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~ Abstract—In this paper we consider scheduling the execu- stochastically. Being the scheduler modelled as a Markov
tion of a number of different software tasks implementing a  chain, an anytime-controlled linear system turns out to be a
hierarchy of real-time controllers for a given plant. Controllers  \14rkov Jump Linear System (MJLS). We present a method

are considered to be given and ordered according to a measure t dition the stochasti i f th hedul
of the performance they provide. Software tasks implementing 0 condiion the SIOChastic Properties of e SCREdUIrSSo a

higher-performance controllers are assumed to require a larger t0 obtain a better exploitation of computational power, le/hi
worst-case execution time. Control tasks are to be scheduled guaranteeing stability of the resulting switching systerai
within given availability limits on execution time, which change  suitable probabilistic sense, i.e. Almost Sure (AS) siibil
stochastically in time. The ensuing switching system is prone 6], [7]

to instability, unless a very conservative policy is enforced of R

always using the simplest, least performant controller. The [l. PROBLEM FORMULATION AND BACKGROUND
presented method allows to condition the stochastic scheduling

of control tasks so as to obtain a better exploitation of Let X be a given linear, discrete time, invariant plant
computing capabilities, while guaranteeing almost sure stability described as

of the resulting switching system.
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. INTRODUCTION n = Cuw.

In the implementation of controllers on an embeddeﬂet alsoT
programmable processor, it is often the case that conshéta

have to share computational resources with several oth&?

tasks. A multitasking Real-Time Operating System (RTOS) i = Fizi+ Gy

is often used to schedule the execution of tasks within-strin uy = H;z; + L;y,.

gent temporal constraints, typically using priorities.aRe

time preemptive algorithms can suspend the execution By settingu(-) — wi(-), is asymptotically stable for al.

a task in the presence of tasks having a higher priorit)tet the closed-loop system thus obtained be deniesind
Representative examples of such scheduling algorithms ale cribed by

ni€I=2{1,2,...,n}, be afamily of feedback
ntrollers fory, described by

sume that the feedback connectior®db¥ith I';, obtained

Rate Monotonic (RM) and Earliest Deadline First (EDF) [1], _i 1
[2], [3]. As a consequence, time allocated to execute a obntr T4l = it (1)
task can change unpredictably in time. where

Assuming that the RTOS guarantees a minimum tipg, 1 — A+ BL,C BH;
for the execution of the control task at hand, a conventional ’ G.C F;

approach to cope with this problem is to design controllers Tne set of controllers is assumed to be given and to

simplg enough to be exgcutgble Witmfﬂ””;‘ A less ,f:on- proceed from a synthesis technique (such as e.g. cascade
servative approach consists in designing “scalable” abntr yegijgn) providing a hierarchy of performance and complex-
algorithms, which can be interrupted at any time, whild stilyy | other terms, we assume that application of controlle
providing a valid result whose performance increases Witfiyrqyides better closed-loop performance than contrgller
the execution time actually allowed. The idea, stemming ', - j. On the other hand, the worst-case execution time

from the theory of imprecise computation [4], is aptly\wCET) of the software code implementing more performant
described by the term “anytime control”, used already in [5].qntrollers is largerWCET, > WCET;, i > j).
With respect to most anytime algorithms, however, the fact ’

that anytime controllers interact in feedback with dynamid. Scheduling Description Using Markov Chains

systems introduces severe difficulties in their synthests a  Neglecting for simplicity delays and jitter, we assume that
in the analysis of the resulting closed-loop performancneasurements are acquired and control inputs are released
Indeed, the stochastic switching system ensuing from exgt every sampling instantT,, ¢ € N, whereT, is a fixed
cuting different controllers at different times is even €0 sampling time.

to instability. _ 3 Letv: € [Tmin, Tmaz)s Tmaz < Ty, denote the time allotted

~In this paper, we focus on the analysis of stability okg the control task during the-th sampling interval. By
linear anytime controllers, whose scheduling is decidegynothesisWCET, < 7min andWCET, < Tmas.
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7 for any my. Such a distribution provides the steady-state
probability distribution for the process.

Definition 1: The MJILS (2) is said (exponentially) almost
surely stable (AS-stable) if there exigis> 0 such that, for
any zo € RY and any initial distributionr,, the following
condition holds

. Pr {hmsup In [z < ,u} =1.
Let || - | be a matrix norm induced by some vector
Fig. 1. Markov chain model of a scheduler. norm. The following sufficient condition for AS-stabilityas

proved in [6]:
Theorem 1 (1-step average contractivity] If

where _
. a=1J1alm <1 “4)
T1, if Yt € [qujn7WCET2) iel
if ET: ET: .
t) = & I T € [WOET, WOET;) then the MJLS (2) is AS-stable.
: if Inequality (4) can be interpreted as an average contractiv-
Tn, If v € [WCET,, Tmaz] ity of the state norm over a one-step horizon. In this vein, a

Iess restrictive condition involving the average conixaigt

over a multi—step horizon has been presented in [7]. Namely,
new MJLS, called “lifting of periodm”, is associated

0 the MJLS (2). Such a system represents the sampling

of the original one at time instantsm, h € N, and its

' 0 . . stability properties mirror those of the original systenorigl
associated to the event that “at timhéhe time sloty; is such precisely, the lifted version of perioh of system (2) is

that all contrellersl“j,j < 1, but no controlled’,, k > ¢, can defined by

be executed. = _is
A slightly more complex, but more general, model al- htl = Sonth

lowing for non-stationary probability distributions isgr with

A simple stochastic description of the random sequence
{7(t)};cn, inherited from the probability distribution of
~¢, can be given in terms of an independently and |dent&
cally distributed (i.i.d.) process, with probability digtution
Pr{r(t)=7} = p; With0 < p; < lTand} , ,p;i =1

vided by a finite state discrete-time homogeneous irredkicib Th = Tmh -
aperiodic Markov chain. In this casBr{r(t)=r} = oh=[Omn - Omhtme1]
m;(t) is time-dependent, while transition probabilities As, = Agr i Acrnimz Ay

pij £ Pr{r(t+1)=r1;|7(t) =7} are time-independent.
A Markov-chain description of the scheduler far= 3 is
depicted in figure 1.

Moreover,c = {on}nen IS @ stationary Markov process
taklng values in/ = I and characterized as follows: for
7= (i1,42,...,im) € I andj = (]1,]2,...,jm) € I, the

B. Almost Sure Stability transition probab|l|typw Pr{cp+1 =7 | on =7} is given

b m- This process has the followin
In this section a brief review of results on Almost Sure Y P = Pimsa H’“ 1 P P 9

invariant probability distributionr; = ]_[k 1 Pirinsr iy -
stability (AS—stability) for discrete-time systems is oeged The 1-step average contractivity condition applied to the

following [7]. lifted system yields
(Mgfglder the discrete-time Markov Jump Linear System Theorem 2 fi—step average contractivity)i7] If

Tir1 = Ao, Tt (2) Em = H 4™ <1 (5)
where 0 = {0, }1en is a finite state, discrete—time and el

time homogeneous Markov chain taking values fin= then th,e MJILS (2) is AS-ngbIe. .
{1,2,...,n}. The statistics of the Markov process are identi- The importance of condition (5) is related to the fact that

fied by the transition probability matrik = (p;;).  , where for increasing values of: it provides a sequence of sufficient
pi; 2 Pr{oye1 = j | o1 = i}, and by an initial probability conditions ang most |mp0rtantly, to the fpllowmg result .
measurer, defined onI, with m; £ Pr{o, — i}. The Theore|_”n 3:[7] System (2) is ex_ppnentlally AS-stable if
evolution of the probability distributionr(¢) of the process and only if 3m € N such that condition (5) holds.
at timet is given by I1l. STOCHASTIC SCHEDULER AND AS-STABILITY
r(t+1) = PTﬂ_(t). @3 Oncg a set of c_ontrollerEi and the assqciated t_:lo_sed loop
dynamicsA; are given, and a Markov chain description of the
If the Markov chain is irreducible and aperiodic (see forscheduler is provided, in order to actually execute an areyti
instance [8]), then there exists a unigoeariant probability controller it is necessary to determine a switching policy
distribution ™ such thatr; > 0 Vi € I andlim;_,, 7(t) = for choosing among possible controllers. In our context, a



switching policyis defined asamap: N — I,¢ — s(¢),and policy solving the analogous to Problem 2 in this case turns
determines an upper bound to the indexf the controller to out to be very complex.

be executed at time ¢ < s(¢). In other terms, at time7,, Our approach consists in exploiting the possibility of su-
the system starts computing the controller algorithm until pervising the controller choice so that some control paster
can provide the output of ;;), unless a preemption eventi.e. substrings of symbols i, are preferentially used with
occurs forcing it to provide only'.(;), the highest controller respect to others. For a substring of lengthi € I = I™,

computed before preemption. Application of a switching = (i1, 42, ...,im), let 4y = 4;, A;, - -+ A;,,. The following

policy s to a set of feedback systems;, i € I under a result will prove useful in the sequel.

schedulerr generates a switching linear systdf;, 7, s) Proposition 1: If i € I such thatd; is Schur, therim €

which, under suitable hypotheses, is also a MJLS. N such that Problem 1 applied t4; admits a solution, i.e.
As an example, the most conservative policy is to set - =

s(t) = 1, i.e. forcing always the execution of the simplest = {7 | HHA?H <10

controllerT'y, regardless of the probable availability of more el

computational time. By assumption, this (non-switchinglyp Prof-If A; is Schur, then, for any given matrix nordm <
icy guarantees stability of the resulting closed loop syste N such thatHAlm ‘ <1l Lety ={i...,i} € [ and A; =
On the opposite, a “greedy” strategy would séf) = n,  A™. HenceJe > 0 such that, for all probability distributions

which leads to providing', ;) for all ¢. Although this policy with 7, =1—¢, Z#b‘ 7. =€, € < €, the solutionlI # 0.
attempts at maximizing the utilization of the most perfoigni g ’ el

controller, it is well known that switching arbitrarily amg Given a solution set to Problem T, further constraints
asymptotically stable systems; may easily result in an have to be satisfied in order for Problem 2 to be solvable. In-
unstable behavior [9]. deed, letr, € II. In order for a switching policy(t) to exist

A sufficient condition for the greedy switching policy to which can alter a given scheduler probability distribution

provide an AS-stable system is provided by Theorem into 7,, the following conditions must hold:
whereA; = A; and® = 7. If this condition is not verified,

it is important to investigate whether there exist interratel Tdn i fﬂl _ _ (gé)
switching policies which can ensure AS-stability. To do so, Tdn—1 = Tru-s T (Tr, = Ta,) (€2)
consider first the following :

Problem 1: Given a set of matriced;, i € I, find the set Tay, <Tr+ (Fry—Tay) +-+ (Fr, —Ta,) (Cn)

I = {7, | H | As]|™ < 1} wherew, = [T, 7, - ﬁTﬁr]T,
i€l and7,; = [ﬁdl Tdy - ﬁdn] .

of invariant probability distributions of homogeneougeir ~ Inequalities(C.1)~(C'.n) take into account the fact that
ducible, aperiodic Markov chains, such that the associaté® Switching law can alter the scheduler so as to give
MJLS is 1-step contractive. more computational time to control tasks than it is made

Assume that Problem 1, applied to the set of closed lo vailable by the scheduler. Furthermore, constraiot2)—
matrices (i.e., withA; = A;), admits a solutiorll # 0. C.n) model the fact that the probability of theh controller

can be increased only at the expenses of a reduction of the
probabilities,,, j > ¢ of more complex controllers.
To take into account the above constraints explicitly,

Then, the following synthesis problem is of relevance:
Problem 2: Given a set of closed loop matriceAs, 1el

and an invariant probability scheduler distributi®p, find a

(stabilizing) switching laws such that the resulting switch- Problem 1 can be reformulated as follows:

ing system(%;,7,s) is a MILS with invariant probability _ PrObISm 3: Given a set of matrices;, i € /, find the set

distribution7, € II. g = {74} with
It is worth noting that the existence of a solution to

Problem P1 is not obvious in general. Indeed, for a given P3.1) 11 HAz <1
set of Schur closed-loop matrices, it is not always possible i=1_
find an invariant probability distributiofi, ensuring one-step P3.2) 0n< Ta; <1
contractivity. Indeed, for the 1-step contractivit to thah a P3.3) Zﬁ 4 =1
given norm, it is necessary that € I such thatEAi <1, - N .
which condition may well not be verified. Furthermore, — — _ _
solution of the synth()a/sis Problem 2 may result very difficult P34) Ta, S r _Z s _E: ;e
if the setII is too small. I =
To ease the synthesis, Problem 1 could be extended to IV.  CONDITIONING CHAIN
lifted systems by exploiting the:—step contractivity condi-  Assume, for a given anytime-controlled system and a

tion (5). A characterization of viable schedulers in thise&ea scheduler described by a homogeneous irreducible aperiodi
should be given in terms of a set of Markov chain transitioMarkov chain with transition probability . and steady-
matrices P. Unfortunately, the synthesis of a switchingstate probability distributiofr -, thatII; # 0. In this section,



for any initial distributionm,(0).
The proof is reported in the Appendix.

B. Merging Markov Chains: Aggregating

The Markov chainro obtained mixing the chains and

o having bothn states, has? states [, is the Cartesian
product of L, andL,). Our goal is to produce a form process
assuming values in the set of the controller indices, that is
we must build a process with a desired stationary probgbilit
74 € II, whose cardinality is.. Hence, after mixing the two
chains we make use of aggregation functiorio reduce the

) ) . number of states. This function is based on the constraints
we tackle the synthesis Problem 2 by developirgjoghastic 564 by the scheduler and groups together all the stétes o

SW'tCh'”_g law. . reducibl o <0 @ctually producing the execution of the same controller.
Consider a homogeneous irreducible aperiodic Markoy,a ;. th controller is hence executed in the next interval if:
chain o with the same numben of states as the chain.

The states are labelled as, with the meaning that if the

associated process fomt) is equal tas;, thens(t) = i, i.e.

in the next sampling intervall, at most thei—th controller \ .

is computed (if no preemption occurs). We will referd@as 7(t) = 7« (i.e. the scheduler makes preemptionigt

the conditioning Markov chain. Therefore, assuming without loss of generality that the in-
It should be noted that the choice of determining thélices are chosen such that = L, we define an aggregated

switching law by a Markov chaim not dependent on the process(ro)”, taking values in the sek (o) = L, = L,

scheduler chain (see figure 2) renounces to full generality.with cardinalityn, as

However, it has the advantage of not requiring on-line * .

computations, and simplifies considerably the analysis. (ro)" (t) = min{r (t),o ()} .

In the following paragraphs, we study how the stochastighe characterization of the aggregated procéss)* is
properties of the scheduler and conditioning chain interagather easy, as shown below.

to produce a resulting switching system. The purpose is 10 proposition 2: The evolution of the probability distri-
synthetize a conditioning chain which can produce a MJIL§tion () = [r¥(t),..., 7= (t)] of the process(ro)*

Fig. 2. State transition diagram for the scheduler (withesta;) and for
the switching law (with states;) with n = 3.

1) 7(t) > 7. ando(t) = oy, (i.e. the suggested controller
is s(t) = k);
2) o(t) > o (i.e. the suggested controlle(t) > k), and

with a steady-state probability distribution;  TT ensuring  aggregated by means of thénimumfunction is given by

AS-stability.
A. Merging Markov Chains: Mixing

Consider two independent finite-state homogeneous irredth H € {0, 1}””2 such thatd = [H;, Ho, .. .,

ducible aperiodic Markov chaine and 5 such thata (¢) :
Q—Ly={a;|ieltandB(t): Q— Lg = {B;|jel},

t € N. Let the statistics ofv and /3 be given by the transition
probability matricesP, = (“pij),,,, and Ps = (°py;)
with 4,5 € I, and by the initial probability distributions
7 (0) and mg(0). Denote with7, and 7z the (unique)
steady-state probability distributions @fand 5 respectively.
Define the stochastic process? : Q — L,s = L, x Lg
such thataS(t) = (a(t), B(t)).

Theorem 4:The following assertions are true:

i) af is a finite-state homogeneous irreducible aperi;
odic Markov chain whose statistics are given by th

transition probability matrixP.s = (“’py;)

P, ® Pz and by the initial probability distribution
Tap(0) = 0 (0) ® m4(0);

the evolution of the chaimg is given by

Tas(t) = Ta(t)®ma(t) = [Pls]" (7a(0) @ 75(0))
6)

with ¢ € N. m,3(t) converges to the unique invari-

ant probability distribution
(1)

Taf =Ta T3

i (t) = H (7, (t) @ (1)) (8)
H,] and
0i—1,n—i
H; = fus Lipn—i
On—ii ‘ Op—in—i

Remark 1:The previous proposition asserts that the evo-
lution of the aggregated procegsc)” is related to the
evolutions of the chaing ando by a linear time-invariant
mapping. Therefore, the procegss)* admits an invariant
distribution to which (at least) each initial distributicsf
type H (7,.(0) ® m,(0)) converges, if the chains and o
have their steady-state distributions. In particularnfr(s),

%ve have

—%

7 =H (T; ®Ty) . 9)

V. MARKOV BASED SWITCHING LAW

A. One-Step Solution

In this section we address the solution of Problem 2 by
investigating the existence of a Markov chairtonditioning
the scheduler chaim so as to produce a MJLS with an
invariant probability distributiorit; € II; solving Problem
3.



Based on results of the previous section on merginghere

Markov chains, the desired solution must have a structure _ —_ n
. > = Zwm In (|| Aur.00ll) -
as in (9), or, more explicitly, — wo
Ta,= >, TrTo, (10) B. Multi-Step Solution
(Th,0k)EXa; So far, the design of a stochastic switching law based
where on a conditioning Markov chain has been formulated using

the one-step average contractivity condition (4). As alyea
Xdp = 1(7i,05) € Lro | min(7y,05) = di, € L(zgy+ }. pointed out, this condition might well be not satisfiable &or
given set of controllers. To tackle this problem, we will use

. . . *
It is worth noting that, even if the procegss)” may not a multi-step lifting technique, as described in sectiom.ll-

be a homogeneous irreducible aperiodic Markov chain, t . . . :
- . owever, as suggested in section lll, instead of using the
problem of AS-stability still makes sense and the contraq.— . . e
tivity conditions can be used. Indeed, the state evolutibn oIfted version of a chain for conditioning, we employ an
the)f]LS driven by the aggreg.ated pro’c )* is the same unconstrained chain™. This has the consequence of asso-
. ees . ciating to substrings of matrices a steady-state proltabili
as the one produced by an equivalent MJLS withstates afing ubsting : y ProtbIl

and driven by the Markov chaino. The equivalent MJLS of occurrence .that IS In gengral dlffere'nt from_ the product
. . . of the probabilities of each single matrix. For instances th
is constructed by associating t@;,0;) € L., the index

A robability of occurrence of the string; A, can be different
1(7i,05) £ min{i, j}, hence the controlled systed), ., . P y nd, A,

L )" from the probability ofA,A;. It should be pointed out that,
uslizge(i%)c;:dltlonP&l) of Problem 3 can be rewritten while in the one-step solution it is attempted to execute

the controller suggested by the particular realizationhef t

Dl (1S oy exy, Trn ok ~ 7., T, Process(t), in the multi-step solution the switching policy
H HAl ' = H HA;A(T;“%) - suggests the sequence of controllers to be executed in the
=1 (Th,0k)€Lro nextm steps.

Our synthesis Problem 2 is therefore reduced to finding a In an m-step lifting, the scheduler Markov chain states
vector @, = [Ty, - ﬁgn]T such that the resulting, Pecome strings of the o'rlgmal ;ym.bo;}g taking values in
given by (10) is a solution to Problem 3, i®, € II,. the new state space!” with cardinalityn™. Let 7™ denote

It actually turns out that the choice of the structurdhe lifted chain and; € L7* its states{< I™). To the aim
of 7, described in (10), resulting from the choice of arPf designing a switching law, consider a Markov chaift
independent conditioning chain, simplifies the formulatio With 7™ states taking values in a finite state spdce.. To
of the synthesis problem substantially. Indeed, the fdhow simplify the description of the switching policy, assumatth

lemma can be proved by simple if lenghty arguments, whicBnY 7 € LAU’" is a string of symbolsr; € L,, hence we
are omitted for brevity. have L,~ = L. Notice however that, notwithstanding the

Lemma 1:Constraints P3.2), P3.3), and P3.4) in choice of using the same set of symbel&' is notin general
Problem 3 are satisfied by any, = [7g, - Wdﬂ]T the lifted version of a chain ok nodes, rather it is a chain
L = - with the same number of states 8.
with Ta, = >, oo)exa Truffor 0 < o, < 1, and S
S E =1 hoTk)EXd; Suppose now that a set of steady-state probability distri-
=1 "0¢ = **

butionsII; exists solving Problem 3 for the lifted system.
Furthermore, forr, as in (10), constraint?3.1) can be The synthesis problem is then again to find a steady-state

it <ol A 03 probability distribution7, for the chaing” such that the
rewritten (prowsoH 7' 7 0 Vi) as aggregated proces&™c™)" has steady-state distribution
n ~ || Td; n - %*mo.m S ﬁd.
In (HHAl ) => 7, ln(HAi ) If we set L, = L,, the aggregation function is again
i=1 i=1 the minimum function, applied element-wise. With these

_ Zﬁoi foh In (HA;L(rh - D <0 assumptlon:s, the 'overaII problem can be formulated in the
= = parameterst,. as in (11).
In the light of previous analysis, the synthesis Problemr2 ca VI. CONCLUSIONS
be written as the Linear Programming problem: We considered the problem of scheduling the execution of
. . _ T different, hierarchically ordered tasks designed for mgt
Find a vectorr, = [W"l W”'"] such that control of a linear plant. Given a stochastic model of the
_ scheduler, and the set of controllers, we formulated a tinea
1) ZCi’ITO-i <0 . . . . .
— program whose solutions provide a switching law that condi-
2) 0 < 7, <1 (11) tions the scheduler so that the resulting switching system i
n ' stable in a probabilistic sense. Although solvability fbist
3) Zﬁal =1, problem is not guranteed for one-step switching laws, we
i=1 have shown that for any set of stabilizing anytime contrslle



it is possible to find a long enough step horizansuch that Pr{a; NG, | o; N G;}. Due to the independence of the
am-step switching law exists providing almost sure stahilityeventsa;, and 3, we can write

Further work will be devoted to provide constructive method

to synthesize anytime controllers for which the above tesulPr {a. N By | i N B} = Priay | a; N B} Pr{Bn | ai N B;}.
can be applied with smath, and to study the performance

of the controlled system under switching. Let us consider Pr{ay|a;Np;} (the case of
Pr{f | a; N G;} is similar) and apply the Bayes rule
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APPENDIX o Pr{ay} Pr{ay}

Before proving Theorem 4 we need some preliminary Pr{cj}{gi}{ﬂ-}

results on primitive matrices. Recall that the transitioolp ! J

ability matrix of a finite-state homogeneous irreducible-ap _ Prios | ci} Prioy | G;}

riodic Markov chain is a time-invariant stochastic irrethle Pr{a;}

aperiodic matrix of finite dimension. =Pr{ox | i},

Definition 2 ([10] p.127): A matrix is primitive if it is

ireducible and aperiodic. where the last term is obtained noting again that the events

Theorem 5 ([10] p.128):Let A be a nonnegative matrix
The following are equivalent.

1) A is primitive.

2) A™ > 0 for somem > 1.

3) A™ > 0 for all sufficiently largem.

Primitivity is preserved by the Kronecker product.

Lemma 2:Given A > 0 and B > 0 primitive matrices,
then A ® B is a primitive matrix.
Proof. From Theorem 5 we know that there exist, mo > 1
such thatA™ > 0 and B™2 > 0. From point3 of the
same theorem we know that there exists> max(mi, ms)
such thatA™ > 0 and B™ > 0. Recalling the definition of
Kronecker product, it is apparent that

A" B™ >0
and using the ‘mixed product rule’
A" @ B™ =(A®B)" >0,

henceA ® B is primitive. m

Proof. [of Theorem 4]

i) Let us prove first that’, is a time-invariant stochastic
primitive matrix. The first two properties follow directlyyb

the same properties aP, and Pz and by the definition

ai andg; are independent (hend& {«y, | 5} = Pr{as}).
Therefore

Pr{ay NG| a; N B;} =Priog | ai} PriBu | Bi} = “pir’pjn.

Keeping the transitiorn; — «3 and considering all the
transitions 3, — 5; V0u,5; € Lg, we find that all the
transition probabilities are given Byp;; Pz. Using the same
argument for each transition; — oy Vay,ap € L, and
defining the indice$ = (i — 1)n+j andr = (k — 1)n + h,
one can easily find that

B =Pri{ox N B | i N B} = “pir’pjn,
or in matrix form
Paﬂ =P, ® Pﬁ.

Moreover, from the properties of independent random
variables, we have that

i) From the independence of the random variablég and
B(t) vt € N, we have that

of Kronecker product. The other property is proved by

the Lemma 2. We show now that the statistics of the

processaf are given by P,s and m,z(0) = m,(0) ®

Tap(t) = ma(t) @ m5(t) 12

75(0). To this aim, let us compute the transition proba@nd from the previous point

bility Pr{af(t + 1) = (ax, ) | aB(t) = («;, 5;)} for any
i,j,h,k € I and any t € N. Recalling that

afB(t) = (w4, B;) can be considered as the joint even

(a(t) = a;) N (B(t) = B;), we can omit the dependence tof
and write Pr {a3(t + 1) = (o, Bn) | aB(t) = (o, i)} =

as(t) = [Pls]” (1a(0) @ m5(0)) .

tFrom (12) it is apparent thatm, .. T,5(t) = T, @ Tg for

any m,3(0) = m,(0) ® m3(0). To extend this property to
any initial distribution,3(0), it is sufficient to recall that

IWith M > 0 (M > 0) we mean nonnegative (positive) matrices. the Steady-state probability distribution of a homogeiseou

Stochastic matrices are a subset of nonnegative matrices.

irreducible aperiodic Markov chain is uniqua
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