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Incrementality and Hierarchies in the Enrollment of
Multiple Synergies for Grasp Planning

Giuseppe Averta1,2,3, Franco Angelini1,2,3, Manuel Bonilla1, Matteo Bianchi1,3 and Antonio Bicchi1,2,3

Abstract—Postural hand synergies, or eigenpostures, are joint
angle co-variation patterns observed in common grasping tasks.
A typical definition associates the geometry of synergy vectors
and their hierarchy (relative statistical weight) with the principal
component analysis (PCA) of an experimental covariance matrix.
In a reduced complexity representation, the accuracy of hand
posture reconstruction is incrementally improved as the number
of synergies is increased according to the hierarchy.

In this work we explore whether and how hierarchy and
incrementality extend from posture description to grasp force
distribution. To do so, we study the problem of optimizing
grasps w.r.t. hand/object relative pose and force application, using
hand models with an increasing number of synergies, ordered
according to a widely used postural basis. The optimization is
performed numerically, on a data set of simulated grasps of four
objects with a 19-dof anthropomorphic hand.

Results show that the hand/object relative poses which mini-
mize (possibly locally) the grasp optimality index remain roughly
the same as more synergies are considered. This suggests that
an incremental learning algorithm could be conceived, leveraging
on the solution of lower-dimensionality problems to progressively
address more complex cases as more synergies are added. Sec-
ondly, we investigate whether the adopted hierarchy of postural
synergies is indeed the best also for force distribution. Results
show that this is not the case.

Index Terms—List of keywords (Grasping; Multifingered
Hands; Compliant Joint/Mechanism)

I. INTRODUCTION

THE human hand is an extremely complex system, com-
posed by many joints, muscles and sensory receptors,

which constitute a highly sophisticated and dexterous apparatus
of our body. Such an abundance, classically referred to as
Bernstein’s problem[1], would require a remarkable calculating
capacity for its control. Nevertheless, several neuroscientific
studies suggested that the human nervous system is able to cope
with such complexity and organize it in a simple environment
- as it happens for other natural phenomena according to the
Simplexity concept [2] - leveraging on a control space of
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reduced dimensionality [3]–[6], usually defined as synergistic
control space.

This synergistic behavior seems to be used by the Central
Nervous System to generate coordinated movements, simultane-
ously activating different Degrees of Freedom (DoFs), instead
of acting separately on each joint or muscle. The existence of
these patterns (aka synergies) was observed in different motor
tasks and at different levels of the motor control architecture,
i.e. neural ([7]), muscular ([8,9]), kinematic ([10]–[12]). For a
review on these topics see e.g. [13].

Considering the kinematic level, such observations supported
the idea that few combinations of the hand DoFs, e.g. described
in terms of main principal components (PCs, i.e. postural
synergies) of hand joint angles recorded in grasping tasks,
can take into account large part of hand pose variability.
Higher order PCs are likely involved to describe more complex
tasks such as haptic exploration [14], or manipulation with
the environment [15]. In geometrical terms, synergies can be
regarded as a basis of hand principal movements: the more the
elements are used (or “enrolled”), the more complex tasks can
be executed [10].

While postural synergies provide a geometrical description
of hand control in the kinematic space, such a model cannot
be directly applied to explain force control, generation and
distribution in grasping and manipulation tasks. To this goal, we
need to consider also the mechanical compliance of the hand
musculo-tendinous system, as introduced in the soft synergy
model [16], inspired by the Equilibrium Point Hypotesis [17].
More specifically, according to this model, postural synergies
are considered as a reference configuration and the hand is in
equilibrium between the reference attraction and the repulsion
forces exerted by the object. In [18], authors numerically
demonstrated that for a paradigmatic human hand the same
postural synergies that are important for pose generation are
also involved in the optimal distribution of contact forces during
the grasp. The study of optimal contact forces distribution for
robotic hands has been tacked in licterature, as for example
in [19], where the authors presented an algorithm for the
evaluation of optimal contact forces distribution from tactile
measurements, and [20], in which the authors faced the problem
using dual theorem of non-linear programming. However, to the
best of authors’ knowledge, there are no works that investigate
the role that postural synergies play for the improvement of
the grasp quality in terms of optimal contact force distribution.

Taking inspiration from the observation that the human
development seems to progressively increase the hand control
capabilities [21,22] - which could be read as an increment of the
available synergies - in this work, we pursue this investigation
by analyzing through numerical simulations, the effect of an
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incremental enrollment of postural synergies for the execution
of successful grasping strategies. The proposed analysis takes
also into account, for the first time, hand/object relative
configuration. This investigation aims, firstly, at verifying that
hand/object relative poses minimizing the force distribution
are approximately invariant w.r.t. an incremental enrollment of
synergies, and, secondly, at providing evidence on the existence
of a correspondence between the hierarchy of hand posture
synergies and the one of synergies controlling contact forces.
An exhaustive inspection of these aspects requires an analysis
that spans several hand grasp configurations. For this reason, to
include a large part of of the main graping hand configurations
(e.g. referring to [23]), we simulated the grasp of four different
objects with cubic and parallelepiped-like shape of variable
dimensions. Two cubic objects are used to drive the hand shape
for power and precision circular grasps, while two prismatic
objects let the hand assume power and precision prismatic
configurations. The simulations we performed resulted in a
large dataset, which allows a thorough analysis of the contact
forces applied to the considered objects, varying the number
and the types of the enrolled synergies. In particular, we focused
on the grasp success rate and the value of contact forces to
assess the quality and the effectiveness of the grasp w.r.t. the
modification of the hand/object configuration.

For illustration of the general results of our study, we provide
a worked-out example of a instantiation of a multifingered hand.
The model used as example has the kinematic parameters and
the CAD model of the anthropomorphic PISA/IIT SoftHand
(SH) [24]. However, it differs in that all 19 articular joints are
assumed to be independently controlled here (thus generalizing
the results by ignoring the specific under-actuation scheme of
the SH).

In this work we aim at evaluating if incrementality in
the choice of the synergies to be enrolled - and eventually
implemented in a robotic device - could be the right path toward
a novel generation of robotic hands in which the implementation
of the first postural synergy preserves the grasp simplicity,
while other PCs are used to enhance the grasp quality and,
potentially, the manipulation skills. Furthermore, we believe
that our study could have an impact for the development
of planning algorithms for highly actuated hands. Indeed,
these robotic systems dramatically increase the grasping and
manipulations capabilities but decrease the planning and control
simplicity. In these cases, we believe that our analysis could
be used to justify a first rough evaluation of a good grasping
strategy in a lower dimensionality, which could be refined in
a second step.

II. BACKGROUND

A. Modeling a compliant hand with synergies

The problem of grasping with a compliant hand is broadly
modelized through balance and congruence equations for hand
and object. For a hand with n DoFs, which contacts an object
in cp points, we have that

τ = JT f, ξf = Jq̇, (1)

where J ∈ Rc×n is the hand Jacobian matrix, c = 3cp is the
dimension of the contact force/torque vector, τ ∈ Rn is the
joint torque vector, f ∈ Rc is the contact force vector, ξf ∈ Rc

Fig. 1. Different hand shapes using the first 7 synergies introduced in [10]
for pose generation. For each row, the central figure shows the mean pose of
the hand, while the others report the effect of a specific synergy (from the
first to the seventh) modulated by a coefficient σ ∈ [−1, 1].

is the twist of the contact points on the fingers and q ∈ Rn

are the joint angles. Similarly, the balance and congruence
equations for the object are

we = Gf, ξo = GT ξe, (2)

where G ∈ R6×c is the grasp matrix, we ∈ R6 is the object
wrench, ξo ∈ Rc is the twist of the contact points on the object
and ξe ∈ R6 is object twist. The hand elasticity K is defined
as

K = (Cs + JCqJ
T )−1, (3)

where Cs = (1/kstru)Ic×c ∈ Rc×c is the structural compliance
matrix and Cq = (1/kss)In×n ∈ Rn×n is the joint compliance
matrix. K relates the contact forces with the displacement
between the twist on the contact points on the fingers and
on object as δf = K(δξo − δξf ) enabling to solve force
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indeterminacies in the rigid-body system and allowing to
implement the soft synergy paradigm introduced in [16].

In neuroscience there are many studies suggesting that
the control of the human hand can be simplified with a
lower dimensionality description, usually implemented through
Principal Component Analysis (PCA) [13]. Given a set of obser-
vations of a specific stochastic phenomenon, PCA calculates the
orthonormal transformation that converts the original, possibly
correlated, variables into a set of linearly uncorrelated and
orthogonal variables called PCs or, in case of joint angles
organized in a dataset of hand grasps, postural synergies.
These components are usually obtained through Singular Value
Decomposition (SVD) of the covariance matrix of the dataset.
The eigenvectors (i.e. PCs) hence represent the uncorrelated
variables that describe the considered dataset, while the eigen-
values associated to the PCs quantify the importance of each
eigenvector in terms of explanation of dataset variability. The
mapping between the synergistic displacement input δσ ∈ Rs

and the joint reference positions δqr can be formalized as

δqr = Sδσ, (4)

where S arranges s PCs per-column, with s ≤ n. Finally, the
soft synergy paradigm relates the reference joint position δqr
with the actual joint position δq through

δq = δqr − Cqδτ. (5)

Of note, numerical results depends on the dataset used to
calculate S. There are several studies in literature focusing on
different task-dependent datasets, ([15,25]–[28]). One of the
most popular also for robotic applications is [10], where the
authors demonstrated that just two PCs account for 80% of
the grasp dataset variance, while the first one alone explains
more than 50% of pose variability. Findings reported in [10]
were also used for the design of robotic devices, as for the
Pisa/IIT SH, which embeds the first synergy as single DoA.
For the reader’s convenience, we report in Fig. 1 the hand
shapes generated using the first seven synergies.

B. Optimization of Grasping Force Distribution
Hand control through dimensionality reduction as suggested

by hand synergies requires new approaches to analyze contact
forces and grasp quality in terms of force-closure. A grasp has
force closure if arbitrary large external wrenches applied to the
grasped object can be compensated by the contact forces that
the hand is able to apply on the object, see e.g. [29]. Adopting
the notation introduced in Table I, we briefly recall here the
solution of the force closure problem, with no claim of being
exhaustive and specifically targeting grasping through postural
synergies and under-actuation. For a more detailed analysis
refer to [18,29,30].

Given a general synergistic grasping problem of an under-
actuated compiant hand, the solution of the force distribution
problem is given by

f = δfp + δfhrs + δfhos , (6)

where the three terms of the contact force vector f ∈ Rc are
the particular solution δfp, the active internal forces δfhrs and
the passive (or preload) internal forces δfhos . The latter are
here omitted with no loss of generality since they are assumed

Notation Definition

n ∈ R number of hand joints
cp ∈ R number of the contact points
c ∈ R dimension of the contact force/torque vector

τ ∈ Rn joint torques
q ∈ Rn joint angles
qr ∈ Rn joint reference angles
f ∈ Rc contact force/torque vector
we ∈ R6 object wrench
ξe ∈ R6 object twist
ξf ∈ Rc twists of the contact points on the fingers
ξo ∈ Rc twists of the contact points on the object

J ∈ Rc×n hand Jacobian matrix
G ∈ R6×c grasp matrix
kstru ∈ R structural stiffness
kss ∈ R joint stiffness

Cs ∈ Rc×c structural compliance matrix
Cq ∈ Rn×n joint compliance matrix
K ∈ Rc×c stiffness matrix

GR
K ∈ Rc×6 K−weighted pseudo-inverse of G

s ∈ R number of enrolled postural synergies
δσ ∈ Rs synergistic displacement

S ∈ Rn×s synergy matrix
Si ∈ Rn synergy vector (i−th column of S)
δfp ∈ Rc particular solution

δfhrs ∈ Rc active internal forces
δfhos ∈ Rc passive (preload) internal forces
Fs ∈ Rc×s map of δσ into active internal forces δfhrs

es ∈ R rank of Fs

Es ∈ Rc×es basis of the range space of Fs

y ∈ Res parameterizing vector of the active internal forces
µ ∈ R Coulomb friction coefficient
F composite friction cone

P ∈ Rc×c friction limit constraints matrix
fn ∈ Rcp normal components of the contact force
fmin ∈ R minimum value of fn

TABLE I
NOTATION FOR GRASP ANALYSIS WITH POSTURAL SYNERGIES.

null (the intersted reader could refer to [30] for a detailed
discussion). The particular solution is given by

δfp = GR
Kwe, (7)

where GR
K = KGT (GKGT )−1 ∈ Rc×6 is the K-weighted

pseudoinverse of G, and we ∈ R6 is the wrench applied to the
object. The active internal forces are

δfhrs = Fs δσ, (8)

where Fs := (Ic×c−GR
KG)KJS ∈ Rc×s and rank(Fs) = es.

Given a basis Es ∈ Rc×es for the range space of the matrix
Fs, (8) can be rephrased as

δfhrs = Esy, (9)

where y ∈ Res is a vector parameterizing the active internal
forces. Thus, the optimal force distribution can be evaluated by
minimizing a cost function w.r.t. y. For a complete overview
of this problem the reader could refer to [18]. We adopt here
the definition of force-closure given in [30]

Definition 1 (Force-Closure): A grasp is defined Force-
Closure if and only if the following conditions are satisfied:
1. forces in arbitrary directions are resistible, i.e.
rank(G) = 6;
2. the hand configuration is prehensile, i.e. ∃ y ∈ Res such
that f(y) ∈ Int(F).
Int(F) denotes the internal part of the composite friction
cone F . The satisfaction of this friction limit constraint is
equivalent to the positive definiteness of the matrix P ∈ Rc×c,
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Fig. 2. The particular selection of objects dimensions, in conjunction with
the large variation of hand/object relative configuration, allow to simulate a
wide set of grasp typologies.

defined as in [31], which contains contact wrenches and friction
coefficients.

The problem of finding the optimal distribution of contact
forces f in the grasp of an object subject to the external load
we with regard to the minimization of a suitable cost function
Ψ(y) can be formalized as

Definition 2 (Grasping Force Optimization): Given a grasp
characterized by GR

K , Es, and P , and an object wrench we ∈
R6, find y∗ in eq. (6), such that f(y∗) ∈ Int(F), and the cost
function Ψ(f(y∗)) is minimized.

We assume here zero preload at the beginning of the grasp
and an auxiliary constraint on the minimum value fmin for all
the normal components fn of the contact force. Under these
hypotheses, the grasping force optimization problem is set up
as

y∗ = argminΨ(y)

s.t. f = GR
Kwe + Es y, P (f) � 0, fn � fmin

(10)

where f ∈ Rc are the contact forces and Ψ(y) = ‖f(y)‖2.
In this work, we study such a force optimization problem

varying the number of enrolled postural synergies and for
different hand-object relative poses.

III. MATERIALS AND METHODS

Given the hand kinematics and the synergy dataset, the
analysis described in the previous section does not depend on
the particular shape of the object. In fact, the optimization
procedure depends only on the joint angles, the position of
the contact points, i.e. the 3D points in which the fingers are
in contact with the object, and the direction of the contact
normals. In this work, we assume that the directions of the
contact normals are perpendicular to the object local tangent
plane. We obtain these grasp-related quantities through the
simulator described in [32], which allows simulating the whole
kinematics and dynamics of a generic fully-actuated compliant
robotic hand. In this work, we used the kinematic model of the
SH [24], which has 19 joints, four for each long finger, and
three for the thumb. The synergy set used is the one reported in
[10]. The kinematic model of the SH has a good mapping with

Fig. 3. Block scheme of the simulation and optimization procedure. Simulations
take as input the synergy dataset, the hand kinematic model, geometrical
properties of the object and the hand/object relative pose. The simulator
outputs, i.e. joint angles and contact points, are used as argument of the
optimization problem which - given a set of synergies - calculate the optimal
distribution of contact forces.

the human hand model considered in [10] allowing a direct
mapping of the postural grasp synergies.

We simulated the grasp of four objects: two cubes (obj
#1: 30 × 30 × 30mm and obj #3: 60 × 60 × 60mm) and
two rectangular bars (obj #2: 30 × 60 × 60mm and obj
#4: 100 × 60 × 100mm). The shapes and the dimensions
of the objects are suitably chosen to include in the analysis
several grasp configurations, in accordance with [23]. Indeed,
the objects #1 and #2 suggest a precision grip while the
objects #3 and #4 a power configuration. The size of the
objects allows to generate both circular shaped grasps and
prismatic configurations. Furthermore, objects #1 and #2 in
conjunction with hand/object relative pose variations allow to
generate other grasp approaches, such as lateral pinch. Fig.
2 shows some meaningful grasp strategies simulated. The
weight is equal to 1Kg for all the objects. Finally, we assume
a modeling of the contacts as Point Contact With Friction
(PCWF) with a friction coefficient µ = 1.5, minimal normal
force fmin = 0.1N, structural stiffness kstru = 1N/mm and
admissible joint stiffness kss = 200Nmm/rad, in accordance
to [18]. The simulation is intended as a free exploration of the
space: the hand shape follows the closure path imposed by the
first synergy and adapts around the object according to the soft
synergies paradigm. The hand completes its movement when
all the fingers are in contact with the object or fully closed.
The information about joint angles and the position of the
contact points are then stored and passed to the optimization
tool for the evaluation of the optimal force distribution.

Finding a valuable strategy for grasp success and quality
in terms of contact force by changing the hand/object relative
configuration represents a key topic for planning and control
of robotic hands. This is particularly true considering soft
adaptable robotic hands where the importance of hand/object
relative pose is crucial to fully take advantage from end-
effector adaptability in shaping around different items [33].
This motivates our investigation for different hand poses.

However, the problem of evaluating the best hand config-
uration is not trivial at all and computationally expensive.
The principal parameters that make this issue time-consuming
are: (i) the range of the evaluated relative poses, and (ii) the
number of DoA enrolled for the analysis. While for (i) the
best choice could be a trade-off between a reduced number
of samples and an adequate span of the whole workspace,
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Algorithm 1 Grasp Analysis
1: procedure INITIALIZATION
2: Load Object Geometries
3: Load Hand Kinematic Model
4: Load Synergy Dataset Matrix S̄ ∈ Rn×n

5: Define A ∈ Ra and B ∈ Rb . Grasp Poses Sets
6: Choose Analysis Type
7: procedure GRASP ANALYSIS
8: switch Analysis Type do
9: case Incrementality

10: Compute S̃ ∈ Rn×n = S̄
11: Run Incrementality Procedure . Algorithm 2
12: case Hierarchy
13: Z = perms([1 : n])
14: Run Hierarchy Procedure . Algorithm 3

for the number of synergies considered the solution is not
obvious. Indeed, the quality of the grasp generally varies w.r.t.
the number of enrolled synergies. Relying on that, simulations
were performed varying hand/object relative pose, in particular
we considered rotations around the axis normal to the palm
(abduction-adduction) and rotations around the axis along the
long fingers (pronation-supination). The first DoF is spanned in
the range A = [−180, 180]deg with resolution of 5deg, while
the second DoF is spanned in the range B = [−60, 60]deg with
resolution of 5deg. The total number of simulated hand/object
poses is 1800 for each object.

In order to clarify the whole optimization procedure, we
summarize it in Algorithm 1. First, an initialization procedure
is required to load the object geometries, a hand kinematic
model, a synergy dataset S̄ ∈ Rn×n mapped on that
model and the hand/object relative configurations, i.e. vectors
A ∈ Ra (abduction-adduction) and B ∈ Rb (pronation-
supination). Then, if the focus is the incrementality analysis
we run Algorithm 2. This is composed of two iterative loops.
In the external one we iterate on the hand/object relative
configurations, simulating each pose (α, β)i to obtain the
contact points and hand joint angle values. In the internal loop
we incrementally consider the columns of the synergy dataset
S̃ ∈ Rn×n. Indeed, at each step we compute the synergy
enrollment set S ∈ Rn×s as S = S̃(:, 1 : s) (Eq. (4)). We
then solve the optimization problem (10) for the considered
hand pose (α, β)i and the considered synergy enrollment set
S. Otherwise, if we focus on the hierarchy analysis, we run
Algorithm 3. This cycles over several permutations of the
columns of the synergy dataset S̄, running Algorithm 2 at each
step. It is worth noting that the whole procedure is completely
independent on the particular hand model, synergy dataset and
object geometry.

IV. RESULTS AND DISCUSSION

In this section, we evaluate the grasp performances in
terms of contact forces. In particular, we analyze the norm of
contact forces w.r.t. the hand/object relative poses incrementally
enrolling the grasp synergies and focusing on the inspection
of local minima (Analysis Type = Incrementality in Algorithm
1). Secondly, we question the role that each synergy plays
in success rate and grasping performances identifying the

Algorithm 2 Incrementality Procedure
1: procedure INCREMENTALITY PROCEDURE
2: i = 0
3: do
4: Set (α, β)i ∈ {A,B} . Sample of Hand Pose
5: Simulate the Grasp, i.e. Compute Contacts
6: s = 0
7: do
8: s = s+ 1
9: S = S̃(:, 1 : s) ∈ Rn×s . Eq. (4)

10: Solve Optimization Problem . Eq. (10)
11: while s 6= n
12: i = i+ 1
13: while i 6= a · b

Algorithm 3 Hierarchy Procedure
1: procedure HIERARCHY PROCEDURE
2: j = 0
3: do
4: j = j + 1
5: Compute S̃ ∈ Rn×n = S̄(:, Z(j, :))
6: Run Incrementality Procedure . Algorithm 2
7: while j 6= size(Z, 1)

synergies that give the more dominant contribution (Analysis
Type = Hierarchy in Algorithm 1).

A. Synergy Incrementality and Optimal Hand Configuration

In this first analysis, we evaluate the optimal contact forces
w.r.t. the hand/object relative configurations in the case of the
enrollment of one or more synergistic DoAs. In particular, we
sequentially enroll the synergies from S1 to S15 and evaluate
the variations of the optimal grasping forces distribution.
Fig. 4 shows the results for the case of object #4 (for the
sake of space only cases {S1}, {S1, S2}, {S1, S2, S3} and
{S1, S2, S3, . . . S15} are reported). On the left, we report the
force values w.r.t. the relative hand/object pose as colormap.
As expected, reading the figure from top to bottom (i.e.
increasing the number of enrolled synergies), the value of the
contact forces decreases and the grasping success rate increases.
Furthermore, results reveal that the local minima are preserved
increasing the number of enrolled synergies. To clarify the latter
point, we reported on the right - as an example - an exploded
view of a local minimum neighborhood. This could suggest that
the poses which represent local minima for the case of a reduced
set of enrolled synergies seem to maintain their role increasing
the number of DoA, hence remarking a local minimum also
for the full actuated hand case. In order to generalize this

1 2 3 4 5 6 7 8

#1 87.16 99.80 100 100 100 100 100 100
#2 62.88 93.51 99.82 100 100 100 100 100
#3 55.67 87.42 97.52 99.38 99.79 99.79 100 100
#4 50.29 83.05 97.41 100 100 100 100 100

TABLE II
NORMALIZED PERCENTAGE OF SUCCESSFUL GRASPS PER-OBJECT WITH

THE FIRST k SYNERGIES.
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Fig. 4. Norm of the contact forces w.r.t. the hand/object relative abduction and pronation for the case of object #4. On the left, a colormap is used to report the
log of contact force values for each 2D hand/object pose. From top to bottom, the analysis reports on an incremental enrollment of synergies. Empty cells refer
to poses, which do not provide force closure with the specific synergy set. On the right, we report the exploded view of a local minimum neighborhood. Top
figure shows the contact force values w.r.t. variations of hand pronation for a fixed exemplary value of abduction equal to −30 deg (corresponding to a local
minimum). Bottom figure shows the contact force values w.r.t. variations of hand abduction for a fixed value of pronation equal to 0 deg. Conclusions that can
be drawn are: i) increasing the number of enrolled synergies decreases the contact force values and increases the grasping success rate; ii) the exploded view
shows that the local minimum is preserved in a neighborhood for different sets of enrolled synergies.

analysis and to evaluate if this behavior is maintained for all
the local minima and for all the objects, we evaluated - for all
the objects - the local minima obtained with the set {S1}, then
we incremented the number of enrolled synergies, i.e. the set
{S1, S2}, and evaluated if a local minimum of this second case
exists in a neighborhood of [−10,+10]deg both for abduction
and pronation axis. This procedure can be iterated sequentially
increasing the cardinality of the synergy set and evaluating
the permanences between {S1, . . . Sk} and {S1, . . . , Sk, Sk+1},
until the case {S1, . . . , S15}. Considering that the data analyzed
present missing values - which correspond to no-force closure
conditions - we decided to evaluate the local minima using the
following policy. Given a synergy set and the correspondent
contact force values w.r.t. the relative hand/object pose, we
consider as local minimum candidates all the values lower than
the median value. Then, for each local minimum candidate, we
consider different cases: i) if none of the poses in the considered
neighborhood produces force closure, then it is assumed as a
local minimum; ii) if in the considered neighborhood there are
other relative configurations for which there is force closure
but the value of the candidate is lower than the other, then it
is assumed as a local minimum; iii) if none of the previous
conditions is satisfied, then the candidate is discarded. Numer-
ical results show that the minimum preservation condition is

verified in the 96% of the cases, with a minimum of 92% for
the object #1 and a maximum of 99% for object #4.

B. The role of synergy Hierarchy

The conclusions drawn in the previous section assume
an incremental enrollment of synergies following the order
suggested by their importance for the control of hand shape
described in [10]. Notwithstanding, this particular selection
results in an arbitrary choice, considering that the control of
the hand posture is regulated independently from the control
of the contact forces. To evaluate, hence, if there is a one-to-
one mapping between the importance of synergies for hand
shape and for the control of contact forces, we repeated the
optimizations while randomizing the order and the number of
the enrolled synergies.

1) A reduced set of synergies: For each hand/object relative
configuration the number of combinations to be tested is equal
to the sum of the the binomial coefficients

∑N
k=1

(
N
k

)
. For

high values of N , analysis workload would be too high, then to
reduce computational complexity, we evaluated the minimum
value of N that enables to approximate the grasp capacity of
the full synergy set case. For the objects considered in this
work, we obtained that with the first seven PCs the hand is
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Fig. 5. A: Grasping percentage, averaged for the four objects, while enrolling a 3−permutation of 7 synergies w.r.t. the hand/object relative configurations.
Each 7× 7 matrix labeled as Sk represents the set of 3−permutations starting with the synergy Sk . The element (i, j) of the Sk matrix contains the round
percentage of the successful grasps for the synergies triplet {Sk, Si, Sj}. These values are also depicted with a gray scale representation, where black represents
0% and white 100%. Note that, in the 7× 7 matrix associated to Sk , the element (k, k) represents the percentage of successful grasps for the case of k as
single DoA. The elements on the k−row, on the k−column and on the diagonal represent the percentage of successful grasps considering two synergies, i.e.
Sk and one of the other six respectively. Finally, all the other elements contain the percentage of successful grasps enrolling three synergies (including Sk). B:
Optimal contact forces averaged w.r.t. all the hand/object relative configurations and the object considered. The data presentation follows the same paradigm of
Fig. 5-A. Note that the matrices are symmetrical.

able to produce force closure in all the configurations in which
also the full set of synergies does (see Tab. II). Leveraging on
this result, from now on N = 7 will be the upper extremity of
the dimension of the synergy set considered.

2) The importance of synergies in optimal contact forces
distribution: To analyze the actual role that each grasp synergy
plays in the minimization of contact forces we evaluated their
optimal distribution while randomizing the number and the
order of synergies that are incrementally enrolled. To face
this problem, leveraging on the result of the previous section,
we take into consideration the first 7 synergies, which are
selected in randomized sub-sets of one, two and three elements,
for a total number of combination equal to 63 and, hence, a
maximum number of optimization per-object equal to 113400.
For each sub-set and for each object, we calculate the number
of successful grasps performed and the optimal distribution
of contact forces w.r.t. the hand/object relative configuration.
We report the results of this analysis - in a compact form -
in Fig. 5. In particular, in Fig. 5-A we show the percentage
of successful grasps (normalized w.r.t. the case of the full
synergy set), averaged w.r.t. the four object considered. These
values are depicted as a confusion matrix in which the white
color is associated to 100% and the black to 0%. Each cell of
the matrix contains the percentage of successful grasps of a
specific triplet. The first index (k) of the triplet is identified by
the index reported on the top of the matrix (S1, S2, . . . , Sk,
. . . , S7), which is in common for all the cells under the label
Sk . Fixed the matrix associated to the first index of the triplet,
the element (i, j) of the matrix contains the round percentage
of the successful grasps for the synergies triplet {Sk, Si, Sj}.
Note that, in the 7 × 7 matrix associated to Sk, the element
(k, k) represents the percentage of successful grasps for the
case of Sk as single DoA. The elements on the k−row, on
the k−column and on the diagonal represent the percentage of
successful grasps considering two synergies, Sk and one of the
other six respectively. Finally, all the other elements contain

the percentage of successful grasps enrolling three synergies
(including Sk). In Fig. 5-B, the same representation of Fig. 5-A
is used to report the optimal contact forces distribution averaged
w.r.t. all the possible hand/object relative configurations and all
the object considered. Note that the matrices are symmetrical.

These results show that, in the case of single DoA, S1 is the
PC which produces force closure with the highest probability,
i.e. in the 65% of the cases. Besides S1, the PCs with the
highest percentages of successful grasps are S4 (34%) and S5

(48%). What is also noticeable is that, for the case of two
DoAs, the highest percentage of successful grasps is achieved
enrolling S1 and S5. These values show that S1, S4 and S5 are
the components more related to the increasing of the percentage
of grasp successful. This observation - as expected - is still
true when these synergies are enrolled as second DoA of a
pair or triplet. For example, for the triplets starting with S3,
it can be shown that, even if the sub-set containing only S3

produce force closure only in the 13% of the cases, the pairs
{S3, S1}, {S3, S4} and {S3, S5} produce force closure in the
90%, 75% and 78% of the cases.

Besides the fundamental role that S1 plays for the control
of contact forces distribution, which was an expected result,
we demonstrated that also S4 and S5 have a relevant role in
increasing the probability to perform force closure. These
roles are confirmed by the analysis of the actual optimal
contact forces that the hand exert when actuated following
the randomized triplets. In fact - with reference to Fig. 5-B -
it can be shown that in the case of single DoA the synergies
that exert a mean lower value of contact force are, in order,
S4, S5 and S1. This confirms the role of S4 and S5 in the
control of contact forces also under the point of view of forces
minimization. Moreover, what can be also shown is that S4

and S5 are the components which minimize the averaged value
of the contact forces of the couple of synergies in conjunction
with S1.
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V. CONCLUSIONS
In this work, we have investigated whether an incrementality

or a hierarchy for synergy enrollment exist for optimal force
distribution at different hand/object relative poses. To achieve
this goal we performed simulations where the model of a
synergy inspired compliant hand was used to grasp different
objects, and we evaluated successful grasp rate and force distri-
bution. This analysis has been performed while testing several
hand/object relative poses and synergistic pattern combinations.
Main findings of this work are: (i) the minima of contact forces
are invariant w.r.t. an incremental enrollment of synergies
within the variation of hand/object relative configurations,
and, (ii) a hierarchy exists on eigenposture selection. Indeed,
the first synergy seems to play the most important role to
achieve successful grasps and optimized force distribution and,
together with the fourth and fifth, are those mainly devoted to
producing compression movements, which are coherent with
force closure requirements. This suggests that hierarchy of pre-
grasp related synergies can not be directly mapped to contact
force distribution. This could be a springboard towards the
implementation of novel analysis techniques which can take
into consideration different grasp-related quantities.

Note that an experimental validation of these results could be
performed employing a highly actuated robotic hand controlled
using postural synergies. The control strategy should also
implement the hand compliance. Moreover, tactile sensors
may be used to estimate the contact forces.

We believe that, taking inspiration from the Uncontrolled
Manifold Hypothesis [34], these results could pave the path
towards a new generation of soft hands, embedding synergy
inspiration, compliance and a minimalistic usage of resources,
for more effective robotic grasp strategies. Future works will
be devoted to i) extending this analysis to more complex
manipulation tasks, and ii) involving a larger set of objects,
e.g. taking inspiration from datasets available in literature.
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