sympathetic and parasympathetic 
activities and sustaining EEG oscillations mainly in the δ and γ 
bands. The proposed computational framework could provide a 
viable tool for the functional assessment of the causal interplay 
between cortical and cardiac sympathovagal dynamics. 

I. INTRODUCTION 
The communication between central and autonomous 

nervous systems may occur through different pathways, 
including pain, visceroceptive, spino-thalamo-cortical, and 
somatosensory pathways [1][2]. Such communication may 
occur through several mediators including hormonal and 
electrical/mechanical signaling, the ensemble of which has 
been referred to functional brain-heart interplay (BHI) at a 
holistic, comprehensive, and high-abstraction level. To this 
extent, functional BHI has been demonstrated to be 
dynamically involved in numerous physiological processes, 
including cognitive functioning [3], as well as somatosensory 
perception [4], and emotions [5][6].  

The quantification of functional BHI has recently received 
attention from the scientific community. For example, 
computational approaches based on non-invasive recordings 
as electroencephalography (EEG) and heartbeat dynamics 
(derived from the electrocardiogram, ECG) have recently 
been proposed, including the analysis of spontaneous neural 
responses to heartbeats, and synchronization analysis between 
cortical and heartbeat oscillations [7]. However, most of the 
state-of-the-art methodologies for a BHI assessment rely on 
spectral analysis of heart rate variability (HRV) series, which 
is unable to provide accurate estimates of cardiac sympathetic 
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activity [8][9]. In fact, the sympathetic control on heartbeat 
dynamics acts in the 0.04-0.15Hz frequency band, in overlap 
with the cardiac parasympathetic (vagal) activity. To 
overcome this limitation, here we introduce a novel 
computational framework that accounts for sympathovagal 
measurements of both ascending heart-to-brain and 
descending brain-to-heart interplay, namely, the 
Sympathovagal Synthetic Data Generation (SV-SDG). The 
model provides time-varying BHI estimates for both 
sympathetic and vagal activities as linked to a specific EEG 
oscillation at a given frequency. The framework embeds an 
ad hoc heartbeat generation model and exploits the 
Sympathetic Activity Index (SAI) and Parasympathetic 
Activity Index (PAI) [9], which are defined from a Laguerre 
expansions of the heartbeat series. 

We test our model using real data gathered from 16 healthy 
subjects undergoing thermal stress through a cold-pressor 
test. Thermal stress, in fact, is known to elicit changes in HRV 
as a result of a sympathetic activity increase and a vagal 
activity decrease [10]. EEG studies showed that these stimuli 
induce an increase in the power in the δ and γ bands, mainly 
over the fronto-temporal areas [11]–[16]. In the frame of 
functional BHI, thermal stress induces changes in the 
bidirectional interplay mainly sustained by EEG oscillations 
in the δ and γ bands [17], and a suppression of heartbeat-
evoked potentials [18]. In this proof-of-concept study, we 
focus on the assessment of heart-to-brain interplay 
considering both sympathetic and parasympathetic activities, 
based on existing evidence on the influence of ascending 
inputs in somatosensory perception [4]. Methodological 
details of the proposed framework, as well as description of 
results and related discussion follow below. 

II. MATERIALS AND METHODS 

A. Dataset description 
This study comprises 16 healthy right-handed subjects 

undergoing a cold-pressor test (age range 21–41 years, 7 
males). The experimental protocol consists in 3-minute rest 
followed by up to 3-minute cold-pressor test. Subjects were 
asked to sit comfortably, keep their eyes closed to minimize 
artifacts, and guided to put their left hand in ~4°C water. The 
recordings include EEG (128-channel, EGI) and ECG series 
sampled at 500 Hz.  
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The study was approved by ethics committee Area Vasta 
Nord-Ovest Toscana and followed the declaration of Helsinki 
requirements. 

B. Data pre-processing 
Data were pre-processed using MATLAB R2017a and 

Fieldtrip Toolbox [19]. EEG data were bandpass filtered with 
a Butterworth filter of order 4, between 0.5-45 Hz. An 
independent component analysis was applied to remove large 
artifacts, including eye movements and cardiac-field artifacts. 
EEG channels were marked as corrupted if their area under 
the curve exceeded 3 standard deviations of the mean of all 
channels, or if their weighted-by-distance correlation 
coefficient with neighbors was less than 0.6. Corrupted EEG 
channels were replaced through a spherical interpolation of 
neighbor channels. According to previous findings [7], EEG 
signals were re-referenced using a common average. The 
EEG spectrogram was computed using a short-time Fourier 
transform with a Hanning taper; calculations were performed 
through a sliding time window of 2 seconds with a 50% 
overlap, resulting in a spectrogram resolution of 1 second and 
0.5 Hz. Then, the spectrogram was integrated within the 
frequency bands δ: 1-4 Hz, θ: 4-8 Hz, α: 8-12 Hz, β: 12-30 
Hz, γ: 30-45 Hz, to obtain time-varying power series.  

The R peaks from ECG series were automatically identified 
following the procedure reported in [7]. Then, a visual 
inspection analysis was performed on RR series to check for 
gross artifacts. Finally, a point-process based procedure was 
applied to identify and correct remaining algorithmic and 
physiological artifacts (e.g., ectopic beats) [20]. 

C. The proposed Sympathovagal Synthetic Data Generation 
Model 

We describe the Sympathovagal Synthetic Data Generation 
model (SV-SDG), which provides time-variant estimates of 
the bidirectional functional coupling between different 
heartbeat and brain components.  

1) Functional Interplay from the brain to the heart 
The descending interplay is quantified through a model of  

synthetic heartbeat generation based on Laguerre expansions 
of RR series (see [21] for further details). Briefly, we generate 
heartbeats based on the modulation function m(t), which 
contains the fluctuations with respect to the baseline heart 
rate. Such fluctuations are modeled including the sympathetic 
and parasympathetic interplay. In eq. (1), the modulation 
function is expressed as a linear combination of sympathetic 
(SAI) and parasympathetic (PAI) activities through their 
respective control coefficients 𝐶!"# and 𝐶$"# representing the 
proportional central nervous system contribution: 

 m(t) = CSAI(t) ∙ SAI(t) + CPAI(t) ∙ PAI(t) (1) 

The modulation function is then taken as input to an 
integrate-and-fire model  [21]. The model is fitted on the RR 
interval series using a 15-seconds sliding time window and a 
linear regression model with no constant term. Then, the 
interaction between heartbeat dynamics and the cortical 
activity is defined as: 

 SDGEEG F→X(t) = CX(t) / EEGF(t-1) (2) 

where X indicates the sympathetic (SAI) or 
parasympathetic (PAI) activity, and 𝐸𝐸𝐺F indicates the time-
varying EEG power with F ∈ {δ, θ, α, β, γ}. 

2) Functional Interplay from the heart to the brain 
The functional interplay from heart to brain is quantified 

through a model based on the generation of synthetic EEG 
series using an adaptative Markov process [22]. The model is 
fitted using a least-square auto-regressive process to estimate 
cardiac sympathovagal contributions to the ongoing 
fluctuations in EEG power as: 

 EEGF(t) = κF ∙ EEGF(t-1) + ΨF(t-1) + εF (3) 

 where F is the EEG frequency band, κF  is a fitting 
constant, εF is the adjusted error, and 𝛹& indicates the 
fluctuations of EEG power in the F. Then, the heart-to-brain 
functional coupling coefficients are calculated as follows: 

 SDGX→EEG F(t) = ΨF(t) / X(t) (4) 

 where X∈{SAI, PAI}. For further details, please see [23]. 

D. Statistical analysis 
Averaged, within-session BHI estimates in the heart-to-

brain direction were derived from resting state and cold-
pressure conditions and were statistically compared using a 
cluster-based permutation analysis based on non-parametric 
Wilcoxon’s tests, preceded [23]. The preliminary mask was 
identified in space, time, and frequency with α = 0.01. A 
minimum cluster size of 3 channels was imposed. Adjacent 
candidate clusters on time were wrapped if they had at least 
one channel in common. The overall minimum duration of the 
cluster was imposed to 5 seconds. Cluster statistics are Monte 
Carlo p-value (pmc) from 10,000 random partitions. with 
significance at α = 0.01, and the Wilcoxon’s absolute 
maximum Z-value obtained from all the samples of the mask. 

III. RESULTS 
Fig. 1A shows the group-median time course of 

sympathetic and parasympathetic activities, i.e., SAI and PAI, 
respectively, and Fig. 1B shows the group-median EEG 
power series in the δ and γ bands, averaged in frontal 
channels. We observe that the cold-pressor triggers an 
increase in the sympathetic activity, which remains high for 
no less than 30s from the cold-pressure onset. Similarly, the 
parasympathetic activity decreases after the stimulus onset. 
EEG power increases after the stimulus onset, although it 
starts to return to resting state levels after about 10s. 

Results from the statistical analysis on the functional 
estimation of heart-to-brain interplay are shown in Table I 
considering both SAI and PAI indices and EEG power series. 
A clustered effect was found during the cold-pressor phase, 
with respect to the resting state, from SAI and PAI to δ, β and 
γ. From the cold-pressure onset, the interplay SAI/PAI → γ 
occurs earlier than the other interplays. The directed interplay 
originating from parasympathetic activity shows also 
statistical differences between experimental conditions in 
relation to EEG power series in the θ band. 

 



  

 
Figure 1.  Physiological responses to cold pressure. The black line 
indicates the group-median, and the shaded gray area indicates its 
median absolute deviation. The cold-pressor onset is marked with 
striped, blue lines. (A) Autonomic changes measured as SAI and PAI. 
(B) Frontal EEG power changes in δ and γ bands.  

TABLE I.  RESULTS FROM THE CLUSTER PERMUTATION ANALYSIS  

Interplay 
Cluster statistics 

latency (s) a pmc b Z 

SAI→δ 1-101 < 0.0001 3.46 

SAI→β 1-9 0.0008 2.84 

SAI→γ 0-93 0.0001 3.52 

PAI→δ 5-103 < 0.0001 3.52 

PAI→θ 68-101 < 0.0001 3.41 

PAI→β 1-99 < 0.0001 3.52 

PAI→γ 0-96 < 0.0001 3.52 

a. earliest-latest sample in the cluster, b. Monte Carlo p-value from 10,000 permutations 
 

IV. DISCUSSION 

Computational methods for the measurement of functional 
BHI aim to quantify the neural information exchange between 
brain and cardiac dynamics. To this end, we proposed a novel 
framework to estimate functional BHI through cardiac 
sympathetic and parasympathetic activities. The framework 
relies on the definition of SAI and PAI [9], derived from HRV 
series. As BHI is actively and dynamically involved under 
sympathovagal elicitation driven by thermal stress, we tested 
the proposed methodology on real EEG and ECG data 
gathered from healthy subjects undergoing a cold-pressor test. 
Speculatively, the model captures the multiple 
communication pathways involved in body temperature 
changes, including the spino-thalamo-cortical pathway [1].  

Our results suggest that, with respect to resting state, 
several changes in ascending BHI occur through EEG 
oscillations in the δ and γ band, primarily involving midline 
frontal and posterior regions. Accordingly, previous studies 
on EEG correlates of thermal stress showed that the spectral 
power in the δ-θ range is increased in frontal areas, and power 
in the β-γ range increases as well; the power in the α band 
decreases, with slight differences between studies [11]–[16]. 

 

 
Figure 2.  Clustered effects found in the ascending brain-heart 
interplay. Scalp topographies indicate an overall increase of the 
ascending interplay under cold pressure, with respect to resting state. 
Major increase is found in frontal and parietal regions. Thick channels 
indicate cluster pmc < 0.01 

We observed that BHI changes involving EEG oscillations 
in the α band were not triggered by the change in the 
experimental conditions. This may be due to the fact that the 
cold-pressor test does not require active cognitive 
participation. Therefore, a change in α activity or in the 
interplay with the autonomous nervous system may indeed 
cause minor changes.  

Cortical responses to tactile, thermal, and painful stimuli 
usually occur within 200-350ms [24][25]. Our results suggest 
that such response is directly linked to the ascending interplay 
from SAI/PAI mainly to the cortical activity in the γ band, as 
we found clustered effects from the cold pressure onset. The 
previously reported peripheral responses to thermal stress 
include heart rate increase as a result of an increase in 
sympathetic activity and decreased cardiac vagal outflow 
[10]. Consistently, we observed such changes through the 
estimators of cardiac sympathovagal activity, SAI and PAI.  

The relation between cardiovascular and brain responses to 
somatosensory stimulation and thermal stress has been 
previously described through the baroreceptor modulation of 
heart rate due to physiological arousal [26][27]. Consistently, 
it was reported that heartbeat-evoked potentials under cold 
stimuli shows a prominent deflection mainly over the frontal 
and central scalp locations [18]. In this frame, we recall that 
cold temperature perception may be modulated by the cardiac 
cycle [28]. Different mechanisms may be employed by the 
nervous system to ensure an optimal energy use, including 
anticipation processes in parallel to local feedforward 
regulatory processes [29].  

Activation of specific brain-body interactions during 
cognitive processes has been shown experimentally, 
suggesting possible cognitive/affective modulations of 
autonomic responses to cold and pain [30]. The evidence on 
heartbeat-evoked potentials during cold stimuli showed 
significant changes in BHI, but this effect was minimized 
when subjects performed mental calculations [18]. Therefore, 
the described mechanisms of BHI may not be related to 
homeostatic control exclusively, but also describing the 
disruption of the ongoing neural dynamics.  



  

Further endeavors will be directed towards the application 
of the SV-SDG model to a large data cohort, aiming to 
uncover the specific physiological and anatomical 
mechanisms that allow the neural information exchange 
between the brain and autonomic activity. 

V. CONCLUSION 
The proposed SV-SDG model promisingly constitutes a 

viable tool for the time-resolved assessment of functional 
BHI. The advantages of assessing directionality and latency 
of functional BHI are numerous in the neuroscientific and 
clinical domains, together with the quantification of cortical 
and cardiac sympathovagal coupling.  
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