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ABSTRACT

The great promise of series elastic actuation as an effective mean to improve the efficiency of
dynamic bipedal locomotion is challenged by the difficulties in properly exploiting the dynamics
of the system, due to the mutual influence between inputs and stiffness of the elastic elements.
Although numerical optimisation has proven to be a valid tool to approach this problem, the
contexts in which the energy improvement justifies the greater design effort are not clear yet. To
fill this gap, this work presents an extensive numerical study in which optimised walking and
running gaits are compared for a planar bipedal robot, driven either by rigid or series elastic
actuators, whose stiffness is selected concurrently with the input trajectories. The comparison
shows that: i) the Cost of Transport relative to the soft robot with optimised stiffness is lower
than that obtained for its rigid counterpart, especially in running; ii) the forward speed for which
running is more efficient than walking is lower for the soft robot than for its rigid counterpart;
iii) the soft robot with optimised stiffness can run significantly faster than its rigid counterpart.
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1 INTRODUCTION

Taking inspiration from nature, Soft Robotics (SR) aims
to build machines whose compliant physical structure is
able to mimic the characteristics of biologic actuation [1].
Two main branches exist in SR. The first one, inspired by
invertebrate animals, focuses on robots whose compliance
is distributed in the whole structure, made of continuously
flexible materials [2]. The other branch, inspired by the
musculoskeletal system of vertebrates, instead, concentrates
on robots whose compliance is mostly concentrated in the
joints, driven by compliant actuators [3]. Robots of this kind
are also referred to as articulated soft robots, or elastic-joint
robots.
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Elastic-joint robots have proven to be energetically more
efficient than their rigid counterparts, due to their ability
to store and release elastic energy, see e.g. [4, 5]. This
feature is expected to be particularly beneficial for robotic
locomotion: one of the key factors of the efficiency of
human locomotion, in fact, is the compliant actuation
characterising the musculoskeletal system [6, 7]. Studies on
simplified models have confirmed such expectation [8, 9].
These results, obtained for systems with few (one or two)
degrees of freedom (DoF), suggest that SR provides new
opportunities for enhancing the energy efficiency of robotic
locomotion. Thus, several complex soft robots have been
realised. Remarkable examples of soft humanoid robots are,
e.g., Walk-Man [10], ESCHER [11], DURUS [12]. However,
compared to rigid robots, the presence of compliant elements
increases the complexity of the control synthesis [13]. This
is due to several factors, such as the increased state size and
degree of underactuation, or the mutual influence between
the stiffness of the elastic elements and the input trajectories.
The synthesis of bipedal gaits has traditionally attracted
significant interest in the scientific community. A common
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approach, explored on simplified models [14], takes
advantage of the application of Numerical Optimal Control
(NOC). Recently, considerable efforts have been devoted to
extending such results to increasingly complex systems. For
instance, NOC was employed in [15] to optimise a running
motion of a human-like biped, where the joint elasticity was
introduced by passive elastic elements acting in parallel with
the actuators, rather than by Series Elastic Actuators (SEAs).
In [16], a 6-DoF bipedal model was considered where the
compliance was concentrated only at the ankles, driven by
parallel elastic actuators. Both the ankle stiffness and the
gait parameters were determined through the optimisation of
energy efficiency. In [17], a direct optimal control method
was applied to the optimisation of walking gaits for a 6-
DoF planar robot actuated via SEAs. However, the actuator
compliance was not designed to optimise the efficiency of
motion.
In the present paper, state-of-the-art modelling [18] and
optimisation [19, 20] tools are employed to simultaneously
determine stiffness and motor position references of a 6-DoF
planar biped with elastic joints, by minimising the energy
expenditure in both walking and running. The main goal is
to gain further insight into the influence of series elasticity in
locomotion of complex elastic-joint bipeds. To this aim, the
performance of optimal walking and running gaits of a robot
actuated via SEAs is compared to that of a rigidly actuated
model. The sensitivity of energy efficiency of locomotion
to stride parameters, i.e. forward speed and clearance of
the floating foot, is assessed through extensive numerical
tests. In a recent contribution [21], NOC was applied to
the optimal design of walking gaits for several biped models
of increasing complexity, driven either by parallel or series
elastic actuators. Compared to the analysis proposed in that
paper, this work presents an extensive analysis on a wider
range of stride characteristics. Indeed, both walking and
running gaits are investigated here, in order to establish in
which range of application SEAs are particularly effective in
improving the energy efficiency of locomotion. A similar
energetic performance analysis was presented in [22] for
the bipedal robot ATRIAS: therein, the energy expenditure
of walking gaits over a given interval of average forward
speed was assessed. In [23], instead, NOC was applied
to synthesise different kind of gaits for two simple robotic
models: a biped and a quadruped, both planar and actuated
by SEAs. Specifically, the energetic trade-off between
walking and running was assessed for the bipedal model.
Similarly, the numerical results presented in this paper
allow a quantitative assessment of the energetic efficiency of
locomotion for the investigated robot model. Our findings
are consistent with those presented in the aforementioned
previous studies.
The paper is structured as follows. In Section 2, the dynamics
of both the rigid and the soft model are described and the gait
optimisation problem is introduced. In Section 3, after a brief

description of the characteristics of the robot used as a case
study, the optimisation results are presented and analysed.
Finally, concluding remarks are drawn in Section 4.

2 PROBLEM STATEMENT

Walking and running gaits are obtained through nonlinear
programming (and therefore guaranteed to be at least locally
optimal) for two models describing the same planar biped
robot, powered by two different kind of actuators: rigid and
series elastic, respectively. For both models, the dynamic
equations were efficiently generated using the software
Robotran [18].

2.1 RIGID MODEL
Let na denote the number actuated internal joints of the
robot and χ ∈ Rna the vector collecting the positions of the
respective internal joint angles. Similarly, let nd denote the
number of degrees of freedom of the floating base (which
is 3, since the robot is planar) and χ f ∈ Rnd the vector
describing the pose of the floating base in the plane, i.e.
χ f = (py, pz, φ)>, φ being the orientation of the trunk and
py, pz the Cartesian coordinates of the position of its center
of mass. The configuration of the robot can be parametrised
by q = (χ,χ f )

> ∈ Rna+nd . Then, the dynamics of the rigid
biped reads

MR(q)q̈+CR(q, q̇)q̇+BRq̇+G(q) =
np

∑
i=1

Ji(q)>wi+τR(u) (1)

where MR(q) represents the robot inertia matrix and G(q)
the gravitational term. The term CR(q, q̇)q̇ accounts for the
Coriolis and centrifugal contributions. In order to obtain
comparable results, the rigid actuators were assumed to have
the same damping and inertial properties as the SEAs. As
such, the damping matrix BR can be expressed as

BR =

[
B 0na×nd

0nd×na 0nd×nd

]
(2)

where B = diag(b), b ∈ Rna being the vector of motor
damping. Furthermore, since in this case the motor output
shaft rotates rigidly with the link of the robot to which it is
connected, its rotational inertia is added to that of the link.
wi ∈ Rnd is the external wrench acting on the i-th support
foot at the contact point pi, whose Jacobian is Ji(q). np
represents the current number of feet that are in contact with
the ground and τR(u) ∈ Rna+nd is the vector of generalized
forces, whose components coincide with those of the vector
of motor torques u ∈ Rna in case the corresponding DoF is
actuated and are zero otherwise (i.e. for the 3 DoF of the
floating base).

2.2 SOFT MODEL
When SEAs are employed, the motor torques u do not act
directly on the links of the robot, as in the rigidly actuated
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Figure 1 Schematic of a Series Elastic Actuator (SEA).

case. They are rather applied to the links of the robot through
elastic elements, which are placed between each motor and
the relative output shaft [24]. The dynamics of the system is
therefore coupled with that of the motors. The schematic of
a SEA can be found in Figure 1. As proposed in [25], the
gyroscopic interactions between the motors and the links are
neglected, such that the model of the soft biped results in the
following system of nd +2na equations{

MS(q)q̈+CS(q, q̇)q̇+G(q) = ∑
np
i=1 Ji(q)>wi + τS(δ ,k)

Iθ̈ +Bθ̇ +Kδ = u
(3)

Here, θ ∈ Rna represents the motor positions, δ = θ − χ

the vector collecting the deflection angles of all the motors,
i.e. the difference between each motor angle and the angular
position of the corresponding link. MS(q) is the inertia
matrix and CS(q, q̇)q̇ takes into account the Coriolis and
centrifugal effects. It is worth highlighting that, unlike
MR(q) and CR(q, q̇), the rotational inertia of the motor is not
taken into account in MS(q) and CS(q, q̇). I and B are the
motor inertia and damping matrices, respectively. In order
to effectively exploit the dynamics of the system, the vector
of joint stiffness k ∈ Rna is included among the optimisation
variables, and it is assumed to be constant over time, as we
aim to investigate series elastic actuation. K = diag(k) is the
motor stiffness matrix and τS(δ ,k) ∈ Rna+nd is the vector of
generalized forces, whose components coincide with those of
Kδ in case the corresponding DoF is actuated and are zero
otherwise.

2.3 CONTACT PHASES
A multi-phase formulation is employed to describe the
dynamics of the robot through the different contact phases,
whose sequence is a priori prescribed. Specifically, in
the optimisation of walking gaits an alternation of single-
and double-support phases is imposed, whereas in the
optimisation of running motions the single-support phases
are alternated with flight phases, where none of the feet is
in contact with the ground (see Figure 2). During contact

(a)

(b)

Figure 2 Schematic of the 6-DoF biped used in the
optimisations (a) walking and (b) running.

phases in which at least one foot is in contact with the
ground, i.e. np ≥ 1, neither sliding nor interpenetration
between each support foot and the ground are allowed. The
contact model is thus captured by holonomic constraints on
the position of the support feet, which must be properly taken
into account in the dynamics, through the equations

J(q)q̈ = γ(q, q̇) (4a)

I(q, q̇) =
(

c(q)
J(q)q̇

)
= 0 (4b)

where c(q) represents the holonomic constraints, J(q) =
∂c(q)/∂q and γ(q, q̇) = −((∂J(q)/∂q) q̇) q̇. (4b) are
invariants on position and velocity level, that are referred to
as I. The dynamics of the system during each contact phase
is obtained by jointly imposing (1) and (4) in the rigid case,
and (3) and (4) in the soft case.
The transition between two subsequent contact phases occurs
when a foot impacts the ground. The impact is assumed to
be fully inelastic and without sliding. The relation describing
the velocity discontinuity due to the impact of the i-th contact
foot reads{

M(q)(q̇+− q̇−) = Ji(q)>w̃
Ji(q)q̇+ = 0

(5)

where w̃ ∈ R3 is a vector representing the impulsive
contact wrench and, in order to simplify the notation, q̇−
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and q̇+ respectively indicate q̇(t−s ) and q̇(t+s ), i.e. the
velocities immediately preceding and immediately following
the impact with the ground occurring at time ts. The
parameter ts is included among the optimisation variables,
such that the set of parameters to be optimised are p= {ts, w̃}
in the rigid case and p = {ts, w̃, k} in the soft case. All the
other states are continuous through the phase change [26].

2.4 PERIODICITY
Only gaits that are symmetric with respect to the sagittal
plane of the system are considered here. Therefore, only
half of a gait cycle is optimised. Let T indicate the gait
period. We optimise over the time interval t ∈ [0,Th] with
Th =

T
2 , assuming that the entire cycle can be obtained with a

switch of states and controls between left and right side of the
system at time Th. It should be noted that in the optimisation
of soft gaits, the stiffness of each actuator is constrained to
be equal to the stiffness of the corresponding joint on the
opposite leg, such that no discontinuity in the joint stiffness
occurs when the two legs switch their roles at t = Th. The
motion periodicity is imposed through constraints relating
the state of the system at t = 0 to the state at t = Th, i.e.

xred(0) = Πxred (Th) (6)

Here, xred is a vector collecting the periodic states, i.e. all the
states of the system except for the position py of the floating
base in the locomotion direction, and Π is a permutation
matrix representing the symmetry with respect to the sagittal
plane.

2.5 OPTIMAL CONTROL PROBLEM
Given all the previous considerations, the trajectories are
synthesised by solving an Optimal Control Problem (OCP),
which can be stated in the same general form as

min
x(·),u(·),w(·),p

∫ Th

0

‖u(t)‖2

mgL
dt (7)

subject to Fi(x(t), ẋ(t),w(t),u(t), p) = 0, i ∈ C (8)

∆(x(t+s ),x(t−s ), p) = 0, (9)

Z>(xred(0)−Πxred(Th)) = 0, (10)
h(x(t),u(t),w(t), p)≥ 0. (11)

Since both the gait period T and the step length L are
given, the average speed in the locomotion direction is fixed.
This point will be discussed further in Section 3.1. The
Cost of Transport (CoT) [27] is optimised in (7), where m
denotes the mass of the system and g the gravity acceleration.
More in detail, the objective function is a performance
index that can be interpreted as a measure of the electrical
energy needed to perform the task. In (8), the Equations
of Motion are imposed, Fi(·) representing the dynamics of
the system during the i-th contact phase. Due to periodicity
and symmetry, the set of contact phases is C = {1,2}, where

1 and 2 represent the single- and the double-support phase
in the optimisation of a walking gait, or the flight and the
single-support phase in the optimisation of a running gait. In
(9), the function ∆(·) describes the state discontinuity at the
phase change occurring at time ts, due to the impact of one
foot with the ground. In the optimisation of walking gaits,
due to the invariants (4b) in the dynamics, the periodicity
constraint needs to be projected into the null-space of the
Jacobian of the invariants, in order to avoid redundancies in
the constraints, see [28]. Thus, in (10), Z is a basis of the
null-space of the Jacobian ∂Is

∂xred

∣∣
t=0, where Is represents the

invariants on position and velocity of the stance foot, that are
preserved over the single-support phase and the subsequent
double-support phase. In the optimisation of running gaits,
instead, this issue does not arise, as in the flight phase
no holonomic constraints hold on the position of the feet.
Therefore, in this case Z equals the identity matrix.
Additional inequality constraints are given in (11) to
guarantee that: i) the external contact wrench w belongs to
the static friction cone; ii) the contact is unilateral, i.e. the
normal component of the contact force is non-negative; iii)
the Center of Pressure (CoP) is inside the support area; iv)
limits on joint positions and velocities are met; v) control
saturation is taken into account; vi) there is a minimum
clearance fh between each floating foot and the ground.
Specifically, the foot has to reach a minimum height within
a given time interval, and cannot go below it until it impacts
the ground again.

2.6 NUMERICAL SOLUTION
The OCP is solved numerically by employing a direct
collocation method [29]. The time horizon is discretised
into N time intervals and the state and control trajectories are
parametrised by the sequences {xk} and {uk} of optimisation
variables, such that the continuous time OCP results in a
finite-dimensional nonlinear program (NLP). Specifically,
the controls uk are assumed piece-wise constant over each
time interval [tk, tk+1], whereas the current state xk is
related to the next state xk+1 by employing a polynomial
interpolation x(xc

k, t) to approximate the dynamic evolution
of the state of the system x(t) over the time interval
[tk, tk+1]. The contact wrench w(t) is also approximated
via a polynomial approximation denoted as w(wc

k, t). In
order to determine the coefficients xc

k and wc
k that identify

the interpolation polynomials, the dynamic constraints are
imposed at c collocation points per time interval, c being
the degree of the interpolating polynomial. Therefore, in
accordance with the direct collocation method, the following
system of equations is imposed

x(xc
k, tk) = xk

Fi(x(xc
k, tk, j),

∂x(xc
k,t)

∂ t

∣∣∣
t=tk, j

,w(wc
k, tk, j),uk, p) = 0,

∀ j ∈ {1, . . . ,c}
(12)
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Table I - Values of the physical parameters of the model.

Parameter Value
Tibia mass 1.00 kg

Femur mass 0.70 kg
Pelvis mass 1.70 kg
Foot mass 0.55 kg

Trunk mass 1.00 kg
Tibia length 0.18 m

Femur length 0.12 m
Pelvis length 0.11 m
Trunk length 0.15 m
Torque limit ±6 Nm
Motor inertia 2.33 ·10−2 kg · m2

Motor damping 0.08 Nms/ rad

with k belonging to the i-th contact phase. It should be noted
that the time-derivative ∂x(xc

k,t)
∂ t of the polynomial x(xc

k, t) at
the j-th collocation point t = tk, j is known in a closed form.
By consistently approximating the cost function and the
constraints, the OCP results in the following NLP

min
ξ

f (ξ )

subject to g(ξ ) = 0
h(ξ )≥ 0

(13)

where ξ = (x0,xc
0, ẋ

c
0,w

c
0,u0, . . . ,xk,xc

k, ẋ
c
k,w

c
k,uk, . . . ,xN , p)>

denotes the vector collecting all the decision variables. The
NLP (13) was formulated in the CasADi framework [19]
and solved numerically, using the interior-point solver
IPOPT [20].

3 CASE STUDY: 6-DoF BIPED

The model and the stride parameters used in the generation
of locomotion trajectories are described in Section 3.1.
Section 3.2 presents the numerical results.

3.1 MODEL AND TASKS DESCRIPTION
The system considered in this study is a 6-DoF planar biped,
composed of a trunk jointed to two legs, having 3 DoF
each. The physical parameters of the system are provided
in Table I. These parameters were chosen in such a way
that the model is representative of the dynamics of the robot
SoftLegs, depicted in Figure 3. Namely, the robot is a 6-DoF
planar biped, driven by Qbmove Advanced Variable Stiffness
Actuators (VSAs) [30], that are electrically powered and
backdrivable. In principle, such actuators are tailored to
vary the joint stiffness on-line. However, here we assume
to benefit only from their capability to tune the stiffness of
the series elastic elements, so as to mimic the dynamics of
SEAs, that are the subject of our study. The robot is made
of two 3-DoF planar legs, jointed to a pelvis on which a
trunk is installed. The ankle joints are driven by a four-bar

Figure 3 The SoftLegs robot. The system consists of a trunk
(1) and two planar legs (2) having 3 DoF each. An external
structure (3) constrains the dynamics of the robot to evolve

on its sagittal plane.

mechanism. The end-effector of each leg consists of a flat
foot. Two parallel walls made of plexiglass and supported by
an external structure constrain the dynamics of the system to
evolve on its sagittal plane. In order to reduce the friction
between the trunk of the robot and the walls, four spherical
bearings are interposed between each couple of adjacent
surfaces.
The following relation is employed to link the step length to
the locomotion speed:

σ = αν
β (14)

where σ = L/l is the step length normalized by the leg
length l and ν = L/(Th

√
l/g) is the normalized forward

speed. Hereinafter, the subscripts w and r denote walking
and running, respectively. In case of walking, the scalar
parameters α , β were set to αw = 1 and βw = 0.42, in
accordance with [31], while in case of running αr = 1.06 and
βr = 0.37 were obtained by interpolating the results provided
in [32] at minimum RMSE.

3.2 OPTIMISATION RESULTS
In the following, the results obtained from the numerical
optimisation of walking and running gaits, i.e. from
the solution of the NLP in (13), are presented and the
performance of rigid and soft models are compared.

3.2.1 Actuators: rigid vs. soft
The swing foot clearance fh was chosen in the interval
fh ∈ [0,0.03] m, whereas the parameters T , L were set in
accordance with (14), in such a way that the walking speed
vw ∈ [0.1,0.6] m/s and the running speed vr ∈ [0.1,1] m/s.
Snapshots of two optimised walking and running gaits are
shown in Figure 4. In Figure 5, the results obtained
in terms of CoT as a function of the considered stride
parameters are presented, for the walking case. For both
the rigid (Figure 5(a)) and the soft model (Figure 5(b)),
the CoT increases as function of the locomotion speed
in the considered interval. Moreover, due to the robot
inertia distribution, which is highly concentrated in the legs
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Figure 4 Visualization of two optimal solutions obtained in case of (a) walking and (b) running.

(specifically, the mass of each leg is 2.25 kg, with the overall
mass of the system being 7.2 kg), the CoT increases as
fh increases, especially when the speed is relatively high.
For low values of the forward speed, the obtained optimal
solution is a compass walk when fh = 0.
Let us now compare the gaits optimised for the two models.
Figure 6 shows rigid and soft most efficient solutions, for
both walking and running. It is worth noting that the soft
model allows for remarkable energy saving compared to the
rigid one, especially with regard to running. In case of
walking, the rigid model and the soft one present comparable
CoTs at low speed, whereas the energy saving becomes more
evident as vw increases.
In case of running with rigid actuators, the OCP, where
limits on motor torque and speed are imposed, cannot be
solved for several values of forward speed and foot clearance.
Indeed, results are obtained just for vr in a limited subset
(see curve labelled as Rigid Run in Figure 6). Instead, when
SEAs are employed, the inertia decoupling resulting from
the introduction of elastic elements between the links and
the motors allows the solver to compute optimal solutions
for a considerably wider set of values of vr (see curve Soft
Run in Figure 6). The soft model outperforms the rigid one
in running: the CoT is considerably lower over the whole
forward speed range.
Let vwr denote the walk-to-run speed transition, i.e. the speed
at which running becomes energetically more convenient
than walking. In the rigid case vwr = 0.44m/s. In the soft
case, instead, a lower transition speed can be observed, i.e.
vwr = 0.38m/s. Furthermore, a rigid-to-soft speed transition
vRS, i.e. a speed at which soft actuation becomes more

efficient than rigid actuation, can also be identified: namely,
vRS = 0.15m/s.

3.2.2 Stiffness analysis
Numerical optimisation results show how a proper exploita-
tion of the compliance of the system can lead to remarkable
energy savings. In the following, the obtained stiffness trends
are analysed. Specifically, let us focus on the Cartesian
stiffness [33] of the stance leg, which can be estimated as

KL(q) = JL(q)†>KJL(q)† (15)

where JL(q) denotes the Jacobian of the contact point and
JL(q)† its pseudoinverse matrix. Due to its dependence
on the configuration q of the robot, the Cartesian stiffness
KL varies over the considered time horizon. However,
in both walking and running, the eigenvector associated to
the maximum eigenvalue of the Cartesian stiffness matrix
KL of the stance leg is directed almost vertically over the
whole time horizon. Therefore, the element Kzz of the
stance-leg stiffness matrix, i.e. the stiffness relative to the
vertical direction, was analysed, particularly focusing on its
dependence on the locomotion speed. The results of this
analysis are presented in Figure 7, for both walking and
running. In walking (Figure 7(a)), Kzz significantly decreases
as the forward speed increases. Qualitatively, these results
may be better understood by considering the motion of the
stance leg, which is sketched in Figure 8 for different values
of the forward speed vw. The stance leg is straight at low
speed. Indeed, as already mentioned, for low values of vw,
the optimal solution is a compass walk when fh = 0. As
the forward speed increases, the stance leg configuration
changes: the knee is progressively more bent. As a result
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Figure 5 (a) Rigid Walk CoT trend as a function of the
forward speed. (b) Soft Walk CoT trend as a function of the
forward speed. In both plots, the curves are identified by the
minimum value imposed to the clearance of the swing foot

from the ground fh.
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Figure 6 Comparison of the best robot performance in case
of soft and rigid actuation for both the walk and run tasks.
The curves report the minimum CoT results obtained over

all the considered values of fh.
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Figure 7 Vertical stiffness analysis of the stance leg at
fh = 0.01 m, for different values of the forward speed,

respectively in case of (a) walking and (b) running motion.

𝑣𝑤 (m/s) 

Figure 8 Walking: stance leg pose over time for different
values of the forward speed vw.

of this configuration variation, Kzz decreases as the forward
speed increases. A similar trend can be observed also in
running, see Figure 7(b). It is worth highlighting how the
order of magnitude of the vertical stiffness in case of running
is considerably lower compared to that obtained for low-
speed walking. From these results it can be concluded that
the more dynamic the task the more compliant is the optimal
behaviour of the stance leg.

4 CONCLUSIONS

In this work, numerical optimal control was applied to obtain
periodic walking and running gaits for a planar bipedal robot
in case of rigid and soft actuation. Reference stiffness values
for the Series Elastic Actuators (SEAs) were also optimised.
The problem was stated as an optimal control one, so as to
minimize the Cost of Transport (CoT) while constraining
the motion feasibility, within actuation limits. The results
showed the CoT sensitivity to forward speed and swing foot
height. As regards the actuation type, a sensibly better
performance of SEAs compared to rigid actuators could be
observed in terms of CoT: specifically, in case of walking, the
energy saving obtained by employing series elastic instead of
rigid actuators increases as the forward speed increases (the
soft system can save up to 38% of the CoT as compared to
the rigid one at speed 0.55m/s), whereas in case of running
the soft actuation allows a considerably lower CoT over the
whole considered forward speed range. Indeed, our results
suggest that the more dynamic the task the more the elastic
elements can be exploited to reduce energy consumption.
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This observation was also confirmed by the analysis of the
vertical Cartesian stiffness of the stance leg, which decreases
as the forward speed increases.
Future work will be devoted to identify the joints whose
compliance is particularly beneficial for locomotion. In
addition, since the framework employed in this analysis
is also suitable for investigating systems in which the
stiffness of the actuators can vary over time, our next
efforts will be aimed at assessing the possible advantages
of employing Variable Stiffness Actuators (VSAs) in
bipedal locomotion, also addressing whether the potential
advantages are significant enough to make it worth dealing
with the higher complexity of such actuators as compared to
SEAs.
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