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Abstract— Functional near infrared spectroscopy (fNIRS) is
a modality that can measure shallow cortical brain signals
and also contains pulsatile oscillations that originate from
heartbeat dynamics. In particular, while fNIRS slow waves
(0 Hz to 0.6 Hz) refer to the standard hemodynamic signal,
fast-wave (0.8 Hz to 3 Hz) fNIRS signals refer to cardiac
oscillations. Using a cognitive stress experiment paradigm
with mental arithmetic, the aim of this study was to assess
differences in cortical activity when using slow-wave or fast-
wave fNIRS signals. Furthermore, we aimed to see whether
fNIRS fast and slow waves provide different information to
discriminate mental arithmetic tasks from baseline. We used
data from 10 healthy subjects from an open dataset performing
mental arithmetic tasks and assessed fNIRS signals using mean
values in the time domain, as well as complexity estimates
including sample, fuzzy, and distribution entropy. A searchlight
representational similarity analysis with pairwise t-test group
analysis was performed to compare the representational dissim-
ilarity matrices of each searchlight center. We found significant
representational differences between fNIRS fast and slow waves
for all complexity estimates, at different brain regions. On the
other hand, no statistical differences were observed for mean
values. We conclude that entropy analysis of fNIRS data may
be more sensitive than traditional methods like mean analysis
at detecting the additional information provided by fast-wave
signals for discriminating mental arithmetic tasks and warrants
further research.

I. INTRODUCTION

It has been long understood that heartbeat dynamics come
from a highly nonlinear system with complexity originat-
ing from feedback loops between baroreflex sensors and
sympathovagal interactions [1]. In fact, many cardiac-related
systems exhibit such nonlinearity and complexity [2]–[4].

With functional near infrared spectroscopy (fNIRS), brain
tissue hemoglobin concentration is measured as a proxy for
neural activity [5]. To this extent, a comparative analysis
between fNIRS slow waves (0 Hz to 0.6 Hz) and fast waves
(0.8Hz to 3Hz) still has much room for study.

Analysis of fNIRS signals commonly focus on the hemo-
dynamic low-frequency band (< 0.6 Hz) as the high-
frequency band (> 0.8 Hz) is thought to be sensitive to
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systemic physiological or instrumentation noise [6]. How-
ever, a recent study investigated the heart rate component (1
Hz to 1.9 Hz) fNIRS, for example, finding it a useful metric
for cognitive stress [7]. Moreover, past research in Ghouse
et al. [8] assessed complexity estimates in fNIRS signals
that had both hemodynamic and heart rate frequencies, and
demonstrated complementary areas of neural activity. Hence,
a proper assessment of the information carried out by the
pulsatile activity in fNIRS should be performed.

Accordingly, the aim of this preliminary study was to
assess similarity between neural representations of fNIRS in
slow- and fast-wave frequencies. To this end, complexity esti-
mates and mean estimates in the time domain were extracted
on fNIRS-derived series, independently for series including
slow and fast waves. For the complexity quantification, we
used entropy analysis based on reconstructed phase space,
which is derived by applying a delay-coordinate map as
specified in Takens’ theorem [9]. Sample entropy (SampEn)
[10] and fuzzy entropy (fuzzyEn) [11] are two entropy
measures in the phase space that assess irregularity based
on approximations of the correlation integral. Particularly,
SampEn compares states using a Chebyshev distance with
a heaviside binary membership function to determine class
membership. Instead of using a binary membership function,
fuzzyEn uses a continuous “fuzzy” membership function.
Furthermore, Distribution entropy (distEn) analyzes the spa-
tial complexity of the attractor and reduces the use of fixed
parameters in its evaluation [12].

To assess differences and similarities in the spatial neural
representations between slow-wave and fast-wave signals, we
performed a searchlight representational similarity analysis
[13], [14], i.e. a multivariate pattern analysis (MVPA) that
has shown power in assessing whether modes (such as a the-
oretical model, behavioral data, empirical data, etc) contain
similar neural representations for cognitive states. Particu-
larly, we performed a representational similarity analysis on
mental arithmetic and baseline activity using publicly avail-
able data provided by Shin et al. [15]. Furthermore, on both
fast-wave and slow-wave fNIRS data, a searchlight decoding
analysis [16] was used to determine which frequency band
contains neural representations that can decode (i.e., classify)
whether a mental arithmetic activity is being performed with
above-chance accuracy, for a given searchlight center.



II. MATERIALS AND METHODS

A. Experiment Design

A publicly available dataset was used to obtain fNIRS
signals, as reported in [15]. Briefly, twenty-nine healthy
subjects (aged 28.5 ± 3.7) were recruited for the study, fif-
teen of which were females and fourteen males. Three trials
were performed with ten repetitions of mental arithmetic and
baseline experimental conditions for each subject. Thirty-six
fNIRS series were acquired for each subject with a 10 Hz
sampling rate.

The experiment design had 60 seconds of resting state
to start data acquisition from a subject, after which an
instruction on the screen telling them which task was to
be performed–either an arithmetic problem or a ”-” for a
baseline. The subject performed the task indicated for 10
seconds, with a subsequent 15 seconds of resting state before
the next instruction. After 20 repetitions of these instructions
and tasks (10 second repetition per task), a 60 second rest
was performed. A total of three trials were performed, for a
total of 30 repetitions per task.

Data randomly chosen from ten subjects (five female
and five male) were retained for further analyses in this
preliminary study.

B. fNIRS signals

Thirty six channels of optical densities were resolved from
source detector pairs comprising 760nm and 850nm wave-
lengths covering the frontal, lateral parietal and posterior
cortical regions. The modified Beer Lambert law was used to
convert the optical densities to deoxyhemoglobin (Hb) and
oxyhemoglobin (HbO). Total hemoglobin was derived from
adding the two hemoglobin signals after the preprocessing
described in the next section.

C. Preprocessing

Figure 1 illustrates the preprocessing pipeline. After ap-
plying the modified Beer-Lambert law, band-pass frequency
filters were applied to extract hemodynamic (0Hz to 0.6 Hz)
or cardiac pulsatile signal (0.8 Hz to 3 Hz) from fNIRS
[17]. A wavelet filtering approach using a Daubechies 5
wavelet, nine level decomposition was used to further reduce
instrumentation noise such as movement in the oxy- and
deoxyhemoglobin signals [18]. The signals were separated
into epochs, with each channel at each activity block being
referenced to the mean of the previous 5s. Total hemoglobin
(THb) was computed as the addition of both Hb and HbO.

D. Entropy Analysis

For the three fNIRS-derived signals, i.e., time series for
HbO, Hb, and THb, entropy measures including SampEn,
fuzzyEn, and DistEn were calculated. To this extent, a
delay-time τ and embedding dimension m are needed to
reconstruct attractors using delay-coordinates [9]. τ was
selected as the first zero of the autocorrelation, and an m
was found using the false nearest neighbors approach [19].

For SampEn and fuzzyEn, a radius R = 0.2σx was used
as the threshold to determine whether states were neighbors,

Fig. 1. Analysis pipeline used for each fNIRS signal in the dataset

where σx is the standard deviation of each fNIRS-derived
time series [20]. While fuzzyEn used an exponential decay
function to weigh the distances between the states with a
fuzzy power n = 2 [11], DistEn utilized Scott’s method to
determine the bin size for the empirical probability density
function represented by a histogram [21]. Shannon entropy
was calculated from the histogram to obtain the reported
DistEn value.

E. Searchlight Representational Similarity Analysis

A searchlight is a region of interest comprising fNIRS
detectors within a radius. The center of the searchlight sphere
(or circle for 2D maps) is sweeped through all detector
positions for further analyses. Due to the montage file from
the open dataset being in normalized spatial units on a
unit box, searchlights radius were derived as to have each
searchlight comprise at least three channels rather than being
defined by a physically meaningful distance. Each search-
light had a shape of Nrepetitions×Nchannels ·Nseries,
where series correspond to hemoglobin concentrations. To
derive dissimilarity between mental arithmetic and baseline
representations (which are random vectors), the distance
correlation is used [22], [23]. Other correlation measures
such as Pearson or Spearman are based on random variables
rather than random vectors, thus are not applicable.

Due to there being only two experimental conditions
(baseline or mental arithmetic), the representational dissimi-
larity matrix is a 2× 2 matrix, thus and because comparing
representational dissimilarity between modalities requires
only the upper triangle [13], the output for each searchlight
becomes a single value. Representational dissimilarity out-
puts were obtained for each searchlight center corresponding
to each detector location for each measure (entropies or mean
value in the time domain).

F. Searchlight Decoding Analysis

A pipeline of a standard transformation (to make the
features zero mean with unit variance) and a linear support
vector machine classifier were used to decode (classify)
whether a searchlight could discriminate between mental
arithmetic or a baseline condition. For each measurement
(entropies or mean value), each decoding takes a number



Fig. 2. Results of a paired t test across subjects to assess whether fast
and slow wave fNIRS for a searchlight center had a significantly different
representational dissimilarity between mental arithmetic and baseline.

of 3 · Nchannels features an inputs considering the three
fNIRS-derived signals, i.e.,HbO, Hb, and THb series. A 10
fold cross-validation was used to obtain a mean accuracy
map for each searchlight center.

G. Statistical Analysis
Group analysis was performed using paired t-tests to

see whether representational dissimilarity between mental
arithmetic and baseline for fast-wave fNIRS and slow-wave
fNIRS were significantly different at a searchlight center.
Uncorrected statistical significance α was set to 0.05 and
a p < 0.00139 was considered significant according to
a Bonferroni correction for multiple comparison for 36
channels.

For each searchlight center, a one-sample, one-sided t-test
was performed on the 10 decoding accuracy results over
the subjects to test whether they are samples of a random
variable with mean 50%; in other words, we performed a sta-
tistical test indicating whether the cross-validation accuracy
values are significantly different from chance. A p < 0.01
was used without corrections to assess whether the decoding
searchlight accuracy was significant.

III. RESULTS

A. Group Statistics of Representational Similarity Analysis
Results from the representational similarity analysis can

be seen in fig. 2. For the mean value, no searchlight has
significantly different representations between slow and fast
wave fNIRS, whereas the entire cortical surface is signif-
icantly different for fuzzyEn and SampEn. As for distEn,
the posterior parietal cortex, the right frontal cortex and the
medial right parietal cortex reveal representation differences.

B. Group Statistics of Decoding Analysis
Searchlight decoding results for fast and slow wave fNIRS

can be seen in fig. 3. Mean estimates show significant
searchlights only in fast wave fNIRS, in the the medial left
parietal cortex and right frontal cortex. However, there are
no clusters of more than one searchlight. SampEn shows
no significant searchlight in either fast or slow wave fNIRS
analysis. DistEn, on the other hand shows a significant cluster
in the frontal left medial cortex in slow wave while in fast
wave there is a significant cluster in the posterior parietal
cortex. FuzzyEn shows significant activity in the left lateral
frontal cortex, with a cluster of at least two searchlights in
the fast wave fNIRS analysis.

Slow-Wave

Fast-Wave

Fig. 3. Results of a the group analysis using a t-test across subjects to
assess whether a searchlight center is significantly better than chance at
decoding either a mental arithmetic or baseline activity. The top row is the
slow wave results, the bottom row is the fast wave results. Non-colored
spots indicate non-significant results.

IV. DISCUSSION

In this study, representations of neural activity were com-
pared between fNIRS slow waves (0 Hz to 0.6 Hz) and
fNIRS fast waves (0.8 Hz to 3 Hz) for both linear mea-
sures of mean value and complexity measures derived from
entropies (SampEn, fuzzyEn, distEn) in the phase space. The
fNIRS signals were taken from a publicly available dataset,
described in [15]. Ten subjects were analyzed during during
mental arithmetic and a baseline experimental conditions.
Representational similarity analysis was performed, showing
that representational dissimilarities were not significantly
different between fast and slow wave fNIRS in the mean
measurements, while fuzzyEn and SampEn measures had
significant differences across the entire cortex. DistEn had
representation dissimilarities that were significantly different
between slow and fast fNIRS in the posterior parietal cortex.
As for decoding, only fuzzyEn and distEn were able to
reveal clusters of significant searchlights. DistEn revealed
the frontal left cortex in the slow-wave fNIRS while in
fast wave the posterior parietal cortex provided information
to discriminate the experimental conditions. FuzzyEn only
provided clusters of significance in the fast-wave fNIRS, in
the frontal left lateral cortex.

Considering the mean estimate is a linear estimate corre-
sponding to the direct current value of the signal, it is not
surprising that representational similarity analysis found no
significant differences between fast or slow waves, as the
band pass highly attenuates the direct current component,
thus, the mean value is merely scaled by the filter. Regarding
SampEn and fuzzyEn, how the filters affect the regularity
of state space is not as easily understood, however Borges
et al. show that high pass filtering results in lower mean
entropy but higher variance than low-pass filtering [24]. This
effect may correspond to the significantly different mean
representational similarity across subjects seen. However,
distEn appeared more selective than fuzzyEn or SampEn
in detecting representations dissimilarities that are different,
particularly with a cluster of significance in the lower left
parietal cortex. Note that this area corresponds to where
literature expects the neural correlate of mental arithmetic
activity to be [25], [26].

When applying the decoding analysis to finely parse



through which regions on the cortical surface contain in-
formation to discriminate mental arithmetic from baseline
in either slow or fast wave fNIRS, only fuzzyEn and distEn
provided clusters of significant activity of at least two search-
light centers. Particularly, distEn revealed a cluster in the fast
wave signal in the posterior parietal cortex that corresponds
to the region that representational similarity analysis showed
was significantly different between fast and slow wave fNIRS
data. Furthermore, clusters in the frontal left cortex were
found in slow-wave distEn and fast-wave fuzzyEn, which
are also in agreement with previous findings [25], [26].

Of interest is also the switching of cortical regions with
fast and slow wave fNIRS in distEn between parietal cortex
and frontal cortex in the decoding analysis. Further research
is still needed to understand the physiology that elicits these
nonlinear and complex effects seen in these results. At a
speculative level, it is understood that the particular parietal
location involved in mental arithmetic can be the angular
gyrus, as seen in brain injury studies [27]. It is also involved
in the default mode network [28], a network active during
multi-modal activity, and which may contain more transient
high frequency activity than regions outside of the default
mode network. On the note of autonomic regulation control
that are reflected in cardiac signals, the vagus nerve seems to
play a role in modulating the default mode network [29]. An
interesting follow-up study could be performed with a vagal
nerve stimulation to see if it effects the representations seen
in this study.

V. CONCLUSION

We conclude from this preliminary study that entropy
estimates can detect different representations when using
either fast- or slow-wave fNIRS data, which traditional
methods like mean estimates can not.
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