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Abstract

In this paper, an independent joint position and stiff-
ness adaptive control for a robot arm actuated by
McKibben artificial muscles is reported. In partic-
ular, muscular and dynamic parameters of the sys-
tem are supposed unknown. Adaptive control perfor-
mance is tested in a one degree of freedom experi-
mental setup and compared with PID control perfor-
mance. The adaptive control scheme is then applied
to a robot arm that is conceived to perform tasks in
anthropic environments. The adaptive control devel-
oped is such that performance of the robot arm is very
similar to human arm performance. Experimental
results are reported.

1 Introduction

To design a robot arm that performs tasks in an-
thropic environments like a human arm, is the goal of
many ongoing research projects (see e.g. [1, 2, 3, 4]).
In designing such robot arm, several problems should
be solved, i.e. lightness and robustness of robot arm,
controllers and light actuators with high power to
weight ratio design. Conventional actuators, such as
electric motors, are not convenient to be used in hu-
man like robotics applications. Over the last decade,
the development of artificial muscles is resulted in
new actuators, such as pneumatic muscle actuators
(PMA) [5], piezo-electric actuators [6] and electroac-
tive polymers [7]. The force output and bandwidth of
modern actuators have been evaluated with respect
to those of human muscles [8]. Neverthless, if arti-
ficial muscles have to be compared with respect to
human muscles, comparable control methods must
also be considered. The design of efficient control
requirements for artificial muscles could be inspired
by the central nervous system organization and per-
formance.

A well known theory, known as the internal model

theory (IMT) [9], seems to fit the purpose. This the-
ory, as opposed to equilibrium point theory [10], ad-
mits the existence of a (learned) dynamic model of
the human arm used for its feedback control. This
model, with unknown constant parameters, is contin-
uously adapted by a feedback adaptive control, that
generates the model parameters estimation [11].

The tracking of independent joint positions and stiff-
ness, using a computed torque control scheme, for an
n degrees of freedom robot arm actuated by McK-
ibben artificial muscles, has already been studied in
[12]. The main problem of this approach is that, in
general, the control performance degrades if the sys-
tem to be controlled is not completely known. In
particular the parameters of PMA are subordinate
to a slow variation when the number of working cy-
cles increase [13]. In the present paper, following
the IMT approach, the adaptive control scheme, de-
scribed in [14], is applied to control the joint stiff-
ness and positions of the robot arm in case of uncer-
tain dynamics and muscular parameters. The non-
linear Chou-Hannaford artificial muscular model [15]
is considered. This interesting model represents the
PMA as a nonlinear quadratic spring, with, in this
case, unknown elastic spring constant.

This paper is organized as follows: in section 2 the
adaptive joint position and stiffness control is dis-
cussed for an n degrees of freedom robot arm actu-
ated by PMA in antagonistic configuration. In sec-
tion 3 the control is applied to a 1 degree of freedom
experimental setup and the adaptive control results
are compared with PID control results.

In section 4 experimental results of the adaptive con-
trol applied to a three degrees of freedom (DOF) Soft
Arm developed in our laboratory, are reported. The
robot performs a tracking trajectory task, with time
varying stiffness at the joints.



Figure 1: A joint actuated by a pair of McKibben
artificial muscles in antagonist configuration.

2 Adaptive joint position and stiffness
control of a n DOF robot arm actu-
ated by McKibben artificial muscles

In [12], the realization of an independent joint posi-
tion and stiffness control, for a n DOF manipulator
actuated by McKibben artificial muscles, is shown
using a computed torque control method. The main
problem of this approach is that the control perfor-
mance decreases if the manipulator and muscles pa-
rameters are not exactly known. In this section, an
adaptive control scheme is applied in order to cope
with model uncertainties. Another possible solution
of the uncertainties problem is to introduce, in the
control law, an integral term of the position error,
so as to dominate unmodelled dynamics. In the fol-
lowing section, performance of those two different
solutions will be compared.

The model of a n DOF robot arm is well known

B(q)q̈ + h(q, q̇) = τ, (1)

where B(q) represents the inertia matrix, h(q, q̇)
summarizes Coriolis and gravitational forces and τ

is the actuators torque vector. If the joint actua-
tor torque is generated by an antagonistic pair of
McKibben artificial muscles (see fig.1), the i-th joint
torque becomes

τi = (Fi1 − Fi2)Ri, (2)

where Ri is the radius of the i-th pulley. The Chou-
Hannaford model of pneumatic artificial muscles [15]
is

Fij = Kij(l2ij − l2ijm)Pij , (3)

where Fij is the ij-th muscle tension, Kij is a pa-
rameter depending on constructive details, Pij is the
pressure inflated in the ij-th muscle and lijm is the

minimum muscle length. Considering equation (3),
the equation (2) becomes

τi = (Ki1(l2i1 − l2i1m)Pi1 −Ki2(l2i2 − l2i2m)Pi2)Ri. (4)

Supposing that the constants parameters Kij , lijm

are the same for muscles in antagonistic configura-
tions, equation (4) can be rewritten as

τi = Ki((l2i1 − l2im)Pi1 − (l2i2 − l2im)Pi2)Ri =
Ki(φi1Pi1 − φi2Pi2)Ri,

(5)

where φij = (lij2 − lim
2). The latter equation im-

plies that the torque vector can be expressed in the
following form:

τ = diag(Ki)




φ11 −φ12 0 0 · · · 0 0

0 0 φ21 −φ22
. . . 0 0

0 0 0 0 · · · φn1 −φn2







P11

P12

P21

P22

...
Pn1

Pn2




or, in more compact form as

τ = KΦP. (6)

By the the well known property of linearity in pa-
rameters of robot dynamics can be written as

B(q)q̈ + h(q, q̇) = Y (q, q̇, q̈)π,

with

Y (q, q̇, q̈)π =




Y11 Y12 . . . Y1m1

0 Y21 . . . Y2m2

0 0
. . .

...
0 0 . . . Ynmn







π1

π2

...
πm1


 = τ,

(7)
where π is the dynamics parameters vector and
Y (q, q̇, q̈) is the so-called “regressor” matrix. By (6)
and (7), equation (1) becomes

Y (q, q̇, q̈)π = KΦP. (8)

Furthermore, the non singularity of matrix K implies

K−1Y (q, q̇, q̈)π = ΦP. (9)

Our goal is then to find, starting from equation (9),
a relationship similar to equation (7). But, in this
relationship, we want the coefficients of the vector
π to be combinations of robot dynamics parameters
and coefficients Ki of matrix K.

Consider the equality



Y11 Y12 . . . Y1m1

0 Y21 . . . Y2m2

0 0
. . .

...
0 0 . . . Ynmn







π1

π2

...
πm1


 =




Y1 0 . . . 0
0 Y2 . . . 0

0 0
. . .

...
0 0 . . . Yn







Π1

Π2

...
Πn




(10)



where Yi
def
= [Yi1, . . . , Yimi ] and

Πi
def
= [πi, . . . , πm1 ] . Substituting this equality

in equation (9), we have

K−1Y (q, q̇, q̈)π = diag(Ki)
−1




Y1 0 . . . 0
0 Y2 . . . 0

0 0
. . .

...
0 0 . . . Yn







Π1

Π2

...
Πn


 ,

and, using the definition of terms Yi, Πi, it is easy to
find

ΦP =




Y1 0 . . . 0
0 Y2 . . . 0

0 0
. . .

...
0 0 . . . Yn







K−1
1 Π1

K−1
2 Π2

...
K−1

n Πn


 ,

that can be written in a more compact form:

ΦP = Ȳ Π̄. (11)

The latter expression allows us to apply the adaptive
position tracking control scheme presented in [14] to
the n DOF robot. This model reference adaptive
control scheme (MRAC) imposes the following joint
torque vector and parameters estimation dynamics



τ̄ = ˆ[K−1B(q)]q̈r + ˆ[K−1h(q, q̇, q̇r)] + KDσ,
˙̄̂
Π = K−1

π Ȳ T (q, q̇, q̇r, q̈r)σ,

q̇r = q̇d + Λq̃

σ = q̇r − q̇,

q̃ = qd − q,
(12)

where KD, Kπ, Λ are positive definite matrices and
qd is the trajectory reference to be followed by the
robot joints positions.

Imposing the equalities{
τ̄ = ΦP,

S = −dτ̄
dq = −dΦ

dq P,
(13)

with dP
dq ≈ 0 and S is the vector of desired (open

loop) joints stiffness (note that the relation, in
this case, is independent of pneumatic muscles con-
stants), relations in (13) can be expressed in the fol-
lowing matrix form[

τ̄

S

]
=

[
Φ

−dΦ
dq

]
P (14)

with

[
Φ
dΦ
dq

]
=




φ11 −φ12 0 0 · · · 0 0

0 0 φ21 −φ22
. . . 0 0

0 0 0 0 · · · φn1 −φn2

−dφ11
dq

dφ12
dq 0 0 · · · 0 0

0 0 −dφ21
dq

dφ22
dq

. . . 0 0
0 0 0 0 · · · −dφn1

dq
dφn2
dq .




.

(15)

Figure 2: A schematic representation of joint posi-
tion and open-loop stiffness control method with mus-
cular and dynamical parameters uncertainties dis-
cussed in section 2.

Considering the i-th and the (n + i)-th matrix rows,
we find

[
τ̄i

Si

]
=

[
φi1 −φi2

−dφi1
dq

dφi2
dq

] [
Pi1

Pi2

]
def
= Φ̄i

[
Pi1

Pi2

]
,

(16)
hence

Φ̄−1
i

[
τ̄i

Si

]
=

[
Pi1

Pi2

]
. (17)

This allows the possibility of independently tracking
joints positions and stiffness for an n DOF robot arm
(see fig.2).

In next section, we show experimental results of
adaptive control method as applied to a simple 1
DOF setup, compared with those of PID control
method.

3 A comparative experimental test:
Adaptive control versus PID control

To test the adaptive control scheme examined above
we have built a simple experimental setup, that con-
sists in a planar 1 DOF link actuated by a pair of
McKibben artificial muscles in antagonist configura-
tion (see fig.3). Furthermore, a linear potentiometer
provides data necessary for position feedback control.

The mathematical model of the experimental setup
is

Iq̈ = (F1 − F2)R, (18)

where I is the link inertia momentum, q̈ is the joint
angular acceleration, R is the radius of the pulley and
Fi represents the Chou-Hannaford artificial muscles
model reported in equation (3).

Substituting (3) in (18), we have

Iq̈ = K1(l21 − l21m)p1R − K2(l22 − l22m)p2R. (19)



Figure 3: Planar 1 DOF link actuated by a pair of
McKibben artificial muscles in antagonist configura-
tion.

As discussed in the previous section, in the particular
case in which the agonist and the antagonist muscles
have the same length, we have K1 ≈ K2 = K, l1m ≈
l2m = lm. This approximation implies

Iq̈ = K((l21 − l2m)p1 − (l22 − l2m)p2)R,

hence

I

K
q̈ = (l21 − l2m)p1R − (l22 − l2m)p2R,

and then
I

K
q̈ = (φ1p1 − φ2p2)R. (20)

Given equation (17), the pressures inflated in muscles
are(

p1

p2

)
= 1

2R3(l1φ2+l2φ1)

(
2l2R

2τ + φ2RS

−2l1R
2τ + φ1RS

)
,

(21)
where φi = (l2i − l2m), l1 = lmax − qR, l2 = lmin + qR,
lmax and lmin are maximum and minimum muscle
lengths, equal for the two muscles, respectively and
S is the desired joint stiffness. Note that S > 0
implies φiRS > 0.

τ̄ , for the PID controller, is given by

τ̄ = Kpε + Kdε̇ + KI

∫ t

0

ε∂t,

while, for the adaptive controller is given by

τ̄ =
ˆ(
I

K

)
q̈r + Kcσ,

where
˙̂(
I
K

)
= γ−1q̈rσ, q̇r = q̇d + Λq̃, σ = ε̇ + λε and

ε = qd − q.
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Figure 4: Step Response comparative test. Adap-
tive (left) and PID (right) responses to a π

2 rad step
reference.
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Figure 5: Desired open loop joint stiffness (up-left),
effective and desired joint position (up-right, blue
and red respectively) and pressures inflated in ago-
nist and antagonist muscles (bottom, left and right
respectively) in the experiment of independent track-
ing of joint position and stiffness with the 1DOF

setup.

In fig.4, the step response of both adaptive and PID
controller is reported. A comparison between the
control approaches shows that the use of adaptive
control implies better trajectory performance than
the PID control, in particular when the trajectory ex-
cursions are high. A noterworthy feature of the adap-
tive controller is the relative ease by which good per-
formance could be achieved, compared to the much
more complex procedure needed for tuning the PID
controller due to the nonlinearity of actuators.

A second, more complex experiment was devised to
test the controller ability to track set-point references
with the joint positions, and to monitor effects pro-
ducted by a change in the desired joint stiffness S

(see fig.5). During the initial 50sec of this experi-
ment, the reference to the passive stiffness controller
is set to its minimal value, while the position refer-
ence is varied stepwise (from 0.1 to 1.5 rads) and
the active stiffness (the closed position loop gain, us-



Figure 6: Appearance of the Soft Arm. The pres-
ence of McKibben muscles as actuators, and the pos-
sibility to independently tracking the position and the
stiffness of the joints, allows the robot arm to inter-
act with human operators safely.

ing pressure feedback) is set to a constant, very high
value. The minimal open-loop stiffness value is dic-
tated by the necessity to maintain some tension in
the tendons to avoid them going slack, and is set
conventionally to zero in fig.5.

Successively, the open-loop stiffness is varied by five
stepwise level changes (at times 50, 60, 65, 70, 75,
and 85 sec.). The joint torque is slightly affected
by the corresponding changes in actuator pressures,
in agreement with results reported in section (2);
this behavior can also be regarded as similar to co-
contraction observed in animal sensorimotor control
[16]. The experiment finally shows that the effect
of a change of open-loop stiffness (at time 105 sec.)
on a different position of the link (0.5 rads), is also
negligible.

4 The adaptive control scheme applied
to the robot arm: experimental results

In this section the adaptive control method, reported
in section 2, is applied at the elbow joint and a shoul-
der joint of a 3 DOF Soft Robot Arm developed in
our laboratory (see fig.6). The robot arm is con-
ceived to operate in an anthropic unknown environ-
ment (see fig.7, for an example of a simple task) with
high level of safety [12]. The hardware of the robot
control loop consists of a 300MHz Workstation, two
data acquisition board: the ADC ADAC 5803HR
(potentiometers feedback) and DAC Advantech PCL
726 (signals to the pneumatic servovalves). The pres-

Figure 7: Robot picking a screwdriver (up) with the
prototype of light gripper developed in our laboratory
(bottom).

sures inflated in the six McKibben muscles are con-
trolled by a set of six pneumatic servovalves ITV2050
- SMC Corporation.

Dynamics, Coriolis and gravitational matrices of the
two DOF model of the robot arm (see fig.8) are given
by

B =
[

(π1 + π2cos(q2) + π3cos(2q2)) (π4 + π5cos(q2) + π6cos(2q2))
π15 + π16cos(q2) + π20cos(2q2) π14 + π18cos(q2)

]

C(q, q̇) =
[

π7sin(q2)q̇2 + π10sin(2q2)q̇2 π8sin(q2)q̇2 + π9sin(2q2)q̇2

π17sin(q2)q̇2 + π21sin(2q2)q̇2 π19sin(q2)q̇2

]

G =
[

π11sin(q1) + π12sin(q1 + q2) + π13sin(q1 + 2q2)
π22sin(q1 + q2) + π23sin(2q2 + q1)

]

where, in particular, the parameters πij are combi-
nation of dynamic and geometric parameters (i.e.,
link lengths and masses). In order to control the
mechanical structure with the adaptive scheme, it is
sufficient to apply, to the robot model, results ob-
tained in section (2).

To show the controller ability to allow a large range
of stiffness at the joints, the results of step response



Figure 8: CAD design of the robot arm.
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Figure 9: Elbow (top) and Shoulder (bottom) joint
positions and pressures inflated in the respectives ag-
onist and antagonist muscles pairs with time varying
stiffness. For both joints, the step reference is set
to 0.2rad, while S = 5t, with t ∈ [0, 100]sec is the
increasing time interval of the experiment.

at the elbow and shoulder joints with time-varying
stiffness are reported in fig.9. Notice that the joints
positions are almost unvaried with respect to the
steady-state value (0.2rad), while the pressures in-
flated in the muscles pairs are varied accordingly to
the changes in joint stiffness references.
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