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Abstract— In this paper we consider scheduling the execu-
tion of a number of different software tasks implementing a
hierarchy of real-time controllers for a given plant. Controllers
are considered to be given and ordered according to a measure
of the performance they provide. Software tasks implementing
higher-performance controllers are assumed to require a larger
worst-case execution time. Control tasks are to be scheduled
within given availability limits on execution time, which change
stochastically in time. The ensuing switching system is prone
to instability, unless a very conservative policy is enforced of
always using the simplest, least performant controller. The
presented method allows to condition the stochastic scheduling
of control tasks so as to obtain a better exploitation of
computing capabilities, while guaranteeing almost sure stability
of the resulting switching system.

I. I NTRODUCTION

In the implementation of controllers on an embedded
programmable processor, it is often the case that control tasks
have to share computational resources with several other
tasks. A multitasking Real-Time Operating System (RTOS)
is often used to schedule the execution of tasks within strin-
gent temporal constraints, typically using priorities. Real-
time preemptive algorithms can suspend the execution of
a task in the presence of tasks having a higher priority.
Representative examples of such scheduling algorithms are
Rate Monotonic (RM) and Earliest Deadline First (EDF) [1],
[2], [3]. As a consequence, time allocated to execute a control
task can change unpredictably in time.

Assuming that the RTOS guarantees a minimum timeτmin

for the execution of the control task at hand, a conventional
approach to cope with this problem is to design controllers
simple enough to be executable withinτmin. A less con-
servative approach consists in designing “scalable” control
algorithms, which can be interrupted at any time, while still
providing a valid result whose performance increases with
the execution time actually allowed. The idea, stemming
from the theory of imprecise computation [4], is aptly
described by the term “anytime control”, used already in [5].
With respect to most anytime algorithms, however, the fact
that anytime controllers interact in feedback with dynamic
systems introduces severe difficulties in their synthesis and
in the analysis of the resulting closed-loop performance.
Indeed, the stochastic switching system ensuing from exe-
cuting different controllers at different times is even prone
to instability.

In this paper, we focus on the analysis of stability of
linear anytime controllers, whose scheduling is decided
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stochastically. Being the scheduler modelled as a Markov
chain, an anytime-controlled linear system turns out to be a
Markov Jump Linear System (MJLS). We present a method
to condition the stochastic properties of the scheduler so as
to obtain a better exploitation of computational power, while
guaranteeing stability of the resulting switching system in a
suitable probabilistic sense, i.e. Almost Sure (AS) stability
[6], [7].

II. PROBLEM FORMULATION AND BACKGROUND

Let Σ be a given linear, discrete time, invariant plant
described as

wt+1 = Awt + But

yt = Cwt.

Let alsoΓi, i ∈ I , {1, 2, . . . , n}, be a family of feedback
controllers forΣ, described by

zi
t+1 = Fiz

i
t + Giyt

ui
t = Hiz

i
t + Liyt.

Assume that the feedback connection ofΣ with Γi, obtained
by settingu(·) = ui(·), is asymptotically stable for alli.
Let the closed-loop system thus obtained be denotedΣi and
described by

xt+1 = Âixt, (1)

where

Âi =

[
A + BLiC BHi

GiC Fi

]
.

The set of controllers is assumed to be given and to
proceed from a synthesis technique (such as e.g. cascade
design) providing a hierarchy of performance and complex-
ity. In other terms, we assume that application of controller
i provides better closed-loop performance than controllerj

if i > j. On the other hand, the worst-case execution time
(WCET) of the software code implementing more performant
controllers is larger (WCETi > WCETj , i > j).

A. Scheduling Description Using Markov Chains

Neglecting for simplicity delays and jitter, we assume that
measurements are acquired and control inputs are released
at every sampling instanttTg, t ∈ N, whereTg is a fixed
sampling time.

Let γt ∈ [τmin, τmax], τmax < Tg, denote the time allotted
to the control task during thet-th sampling interval. By
hypothesis,WCET1 ≤ τmin andWCETn ≤ τmax.

Define an event setLτ , {τ1, . . . , τn}, and a map

T : [τmin, τmax] → Lτ

γt 7→ τ(t)
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Fig. 1. Markov chain model of a scheduler.

where

τ(t) =





τ1, if γt ∈ [τmin,WCET2)
τ2, if γt ∈ [WCET2,WCET3)
... if

...
τn, if γt ∈ [WCETn, τmax]

A simple stochastic description of the random sequence
{τ(t)}t∈N

, inherited from the probability distribution of
γt, can be given in terms of an independently and identi-
cally distributed (i.i.d.) process, with probability distribution
Pr {τ(t) = τi} = pi, with 0 ≤ pi ≤ 1 and

∑
i∈I pi = 1

associated to the event that “at timet the time slotγt is such
that all controllersΓj , j ≤ i, but no controllerΓk, k > i, can
be executed.”

A slightly more complex, but more general, model al-
lowing for non-stationary probability distributions is pro-
vided by a finite state discrete-time homogeneous irreducible
aperiodic Markov chain. In this casePr {τ(t) = τi} =
πi(t) is time-dependent, while transition probabilities
pij , Pr {τ(t + 1) = τj | τ(t) = τi} are time-independent.
A Markov-chain description of the scheduler forn = 3 is
depicted in figure 1.

B. Almost Sure Stability

In this section a brief review of results on Almost Sure
stability (AS–stability) for discrete–time systems is reported
following [7].

Consider the discrete-time Markov Jump Linear System
(MJLS)

xt+1 = Aσt
xt (2)

where σ = {σt}t∈N is a finite state, discrete–time and
time homogeneous Markov chain taking values inI ,

{1, 2, . . . , n}. The statistics of the Markov process are identi-
fied by the transition probability matrixP = (pij)n×n

, where
pij , Pr{σt+1 = j | σt = i}, and by an initial probability
measureπ0 defined onI, with π0i , Pr{σ0 = i}. The
evolution of the probability distributionπ(t) of the process
at time t is given by

π(t + 1) = PT π(t). (3)

If the Markov chain is irreducible and aperiodic (see for
instance [8]), then there exists a uniqueinvariant probability
distribution π such thatπi > 0 ∀ i ∈ I and limt→∞ π(t) =

π for any π0. Such a distribution provides the steady-state
probability distribution for the processσ.

Definition 1: The MJLS (2) is said (exponentially) almost
surely stable (AS-stable) if there existsµ > 0 such that, for
any x0 ∈ R

N and any initial distributionπ0, the following
condition holds

Pr

{
lim sup

t→∞

1

t
ln ‖xt‖ ≤ −µ

}
= 1.

Let ‖ · ‖ be a matrix norm induced by some vector
norm. The following sufficient condition for AS-stability was
proved in [6]:

Theorem 1 (1–step average contractivity):[6] If

ξ1 =
∏

i∈I

‖Ai‖
πi < 1 (4)

then the MJLS (2) is AS-stable.
Inequality (4) can be interpreted as an average contractiv-

ity of the state norm over a one-step horizon. In this vein, a
less restrictive condition involving the average contractivity
over a multi–step horizon has been presented in [7]. Namely,
a new MJLS, called “lifting of periodm”, is associated
to the MJLS (2). Such a system represents the sampling
of the original one at time instantshm, h ∈ N, and its
stability properties mirror those of the original system. More
precisely, the lifted version of periodm of system (2) is
defined by

x̃h+1 = Ãσ̃h
x̃h

with
x̃h = xmh

σ̃h =
[
σmh · · · σmh+m−1

]T

Ãσ̃h
= Aσmh+m−1

Aσmh+m−2
· · ·Aσmh

.

Moreover, σ̃ = {σ̃h}h∈N is a stationary Markov process
taking values inĨ = Im and characterized as follows: for
ı̃ = (i1, i2, . . . , im) ∈ Ĩ and ̃ = (j1, j2, . . . , jm) ∈ Ĩ, the
transition probabilityp̃ı̃̃ , Pr{σ̃h+1 = ̃ | σ̃h = ı̃} is given
by p̃ı̃̃ = pimj1

∏m−1
k=1 pjkjk+1

. This process has the following
invariant probability distributioñπı̃ =

∏m−1
k=1 pikik+1

πi1 .
The 1–step average contractivity condition applied to the

lifted system yields
Theorem 2 (m–step average contractivity):[7] If

ξm =
∏

ı̃∈Ĩ

‖Ãı̃‖
π̃ı̃ < 1 (5)

then the MJLS (2) is AS-stable.
The importance of condition (5) is related to the fact that

for increasing values ofm it provides a sequence of sufficient
conditions and, most importantly, to the following result

Theorem 3:[7] System (2) is exponentially AS-stable if
and only if ∃m ∈ N such that condition (5) holds.

III. STOCHASTIC SCHEDULER AND AS-STABILITY

Once a set of controllersΓi and the associated closed loop
dynamicsÂi are given, and a Markov chain description of the
scheduler is provided, in order to actually execute an anytime
controller it is necessary to determine a switching policy
for choosing among possible controllers. In our context, a



switching policyis defined as a maps : N → I, t 7→ s(t), and
determines an upper bound to the indexi of the controller to
be executed at timet, i ≤ s(t). In other terms, at timetTg,
the system starts computing the controller algorithm untilit
can provide the output ofΓs(t), unless a preemption event
occurs forcing it to provide onlyΓτ(t), the highest controller
computed before preemption. Application of a switching
policy s to a set of feedback systemsΣi, i ∈ I under a
schedulerτ generates a switching linear system(Σi, τ, s)
which, under suitable hypotheses, is also a MJLS.

As an example, the most conservative policy is to set
s(t) ≡ 1, i.e. forcing always the execution of the simplest
controllerΓ1, regardless of the probable availability of more
computational time. By assumption, this (non-switching) pol-
icy guarantees stability of the resulting closed loop system.

On the opposite, a “greedy” strategy would sets(t) ≡ n,
which leads to providingΓτ(t) for all t. Although this policy
attempts at maximizing the utilization of the most performing
controller, it is well known that switching arbitrarily among
asymptotically stable systemsΣi may easily result in an
unstable behavior [9].

A sufficient condition for the greedy switching policy to
provide an AS-stable system is provided by Theorem 1,
whereAi = Âi andπ = πτ . If this condition is not verified,
it is important to investigate whether there exist intermediate
switching policies which can ensure AS-stability. To do so,
consider first the following

Problem 1: Given a set of matricesAi, i ∈ I, find the set

Π = {πτ |
∏

i∈I

‖Ai‖
πτi < 1}

of invariant probability distributions of homogeneous, irre-
ducible, aperiodic Markov chains, such that the associated
MJLS is 1-step contractive.
Assume that Problem 1, applied to the set of closed loop
matrices (i.e., withAi = Âi), admits a solutionΠ 6= ∅.
Then, the following synthesis problem is of relevance:

Problem 2: Given a set of closed loop matriceŝAi, i ∈ I

and an invariant probability scheduler distributionπτ , find a
(stabilizing) switching laws such that the resulting switch-
ing system(Σi, τ, s) is a MJLS with invariant probability
distributionπd ∈ Π.

It is worth noting that the existence of a solution to
ProblemP1 is not obvious in general. Indeed, for a given
set of Schur closed-loop matrices, it is not always possibleto
find an invariant probability distributionπτ ensuring one-step
contractivity. Indeed, for the 1-step contractivity to hold in a
given norm, it is necessary that∃i ∈ I such that

∥∥∥Âi

∥∥∥ < 1,
which condition may well not be verified. Furthermore,
solution of the synthesis Problem 2 may result very difficult
if the setΠ is too small.

To ease the synthesis, Problem 1 could be extended to
lifted systems by exploiting them–step contractivity condi-
tion (5). A characterization of viable schedulers in this case
should be given in terms of a set of Markov chain transition
matrices P . Unfortunately, the synthesis of a switching

policy solving the analogous to Problem 2 in this case turns
out to be very complex.

Our approach consists in exploiting the possibility of su-
pervising the controller choice so that some control patterns,
i.e. substrings of symbols inI, are preferentially used with
respect to others. For a substring of lengthm ı̃ ∈ Ĩ = Im,
ı̃ = (i1, i2, . . . , im), let Âı̃ = Âi1Âi2 · · · Âim

. The following
result will prove useful in the sequel.

Proposition 1: If ∃i ∈ I such thatÂi is Schur, then∃m ∈
N such that Problem 1 applied tôAı̃ admits a solution, i.e.

Π = {πτ̃ |
∏

ı̃∈Ĩ

‖Ãı̃‖
πτ̃ı̃ < 1} 6= ∅

Proof. If Âi is Schur, then, for any given matrix norm,∃m ∈

N such that
∥∥∥Âm

i

∥∥∥ < 1. Let ıi = {i, . . . , i} ∈ Ĩ and Âı̃ =

Âm
i . Hence∃ ε > 0 such that, for all probability distributions

with πτıi
= 1− ε,

∑6=ıi

∈Ĩ
πτ

= ε, ε ≤ ε, the solutionΠ 6= ∅.

Given a solution set to Problem 1Π, further constraints
have to be satisfied in order for Problem 2 to be solvable. In-
deed, letπd ∈ Π. In order for a switching policys(t) to exist
which can alter a given scheduler probability distributionπτ

into πd, the following conditions must hold:

πdn
≤ πτn

(C.1)
πdn−1

≤ πτn−1
+ (πτn

− πdn
) (C.2)

...
πd1

≤ πτ1
+ (πτ2

− πd2
) + · · · + (πτn

− πdn
) (C.n)

whereπτ =
[
πτ1

πτ2
· · · πτn

]T
,

andπd =
[
πd1

πd2
· · · πdn

]T
.

Inequalities(C.1)–(C.n) take into account the fact that
no switching law can alter the scheduler so as to give
more computational time to control tasks than it is made
available by the scheduler. Furthermore, constraints(C.2)–
(C.n) model the fact that the probability of thei-th controller
can be increased only at the expenses of a reduction of the
probabilitiesπdj

, j > i of more complex controllers.
To take into account the above constraints explicitly,

Problem 1 can be reformulated as follows:
Problem 3: Given a set of matriceŝAi, i ∈ I, find the set

Πd = {πd} with

P3.1)

n∏

i=1

∥∥∥Âi

∥∥∥
πdi

< 1

P3.2) 0 < πdi
< 1

P3.3)

n∑

i=1

πdi
= 1

P3.4) πdi
≤ πτi

+

n∑

j=i+1

πτj
−

n∑

j=i+1

πdj
.

IV. CONDITIONING CHAIN

Assume, for a given anytime-controlled system and a
scheduler described by a homogeneous irreducible aperiodic
Markov chainτ with transition probabilityPτ and steady-
state probability distributionπτ , thatΠd 6= ∅. In this section,
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Fig. 2. State transition diagram for the scheduler (with statesτi) and for
the switching law (with statesσi) with n = 3.

we tackle the synthesis Problem 2 by developing astochastic
switching law.

Consider a homogeneous irreducible aperiodic Markov
chain σ with the same numbern of states as the chainτ .
The states are labelled asσi, with the meaning that if the
associated process formσ(t) is equal toσi, thens(t) = i, i.e.
in the next sampling intervaltTg at most thei–th controller
is computed (if no preemption occurs). We will refer toσ as
the conditioning Markov chain.

It should be noted that the choice of determining the
switching law by a Markov chainσ not dependent on the
scheduler chainτ (see figure 2) renounces to full generality.
However, it has the advantage of not requiring on-line
computations, and simplifies considerably the analysis.

In the following paragraphs, we study how the stochastic
properties of the scheduler and conditioning chain interact
to produce a resulting switching system. The purpose is to
synthetize a conditioning chain which can produce a MJLS
with a steady-state probability distributionπd ∈ Π ensuring
AS-stability.

A. Merging Markov Chains: Mixing

Consider two independent finite-state homogeneous irre-
ducible aperiodic Markov chainsα and β such thatα (t) :
Ω → Lα , {αi | i ∈ I} andβ (t) : Ω → Lβ , {βj | j ∈ I},
t ∈ N. Let the statistics ofα andβ be given by the transition
probability matricesPα = (αpij)n×n

and Pβ =
(
βpij

)
n×n

with i, j ∈ I, and by the initial probability distributions
πα(0) and πβ(0). Denote with πα and πβ the (unique)
steady-state probability distributions ofα andβ respectively.
Define the stochastic processαβ : Ω → Lαβ , Lα × Lβ

such thatαβ(t) = (α(t), β(t)).
Theorem 4:The following assertions are true:

i) αβ is a finite-state homogeneous irreducible aperi-
odic Markov chain whose statistics are given by the
transition probability matrixPαβ =

(
αβpij

)
n×n

=
Pα ⊗ Pβ and by the initial probability distribution
παβ(0) = πα(0) ⊗ πβ(0);

ii) the evolution of the chainαβ is given by

παβ(t) = πα(t)⊗πβ(t) =
[
P t

αβ

]T
(πα(0) ⊗ πβ(0))

(6)
with t ∈ N. παβ(t) converges to the unique invari-
ant probability distribution

παβ = πα ⊗ πβ (7)

for any initial distributionπαβ(0).
The proof is reported in the Appendix.

B. Merging Markov Chains: Aggregating

The Markov chainτσ obtained mixing the chainsτ and
σ having bothn states, hasn2 states (Lτσ is the Cartesian
product ofLτ andLσ). Our goal is to produce a form process
assuming values in the set of the controller indices, that is
we must build a process with a desired stationary probability
πd ∈ Π, whose cardinality isn. Hence, after mixing the two
chains we make use of anaggregation functionto reduce the
number of states. This function is based on the constraints
imposed by the scheduler and groups together all the states of
τσ actually producing the execution of the same controller.
The k-th controller is hence executed in the next interval if:

1) τ(t) ≥ τk andσ(t) = σk (i.e. the suggested controller
is s(t) = k);

2) σ(t) ≥ σk (i.e. the suggested controllers(t) ≥ k), and
τ(t) = τk (i.e. the scheduler makes preemption atτk).

Therefore, assuming without loss of generality that the in-
dices are chosen such thatLτ ≡ Lσ, we define an aggregated
process(τσ)

?, taking values in the setL(τσ)? ≡ Lτ ≡ Lσ

with cardinalityn, as

(τσ)
?
(t) = min {τ (t) , σ (t)} .

The characterization of the aggregated process(τσ)
? is

rather easy, as shown below.
Proposition 2: The evolution of the probability distri-

bution π?(t) = [π?
1(t), . . . , π?

n(t)] of the process(τσ)
?

aggregated by means of theminimumfunction is given by

π?(t) = H (πτ (t) ⊗ πσ(t)) (8)

with H ∈ {0, 1}n×n2

such thatH = [H1,H2, . . . ,Hn] and

Hi =


 Ii,i

0i−1,n−i

11,n−i

0n−i,i 0n−i,n−i


 .

Remark 1:The previous proposition asserts that the evo-
lution of the aggregated process(τσ)

? is related to the
evolutions of the chainsτ and σ by a linear time-invariant
mapping. Therefore, the process(τσ)

? admits an invariant
distribution to which (at least) each initial distributionof
type H (πτ (0) ⊗ πσ(0)) converges, if the chainsτ and σ

have their steady-state distributions. In particular, from (8),
we have

π? = H (πτ ⊗ πσ) . (9)

V. M ARKOV BASED SWITCHING LAW

A. One-Step Solution

In this section we address the solution of Problem 2 by
investigating the existence of a Markov chainσ conditioning
the scheduler chainτ so as to produce a MJLS with an
invariant probability distributionπd ∈ Πd solving Problem
3.



Based on results of the previous section on merging
Markov chains, the desired solution must have a structure
as in (9), or, more explicitly,

πdi
=

∑

(τh,σk)∈χdi

πτh
πσk

(10)

where

χdk
= {(τi, σj) ∈ Lτσ | min(τi, σj) = dk ∈ L(τσ)?}.

It is worth noting that, even if the process(τσ)
? may not

be a homogeneous irreducible aperiodic Markov chain, the
problem of AS-stability still makes sense and the contrac-
tivity conditions can be used. Indeed, the state evolution of
the JLS driven by the aggregated process(τσ)

? is the same
as the one produced by an equivalent MJLS withn2 states
and driven by the Markov chainτσ. The equivalent MJLS
is constructed by associating to(τi, σj) ∈ Lτσ the index
µ(τi, σj) , min{i, j}, hence the controlled system̂Aµ(τi,σj).

Indeed conditionP3.1) of Problem 3 can be rewritten
using (10) as
n∏

i=1

∥∥∥Âi

∥∥∥
∑

(τh,σk)∈χdi
πτh

πσk

=
∏

(τh,σk)∈Lτσ

∥∥∥Âµ(τh,σk)

∥∥∥
πτh

πσk

.

Our synthesis Problem 2 is therefore reduced to finding a
vector πσ =

[
πσ1

· · · πσn

]T
such that the resultingπd

given by (10) is a solution to Problem 3, i.e.πd ∈ Πd.
It actually turns out that the choice of the structure

of πd described in (10), resulting from the choice of an
independent conditioning chain, simplifies the formulation
of the synthesis problem substantially. Indeed, the following
lemma can be proved by simple if lenghty arguments, which
are omitted for brevity.

Lemma 1:Constraints P3.2), P3.3), and P3.4) in
Problem 3 are satisfied by anyπd =

[
πd1

· · · πdn

]T

with πdi
=

∑
(τh,σk)∈χdi

πτh
πσk

, 0 < πσi
< 1, and∑n

i=1 πσi
= 1.

Furthermore, forπd as in (10), constraintP3.1) can be

rewritten (proviso
∥∥∥Âi

∥∥∥ 6= 0 ∀i) as

ln

(
n∏

i=1

∥∥∥Âi

∥∥∥
πdi

)
=

n∑

i=1

πdi
ln

(∥∥∥Âi

∥∥∥
)

=

n∑

i=1

πσi

n∑

h=1

πτh
ln

(∥∥∥Âµ(τh,σi)

∥∥∥
)

< 0.

In the light of previous analysis, the synthesis Problem 2 can
be written as the Linear Programming problem:

Find a vectorπσ =
[
πσ1

· · · πσn

]T
such that

1)

n∑

i=1

ciπσi
< 0

2) 0 < πσi
< 1

3)
n∑

i=1

πσi
= 1,

(11)

where

ci =

n∑

h=1

πτh
ln

(∥∥∥Âµ(τh,σi)

∥∥∥
)

.

B. Multi-Step Solution

So far, the design of a stochastic switching law based
on a conditioning Markov chain has been formulated using
the one-step average contractivity condition (4). As already
pointed out, this condition might well be not satisfiable fora
given set of controllers. To tackle this problem, we will use
a multi-step lifting technique, as described in section II-B.
However, as suggested in section III, instead of using the
lifted version of a chainσ for conditioning, we employ an
unconstrained chainσm. This has the consequence of asso-
ciating to substrings of matrices a steady-state probability
of occurrence that is in general different from the product
of the probabilities of each single matrix. For instance, the
probability of occurrence of the strinĝA1Â2 can be different
from the probability ofÂ2Â1. It should be pointed out that,
while in the one-step solution it is attempted to execute
the controller suggested by the particular realization of the
processσ(t), in the multi-step solution the switching policy
suggests the sequence of controllers to be executed in the
next m steps.

In an m-step lifting, the scheduler Markov chain states
become strings of the original symbolsτi, taking values in
the new state spaceLm

τ with cardinalitynm. Let τm denote
the lifted chain and̃τı̃ ∈ Lm

τ its states (̃ı ∈ Im). To the aim
of designing a switching law, consider a Markov chainσm

with nm states taking values in a finite state spaceLσm . To
simplify the description of the switching policy, assume that
any σ̃̃ ∈ Lσm is a string of symbolsσj ∈ Lσ, hence we
haveLσm , Lm

σ . Notice however that, notwithstanding the
choice of using the same set of symbols,σm is not in general
the lifted version of a chain ofn nodes, rather it is a chain
with the same number of states asτm.

Suppose now that a set of steady-state probability distri-
butions Π̃d exists solving Problem 3 for the lifted system.
The synthesis problem is then again to find a steady-state
probability distributionπ̃σ for the chainσm such that the
aggregated process(τmσm)

∗ has steady-state distribution

π̃
?

τmσm ∈ Π̃d.
If we set Lσ = Lτ , the aggregation function is again

the minimum function, applied element-wise. With these
assumptions, the overall problem can be formulated in the
parameters̃πσı̃

as in (11).

VI. CONCLUSIONS

We considered the problem of scheduling the execution of
different, hierarchically ordered tasks designed for anytime
control of a linear plant. Given a stochastic model of the
scheduler, and the set of controllers, we formulated a linear
program whose solutions provide a switching law that condi-
tions the scheduler so that the resulting switching system is
stable in a probabilistic sense. Although solvability for this
problem is not guranteed for one-step switching laws, we
have shown that for any set of stabilizing anytime controllers



it is possible to find a long enough step horizonm, such that
am-step switching law exists providing almost sure stability.
Further work will be devoted to provide constructive methods
to synthesize anytime controllers for which the above results
can be applied with smallm, and to study the performance
of the controlled system under switching.
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APPENDIX

Before proving Theorem 4 we need some preliminary
results on primitive matrices. Recall that the transition prob-
ability matrix of a finite-state homogeneous irreducible ape-
riodic Markov chain is a time-invariant stochastic irreducible
aperiodic matrix of finite dimension.

Definition 2 ([10] p.127): A matrix is primitive if it is
irreducible and aperiodic.

Theorem 5 ([10] p.128):Let A be a nonnegative matrix1.
The following are equivalent.

1) A is primitive.
2) Am > 0 for somem ≥ 1.
3) Am > 0 for all sufficiently largem.
Primitivity is preserved by the Kronecker product.
Lemma 2:Given A ≥ 0 and B ≥ 0 primitive matrices,

thenA ⊗ B is a primitive matrix.
Proof.From Theorem 5 we know that there existm1,m2 ≥ 1
such thatAm1 > 0 and Bm2 > 0. From point 3 of the
same theorem we know that there existsm ≥ max(m1,m2)
such thatAm > 0 andBm > 0. Recalling the definition of
Kronecker product, it is apparent that

Am ⊗ Bm > 0

and using the ‘mixed product rule’

Am ⊗ Bm = (A ⊗ B)
m

> 0,

henceA ⊗ B is primitive.
Proof. [of Theorem 4]
i) Let us prove first thatPαβ is a time-invariant stochastic
primitive matrix. The first two properties follow directly by
the same properties ofPα and Pβ and by the definition
of Kronecker product. The other property is proved by
the Lemma 2. We show now that the statistics of the
processαβ are given byPαβ and παβ(0) = πα(0) ⊗
πβ(0). To this aim, let us compute the transition proba-
bility Pr {αβ(t + 1) = (αk, βh) | αβ(t) = (αi, βi)} for any
i, j, h, k ∈ I and any t ∈ N. Recalling that
αβ(t) = (αi, βi) can be considered as the joint event
(α(t) = αi)∩ (β(t) = βi), we can omit the dependence oft

and write Pr {αβ(t + 1) = (αk, βh) | αβ(t) = (αi, βi)} =

1With M ≥ 0 (M > 0) we mean nonnegative (positive) matrices.
Stochastic matrices are a subset of nonnegative matrices.

Pr {αk ∩ βh | αi ∩ βj}. Due to the independence of the
eventsαk andβh, we can write

Pr {αk ∩ βh | αi ∩ βj} = Pr {αk | αi ∩ βj}Pr {βh | αi ∩ βj} .

Let us consider Pr {αk | αi ∩ βj} (the case of
Pr {βh | αi ∩ βj} is similar) and apply the Bayes rule

Pr {αk | αi ∩ βj} =
Pr {αi ∩ βj | αk}Pr {αk}

Pr {αi ∩ βj}

=
Pr {αi | αk}Pr {βj | αk}Pr {αk}

Pr {αi}Pr {βj}

=

[
Pr {αk | αi}Pr {αi}

Pr {αk}

Pr {αk | βj}Pr {βj}

Pr {αk}

]
·

Pr {αk}

Pr {αi}Pr {βj}

=
Pr {αk | αi}Pr {αk | βj}

Pr {αk}

= Pr {αk | αi} ,

where the last term is obtained noting again that the events
αk andβj are independent (hencePr {αk | βj} = Pr {αk}).
Therefore

Pr {αk ∩ βh | αi ∩ βj} = Pr {αk | αi}Pr {βh | βj} = αpik
βpjh.

Keeping the transitionαi −→ αk and considering all the
transitionsβh −→ βj ∀βh, βj ∈ Lβ , we find that all the
transition probabilities are given byαpikPβ . Using the same
argument for each transitionαi −→ αk ∀αi, αk ∈ Lα and
defining the indicesl = (i− 1)n + j andr = (k − 1)n + h,
one can easily find that

αβplr = Pr {αk ∩ βh | αi ∩ βj} = αpik
βpjh,

or in matrix form

Pαβ = Pα ⊗ Pβ .

Moreover, from the properties of independent random
variables, we have that

παβ(0) = πα(0) ⊗ πβ(0).

ii) From the independence of the random variablesα(t) and
β(t) ∀t ∈ N, we have that

παβ(t) = πα(t) ⊗ πβ(t) (12)

and from the previous point

παβ(t) =
[
P t

αβ

]T
(πα(0) ⊗ πβ(0)) .

From (12) it is apparent thatlimt→∞ παβ(t) = πα ⊗ πβ for
any παβ(0) = πα(0) ⊗ πβ(0). To extend this property to
any initial distributionπαβ(0), it is sufficient to recall that
the steady-state probability distribution of a homogeneous
irreducible aperiodic Markov chain is unique.
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