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Abstract— This paper addresses the clock synchronization
problem in a wireless sensor network (WSN) and proposes
a distributed solution that consists of a form of consensus,
where agents are able to exchange data representing intervals
or sets. The solution is based on a centralized algorithm for
clock synchronization, proposed by Marzullo, that determines
the smallest interval that is in common with the maximum
number of measured intervals. We first show how to convert
such an algorithm into a problem involving only operations on
sets, and then we convert it into a set–valued consensus. The
solution is valid for more general scenarios where agents have
uncertain measures of e.g. the position of an object detected
by a vision system, a temperature in a room, but it will be
applied to the case where a set of uncertain time values are
propagated through a WSN. Under suitable joint conditions on
the communication connectivity and bounded agent failure,we
prove the correctness of the algorithm that indeed allows the
network agents to consent on the value of a unique global time.

I. I NTRODUCTION

The proliferation of robotic devices and the growing
number of their potential applications has recently led to an
increased interest towards multiple–robot applications,such
as consensus, rendezvous, sensor coverage, and simultaneous
localization and mapping. All these applications demand for
the availability of a global clock, i.e. every node in the
network must be able to refer to a unique time. The reason
for this necessity is twofold. First, only if a very accurately
synchronized clock is available, every node can get a global
picture of an event that is sensed by several nodes. Secondly,
clock synchronization is essential for reducing node’s energy
consumption due to communication. Indeed, any two node
willing to exchange a message with each other establish a
rendezvous. The better the clock synchronization, the less
energy is wasted in the necessary guard times to not miss
the rendezvous point.

In a centralized system the solution of this problem is
trivial: the centralized server will just decide the system’s
time. In a distributed system, the problem takes on more
complexity because a global time is not easily known. In a
WSN, clock synchronization poses two major problems. The
former is the connectivity, which is related to the fact that
nodes of a sensor network cannot directly communicate with
each other, and some information may need to be relayed
by other nodes. Therefore, it is not possible to choose a
reference node to which all other nodes can be synchronized
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to. The latter problem is related to unpredictable random
delays that may normally occur between any pair of nodes. It
is indeed known that delivery time of radio messages in WSN
is subject to interferences, and node failures which may cause
unknown variations to the standard communication time.

In this respect, during the last years clock synchronization
in distributed systems has been extensively studied. As a
result of this effort, many different approaches have been
proposed (see e.g. [1]–[6]). Specifically developed for WSN
are the Reference Broadcast Synchronization (RBS) [7],
Timing–sync Protocol for Sensor Networks (TPSN) [8] and
the Precision Time Protocol (PTP) [9]). More in detail, the
RBS exploits the broadcast nature of the physical channel to
synchronize a set of receivers with one another. The times-
tamp of the reception of a broadcast message is recorded at
each node and these timestamps are exchanged to calculate
relative clock offsets between nodes. The TPSN algorithm
builds a spanning tree of the network during the level dis-
covery phase. In the synchronization phase of the algorithm,
nodes synchronize to their parent in the tree by a two-way
message exchange. PTP is a time-transfer protocol defined in
the IEEE 1588 standard that allows precise synchronization
of networks (e.g., Ethernet).

More recently, so–called Average TimeSync protocol [10]
has been proposed as a different approach to clock syn-
chronization. The main idea underlying this approach is to
average local information to achieve a global agreement
on a specific quantity of interest, and this is obtained
by transposing the synchronization problem into a linear
consensus problem. Notwithstanding, the problem of clock
synchronization in a WSN is far from been completely
solved. As a matter of fact, available solutions, such as
NTP, require operating conditions that are not guaranteed
in a WSN. These difficulties are due to limited energy and
bandwidth availability, that are in turn necessary to allow
sensors a longer operating life. Furthermore, the fact thatthe
topology is dynamically changing is another issue that makes
the clock synchronization problem in a WSN more difficult
than in traditional network, and actually a very challenging
one.

Moreover, there has been a recent thrust toward the use
of nonlinear consensus in different application domains (see
e.g. [11]–[13]). The main motivations for this is the fact
that many control and robotics problem can not be solved
by simple linear consensus, or at least it would be more
natural to formulate solutions involving more general forms
of consensus. In [12], a set–valued consensus algorithm was
used in a security context to allow a set of agents reach an
agreement on the presence of misbehaving neighbors.



In this paper, we will proceed along the same line, by
transposing the clock synchronization problem into a consen-
sus problem on sets. This is achieved by exploiting the idea
that uncertain measures of a clock that have been propagated
through the network can be represented as interval. This
idea was first proposed by Marzullo in [14] that showed a
centralized algorithm to determine the smallest confidence
interval that is contained in the largest number of sensor
measures. The solution therein proposed now forms the basis
of the Network Time Protocol (NTP) [15], a protocol that
is implemented in many software platforms and operating
systems. NTP sets and maintains the system time of day in
synchronism with Internet standard time servers. NTP does
most computations in 64-bit floating–point arithmetic and
does relatively clumsy 64–bit fixed–point operations only
when necessary to preserve the ultimate precision, about
2.32 × 10−10 seconds (232 picoseconds). While the ultimate
precision is not achievable with ordinary workstations and
networks of today, it may be required with future gigahertz
CPU clocks and gigabit LANs. However, Marzullo’s solu-
tion is actually centralized and is extended to a distributed
approach in this paper.

The outline of this paper is the following. In Section II, an
extension of Marzullo’s problem for clock synchronization
is introduced, and a centralized translation involving only
operations on sets is derived. In Section III a distributed
version of the algorithm is found that consists of a set–valued
consensus system. Finally, in Section IV, the effectiveness
of the proposed solution is shown through some numerical
simulations.

II. A C ENTRALIZED EXTENSION OFMARZULLO ’ S

ALGORITHM

Consider the clock synchronization algorithm originally
proposed by Marzullo in [14]. In this section, we propose
an extension of the algorithm and we show how to convert
it into a problem involving only operations on sets.

Suppose to haven sensors that are able to measure the
value of quantity of interest within a confidence interval or
set. Let us denote withu ∈ U this quantity that may range
from time, temperature, to the position of an object during a
SLAM application, or to the configuration of a neighboring
car (as e.g. in the IDS considered in [12]).

Suppose that one or more of these sensors may fail and
produce a confidence interval or set that is not consistent
with the others. Then, given thesen sets,U1, . . . , Un, we
want to compute the smallest setY that is contained in
the largest number of such sensor measures. This quantity
represents the set that is most likely to contain the real
clock value. A solution to this problem can be found that
uses only operations on sets (union∪, intersection∩, and
complementationC(·)).

Given n agents’ indices1, 2, . . . , n, consider the number
of combinations ofi of such indices out ofn being specified
by

c(n, i)
def
=

(

n

i

)

.

Fig. 1. An instance of the algorithm to solve the set–valued formulation
of Marzullo’s problem with3 input sets.

Then, consider the sets

Ai =

c(n,n−i+1)
⋃

l=1

n−i+1
⋂

h=1

Uil,h
,

for i = 1, 2, . . . , n, where il,1, . . . , il,n−i+1 are distinct
combinations of agents’ indices. More explicitly, the setsare
given by

• A1 = U1∩U2∩· · ·∩Un (the intersection of alln sensor
measures),

• A2 = (U1∩U2∩· · ·∩Un−1) ∪ (U1∩U2∩· · ·∩Un−2∩
∩ Un) ∪ . . . (the union of then possible intersections
of n− 1 sensor measures),

• · · · ,
• An = U1∪U2 ∪ . . . ∪ Un (the union of then individual

sensor measures).

Consider also the following filtering sets:

Γ1 = U ,

Γi = Γi−1 ∩

{

U if Ai−1 = ∅ ,

∅ if Ai−1 6= ∅ ,
for i = 2, ..., n .

(1)

Then, the desired confidence setY is readily given by

Y =

n
⋃

i=1

(Γi ∩Ai)
def
= M (U1, . . . , Un) . (2)

We can give the following
Definition 1: Given n set measuresU1, . . . , Un, we say

that Uj is consistentif it shares an intersection with the
smallest set that is common with the maximum number of
the other sets, i.e.

Uj ∩ M (U1, . . . , Un) 6= ∅ .

Conversely, we say thatUj is inconsistent.
A pictorial representation of the algorithm is reported

in Fig. 1. The figure outlines the modular structure of the
algorithm, where the output of a module is the input of the
following one.



Once the best estimated setY has been computed from the
initial collection X1, . . . , Xm, one has typically to extract
a scalar valueb ∈ X to be used in a control loop. For
time synchronization, the complete set isX = [0,∞), and a
common choice is to take the earliest interval[tmin, tmax] ⊆
Y and extract its middle value

b =
tmax − tmin

2
.

A. Example

Suppose to have the intervalU = [0,∞), and m = 3
sensors providing the following confidence interval:U1 =
[1, 10], U2 = [30, 40], andU3 = [6, 29]. In this case, mapφ
computes the following3 intervals:

A1 = U1 ∩ U2 ∩ U3 = ∅ ,

A2 = (U1 ∩ U2) ∪ (U1 ∩ U3) ∪ (U2 ∩ U3) = [6, 10] ,
A3 = U1 ∪ U2 ∪ U3 = [1, 29] ∪ [30, 40] .

The filtering sets are the intervalsΓ1 = U , Γ2 = U , and
Γ3 = ∅. Thus, the smallest interval that is in common to the
largest number of the given intervals is

Y = (Γ1 ∩A1) ∪ (Γ2 ∩A2) ∪ (Γ3 ∩A3) =
= ([0,∞) ∩ ∅) ∪ ([0,∞) ∩ [6, 10])∪
∪(∅ ∩ ([1, 29] ∪ [30, 40])) =

= [6, 10] ,

which is contained inU1 and U2 (see Fig. II-A). On the
contrary, the third sensor’s measure is faulty. Indeed, we
have:

Y ∩ U3 = ∅ .

−5 0 5 10 15 20 25 30 35 40 45
0
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Fig. 2. Example of clock interval estimated by the centralized solution of
Marzullo’s algorithm. The estimated set is in green, the correct measures
U1 andU2 are in blue, and the inconsistent measureU3 is in red.

III. D ISTRIBUTED CLOCK SYNCHRONIZATION

The algorithm presented in Section II is able to solve the
extended Marzullo’s problem only in a centralized setting,
whereas we want that every agent have a consistent infor-
mation on the quantity of interestu, so that any of them can
be polled by an external user. To this aim, let us suppose that
every generic agentAi has a stateXi ⊆ U that represents
its estimate of the quantity of interestu and is able to share
the value of its state with all its neighbors by exchanging a
message with them. Suppose that every agent initializes its

state with the value of its local estimate of the quantity of
interest, i.e.

Xi(0)← Ui(0) .

Then, we want to design a distributed iteration rule of the
form

X(t + 1) = F (X(t)) ,

whereX = (X1, . . . , Xn)T is the system’s state, andt is a
discrete time, such that, starting from any initial stateX(0),
every agent will consent on Marzullo’s centralized decision,
i.e. there exists a finite timēt such that

X (t̄) = M (U(0)) = M (X(0)) .

Furthermore, due to the result stated in [16] and concerning
the impossibility to reach a consensuswith corrupted data,
we must add a further hypothesis to the problem guaranteeing
that the maximum number of inconsistent measures is at
most γ. We will refer to this as thebounded inconsistency
hypothesis.

From [17], recall the following
Definition 2: A graph G = (V, E) is said to bek–

connectedif there does not exist a set ofk − 1 vertices
in V whose removal disconnects the graph, i.e. the vertex
connectivity ofG is greater or equal tok.
Therefore, a connected graph is1–connected, and a bicon-
nected graph is2–connected.

First of all, note that the hypothesis of bounded incon-
sistency implies that there exists at least one combination
of n − γ sets that share an intersection with Marzullo’s
centralized decision, i.e.

∃ i1, · · · , in−γ ∈
{

1, . . . , n
}

|Xij
∩ M∗ 6= ∅ , (3)

whereM∗ = M (X1(0), . . . , Xn(0)). In case of virtuous sce-
nario with only consistent measures (γ = 0), this condition
implies that

X1(0) ∩ · · · ∩ Xn(0) 6= ∅ ,

and a solution to the problem can be obtained by simply
replicating the M-Algorithm on every node according to its
communication neighbors, i.e.

Fi(X) = M (Xi1 , · · · , Xini
) , for i = 1, . . . , n ,

where ni is any number of agentAi’s neighbors, and
i1, · · · , ini

are their indices. Indeed, in the virtuous hypothe-
sis, the algorithm on agentAi reduces to a pure intersection
of the data received from its communication neighbors. As it
is well-known, set intersection is associative, commutative,
and idempotent(X ∩ X = X). Therefore, given that the
underlying communication graph is connected, the network
convergence toward the centralized decisionX∗ is guar-
anteed ( [12]). Thus its distributed application allows the
agents to consent on the value of the centralized intersection,
which is also the desired solution of the extended Marzullo’s
problem. Consider the case withγ > 0. Suppose that all
initial measures are represented bycompactsets so that,
if a common intersection exists, the intersection itself is
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Fig. 3. Simulation run of a dynamic systems estimating Marzullo’s solution with γ = 1 (a), andγ = 2 (b) possible inconsistencies, and corresponding
behavior of the network disagreement w.r.t. Marzullo’s centralized decision (d,e).

a compact set. Due to this, all points in the Marzullo’s
centralized decision are in common with the very same
initial sets. In this case, the analysis of convergence is more
complex. Anyway, we are able to prove the following

Theorem 1:Consider a network of agents evolving ac-
cording to the iterative rule

Xi(t + 1) = Fi(X) = M (Xi1(t), · · · , Xini
(t)) ,

Xi(0) = Ui ,

for i = 1, . . . , n, where at mostγ initial states may be
inconsistent. The network can reach a consensus on the
centralized Marzullo decision

X∗ = (M∗, · · · , M∗)T ,

M∗
def
= M (X1(0), . . . , Xn(0)) ,

if the agents can exchange messages according to a com-
munication matrixC that is at leastr–connected, withr =
2 γ + 1. The consensus is achieved in at mostn steps.

Proof: We have to prove that ifr = 2 γ + 1, the
distributed algorithm converges to the centralized version
of the Marzullo Algorithm(M∗). First observe that, under
bounded inconsistency, the algorithm of Marzullo’s central-
ized decision returns the same value of the algorithm itself
truncated at theγ + 1–th term of the union in Eq. 2. This

happens because of Eq. 3 which implies thatΓi = ∅, for
i ≥ γ + 2. Thus, the algorithm itself reduces to

Y =

γ+1
⋃

i=1

(Γi ∩Ai) . (4)

Moreover, note that, by construction, it holds the general
property

Ai ⊆ Ai+1 , for i = 1, . . . , n− 1.

which implies that an algorithm computing only the term
Ai returns a value that is upper bounded by an algorithm
computing only the termAi+1. We replicate the Algorithm
on every node according to its communication neighbors„
i.e.

Fi(X) = M (Xi1 , · · · , Xir
) , for i = 1, . . . , n ,

Consider the worst case, i.e. a node is connected with all the
faulty nodes. We defineci =

{

a, .., f
}

andnci =
{

h, ..., v
}

with #ci = γ + 1 and #nci = γ the sets available at the
nodei, containing the indices of the consistent measure and
the indices of the inconsistent measures respectively. The
bounded inconsistency hypothesis guarantees that

Xk ∩M∗ 6= ∅ , ∀k ∈ ci.



As Xk andXj, k, j ∈ ci are two consistent measures, then
it must holdM∗ ⊆ Xk, Xj, which also implies that

Xk ∩Xj 6= ∅ ∀k, j ∈ ci.

In other words we have

Ici
=

⋂

s

Xs 6= 0 , s ∈ ci, (5)

Inci
=

⋂

s

Xp s ∈ nci, (6)

being Ici
the intersection between consistent measure, and

Inci
the intersection between inconsistent measure. Note that

while Ici
is always different from the empty-set,Inci

can be
an emptyset or not.

Moreover, sinceInci
are inconsistent values, it is easy to

verify that

Inci
∩ Ici

= ∅
⋃

p(Ici
∩Xp) = ∅ p ∈ nci

Recalling the update rule in (1) we now have

M (Xi1 , · · · , Xir
) = (

⋂

si

Xsi
) = Ici

wheresi ∈ ci . This is because the M-Algorithm computes
the smallest confidence set that is contained in the largest
number of such sensor measures, and we have that#ci >

#nci. This guarantees that the inconsistent measures do not
affect the state X, as it also happens for the centralized
execution of M-algorithm (see Section II). Under bounded
inconsistency hypothesis, execution of the algorithm at the
generic agentAi reduces to the intersection of any data
received by its neighbors. Furthermore, the update rule in
(1) is associative, distributive, and idempotent w.r.t. its input
arguments. Since the the communication graph is connected,
according to [12], the convergence of the dynamic system
toward the centralized decision is guaranteed in at mostn

steps and it proves the thesis.

IV. SIMULATION

The effectiveness of the proposed solution is shown
through numerical simulations withn = 15 agents. We have
considered2 different scenarios withγ = 1, 2 possible incon-
sistent measures. Agents are able to communicate according
to a graph, that is not reported for the sake of space, but
that is chosen so as to guarantee the minimum redundancy
required. Fig. 3(a) reports the behavior of the dynamic
system starting from an initial condition where only one
agent, agentA1, has an inconsistent measure. In this case, the
required number of neighbors in the communication graph
is r = 2 γ + 1 = 3. The figure shows that the inconsistent
measure is tolerated, and that every agent reach the correct
final clock interval. Fig. 3(b) refers to a simulation of a
dynamic system that has been design under the hypothesis
of γ = 2 possible inconsistencies. In this case,r = 5
neighbors in the communication graph are required. The
figure shows that the inconsistent measures of agentsA1 and
A2 are tolerated. In both figures, the final decision coinciding

with the Marzullo’s centralized estimated interval is reported
in green. The inconsistent measures are instead colored in
red. Finally, both figures reports the behavior of network’s
relative disagreement

E
def
=

n
∑

i=1

D(Xi, M (X(0)) ,

whereD is the vector distance, based on the symmetric
difference between two intervals. The figure shows that the
disagreement becomes∅ in a number of steps less or equal to
the diameter of the chosen communication graph. Recall that
the diameter of a graph is the maximum distance between
any two nodes in the graph, and the distance is the length
of the minimum path connecting the nodes.

As we have stated, the proposed solution is valid also when
the data that is exchanges is a set. To show this, we conclude
with a further example withU = [0,∞)×[0,∞), andm = 4
sensors providing the following measured confidence sets:

U1 = [2, 5]× [1, 6] ,
U2 = [8, 14]× [3, 8] ,
U3 = [1, 10]× [4, 9] ,
U4 = [8, 13]× [0, 2] .

Before showing the simulation results, let us first compute the
centralized solution. As described in Section II, this involves
computation of the following sets

A1 = U1 ∩ U2 ∩ U3 ∩ U4 = ∅ ,

A2 = (U1 ∩ U2 ∩ U3) ∪ (U1 ∩ U2 ∩ U4)∪
∪ (U2 ∩ U3 ∩ U4) = ∅ ,

A3 = (U1 ∩ U2) ∪ (U1 ∩ U3) ∪ (U1 ∩ U4)∪
∪ (U2 ∩ U3) ∪ (U2 ∩ U4) ∪ (U3 ∩ U4) =
= ∅ ∪ ([2, 5]× [4, 6]) ∪ ∅∪
∪ ([8, 10]× [4, 8]) ∪ ∅ ∪ ∅ =
= ([2, 5]× [4, 6]) ∪ ([8, 10]× [4, 8]) ,

A4 = U1 ∪ U2 ∪ U3 ∪ U4 =
= ([2, 5]× [1, 6]) ∪ ([8, 14]× [3, 8])∪
∪ ([1, 10]× [4, 9]) ∪ ([8, 13]× [0, 2]).

The filtering sets areΓ1 = U , Γ2 = U , Γ3 = U , andΓ4 = ∅.
Thus the smallest set that is in common to the largest number
of the given sets is

Y = (Γ1 ∩A1) ∪ (Γ2 ∩A2) ∪ (Γ3 ∩A3) ∪ (Γ4 ∩A4) =
= ([0,∞) ∩ ∅) ∪ ([0,∞) ∩ ∅)∪
∪ ([0,∞) ∩A3) ∪ (∅ ∩A4) =
= ([2, 5]× [4, 6]) ∪ ([8, 10]× [4, 8]) ,

which is partially contained inU1 and U3, and partially
contained inU2 andU3. On the contrary, the forth sensor’s
measure is faulty. Indeed, we have:

Y ∩ U4 = ∅ .

Fig. 4 refers to a simulation of the dynamic system that
has been design under the hypothesis of one possible faulty
node. Fig 4(a) shows the initial statusX(0) of the agents,
while Fig. 4(b) reports the final decision coinciding with
the Marzullo’s centralized estimated interval is reportedin
green. The inconsistent measure is instead colored in red.



0 5 10 15
0

2

4

6

8

10

U
1

t

t

0 5 10 15
0

2

4

6

8

10

U
2

t

t

0 5 10 15
0

2

4

6

8

10

U
3

t

t

0 5 10 15
0

2

4

6

8

10

U
4

t

t

(a)

0 5 10 15
0

1

2

3

4

5

6

7

8

9

10

t

t

(b)

Fig. 4. Simulation run withn = 4 sensors that have four uncertain measures of a quantity of interest on the plane (a). The final result show that the
inconsistent set (in red) has been excluded and tolerated (b).

Simulation show that the centralized estimate is achieved
also by distributed execution of the algorithm.

V. CONCLUSION AND FUTURE WORK

This paper presented a distributed set–valued algorithm for
solving clock synchronization in a WSN. The algorithm is
based on a centralized approach, proposed by Marzullo, that
represents uncertain measures of a clock trasmitted though
a network channel as an interval. Based on previous work
on set–valued consensus, the authors showed that the clock
synchronization can be transposed into a problem involving
only operations on sets. Effectiveness of the solution was
shown through simulation and showed that the algorithm is
also able to tolerate a maximum number of faulty sensors.

Future development will concern the implementation of
the algorithm on a real WSN, and its performance evaluation
compared to standard clock synchronization techniques that
are in use today.
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