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Abstract| This paper considers the problem of solving
conicts arising among several aircraft that are assumed to
move in a shared airspace. Aircraft can not get closer to each

other than a given safety distance in order to avoid possi-
ble conicts between di�erent airplanes. For such system of

multiple aircraft, we consider the paths planning problem
among given waypoints avoiding all possible conicts. In
particular we are interested in optimal path, i.e. we want

to minimize the total ight time. We propose two di�erent
formulations of the multi-aircraft conict avoidance problem
as a mixed-integer linear program: in the �rst case only ve-

locity changes are admissible maneuvers, in the second one
only heading angle changes are allowed. Due to the linear

formulation of the two problems, solutions may be obtained
within seconds with standard optimization software, then
those approaches may be used as part of a real or fast-time

simulation.

I. Introduction

The current enroute air traÆc control system consists for
the most part of a geographical network in which aircraft
are allowed to y only along �xed routes. The safety of this
architecture is supported by many decades of operations.
Under this architecture, the dynamics of the air transporta-
tion system is dominated by its network structure, but the
increasing demand for air transportation is progressively
bringing the entire system to an overloaded and congested
state. On the other hand, the continuing improvement of
aircraft instrumentation and communication systems car-
ries the potential of resolving these problems via new air
traÆc control such as the free-ight concept of operations.
Relatively recently, airlines and the Federal Aviation Ad-

ministration (FAA) have proposed \Free Flight" [1], [2] as
a concept of operations relying upon improved communi-
cation, navigation and surveillance technology to increase
pilot and airline freedom. For example, each pilot would be
able to optimize its own trajectory, to minimize the time
of ight or to avoid zones of severe weather.
However, the impact of Free Flight upon system safety,

as well as the relation between unstructured aircraft ows
in Free Flight and air traÆc ow management constraints
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remains largely unknown. To gain some understanding
about Free Flight's safety and eÆciency requires building
fast simulation environments incorporating automated and
optimal conict detection and resolution schemes.

Many approaches have been proposed in the last few
years to address the conict resolution problem when many
aircraft are involved; a complete overview of these ap-
proaches with a complete bibliography may be found in [5].
For an extensive study on the impact of Free Flight on
safety we refer the reader to the work developed at NASA
Ames by Bilimoria [13], in which is proved that the Free
Flight environment is safer for the current traÆc in terms
of possible conict respect to the current airspace structure
(see also [4]).

The approach proposed in this paper involves central-
ized, numerical optimization, and are in this regard closely
connected to recent approaches proposed by Niedringhaus
[6], Durand and Alliot[8] and more recently by Frazzoli et
al.[7].

We consider the problem of resolving conicts arising
among many aircraft following a cooperative approach, i.e.
all aircraft involved in a conict collaborate to its resolu-
tion; other cooperative approaches have been considered in
ATC literature, see for example [3], [4].

The approach presented in this paper is based on the
following central assumptions:

� Aircraft are assumed to cruise within a �xed altitude
layer (the layer structure is the same as the one described
in [4]). Aircraft can thus be modeled in a purely kinematic
fashion, as points in a plane with an associated fore axis,
that indicates the direction of motion, and conict envelope
radius. The task of each vehicle is to reach a given goal
con�guration from a given start con�guration (start and
goal con�gurations may represent waypoints planned for
the aircraft by the higher level planner).
� All interacting aircraft cooperate towards optimization of
a common goal, as agents in the same team. The common
goal is to reach the �nal con�guration avoiding all possible
conicts. This applies to all aircraft in the same airspace,
de�ned as a zone in which they can exchange information
on positions, velocities and goals.
� We consider two di�erent cases: in the �rst case we
study aircraft maneuvers consisting of instantaneous veloc-
ity changes and in the second case heading angle changes
are allowed.

The problem of �nding the shortest conict-free paths, in
both considered cases, can be modeled as a Mixed Integer
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Programming (MIP) problem, which may be solved using
optimization tools such as CPLEX [10].
The simplicity of the model with respect to the non-

linear model presented in [4], allows us to manage a large
number of aircraft in the same air space. Furthermore, due
to the eÆcient computations used to solve the problem, we
can rerun the problem at regular sample times to generate
a feedback control law. This leads to a straight trajectory
followed with di�erent velocities for the �rst case consid-
ered and to a piecewise linear trajectory in the second one.
In the case of heading angle deviation maneuvers, it is

possible to add constraints in order to include forbidden
sectors of the airspace in the set of non conict constraints.
Sector of airspace can be forbidden due to severe weather
or crowded space. In fact such constraints are linear in the
angle deviation variables. The software developed to solve
both problems, written in the C language, can be easily
interfaced with the FACET airspace fast-time simulation
software developed at NASA [14]. This work is under way.
In [11] and [12] a similar problem was considered but in

these papers the dynamic system requires �ne sampling of
the trajectories in order to use mixed integer programming.
The approach presented in this paper does not require
�ne trajectory sampling. Conict avoidance constraints
for both problems considered are based on simple geomet-
ric constructions. The model based on the heading angle
deviation maneuvers, in particular, could be very useful as
a decision support tool for both controllers and pilot after
suitable implementation studies.
This paper is organized as follows: In the second section

we describe the di�erent problems considered and the hy-
potheses needed to formulate them as MIP problems. In
the third and fourth sections we obtain conict avoidance
constraints and formulate them as linear or-constraints.
In section V the mixed integer programming optimization
problems are provided. Numerical examples are introduced
and solved using CPLEX and performance of the CPLEX
resolution for di�erent numbers of aircraft are presented in
section VI for both considered problems. This section also
considers the case of heading angle deviation maneuvers in
which the problem of conict avoidance is rerun every �xed
time interval. After every time interval the new positions of
the aircraft are considered and the new directions of ight
are given by the directions of the goal con�gurations that
they want to reach. In this case multi-segmented paths are
obtained because a maneuver is allowed every �xed time
interval. Furthermore the aircraft will reach the goal con-
�guration.

II. Problem Statement

In this paper we consider a �nite number n of aircraft
sharing the same airspace; each aircraft is an autonomous
vehicle that ies on a horizontal plane. Each aircraft has an
initial and a �nal, desired con�guration (position, heading
angle) and the same goal which is to reach the �nal con-
�guration in minimum time while avoiding conicts with
other aircraft. A conict between two aircraft occurs if the
aircraft are closer than a given distance d (current enroute

air traÆc control rules often consider this distance to be 5
nautical miles) [9].

Aircraft are identi�ed by points in the plane (position)
and angles (heading angle, direction) and thus by a point
(x; y; �) 2 IR � IR� S1. Let (xi(t); yi(t); �i(t)) be the con-
�guration of the i-th aircraft at time t; a conict occurs
when the distance between two aircraft is less than d, i.e.
a conict between aircraft i and j occurs if for some value
of t, q

(xi(t)� xj(t))2 + (yi(t)� yj(t))2 < d: (1)

Considering the aircraft as discs of radius d=2, the con-
dition of non conict between aircraft is equivalent to the
condition of non intersection of the discs. In the following
we refer to those as the safety disc of the aircraft. The fol-
lowing sections will detail the construction of linear conict
avoidance constraints that are equivalent to (1).

To avoid possible conicts, we consider two di�erent
cases:

1. we allow aircraft to change the velocity of ight but the
direction of motion remains �xed. We will refer to this case
as the Velocity Change problem (VC problem);
2. aircraft y at the same velocity v and are only allowed
to change instantaneously the direction of ight. We will
refer to this case as the Heading Angle Change problem
(HAC problem).

In both cases each aircraft is allowed to make a maneu-
ver, at time t = 0, to avoid all possible conicts with other
aircraft. We assume that no conict occurs at time t = 0.

Let's de�ne as qi the velocity change and as pi the head-
ing angle deviation of the i-th aircraft. The problems con-
sist in �nding a minimum velocity change qi (VC problem),
or a minimum heading angle deviation pi (HAC problem),
for each aircraft, to avoid any possible conict while de-
viating as little as possible from the original ight plan.
Both problems considered can be formulated as mixed lin-
ear optimization problems with linear constraints and some
boolean variables. In the following sections we, separately,
formulate conict avoidance constraints that are linear in
those velocity variations qi and angular deviations pi.

III. Conflict avoidance constraints for the VC

problem

In this section we obtain, by geometrical considerations,
the conict avoidance constraints for the VC problem. The
VC problem consists of aircraft that y along a given �xed
direction and can maneuver only once with a velocity vari-
ation. The i-th aircraft changes its velocity of a quantity qi
that can be positive (acceleration), negative (deceleration)
or null (no velocity variation). Each aircraft has upper and
lower bounds on the velocity vi: vi;min � vi � vi;max. For
commercial ights, during en route ight we usually have
vi;max�vi;min

vi;min

� 0:1. The problem then is to �nd an admis-

sible value of qi, for each aircraft, such that all conicts are
avoided and such that the new velocity satis�es the upper
and lower bounds. Hence, given the initial velocity vi, after
a velocity variation of amount qi the following inequalities
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Fig. 1. Geometric construction for conict avoidance constraints in
the case of intersecting trajectories for the VC problem. In this
case Aircraft 1 do not intersect the shadow generated by Aircraft
2 then no conict will occur between the two aircraft.

must be satis�ed:

vi;min � vi + qi � vi;max: (2)

In this section we construct the conict avoidance con-
straints such that are linear in the unknowns qi; 8i =
1; :::; n.
We restrict to the case of two aircraft to obtain conict

avoidance conditions and then we will consider the general
case of n aircraft. Consider two aircraft denoted 1 and 2,
respectively and let (xi; yi; �i); i = 1; 2 be the aircraft posi-
tion and direction of motion and vi be the initial velocity.

Referring to Figure 1, we consider the two velocity vec-
tors:

v̂1 =

�
(v1 + q1) cos �1
(v1 + q1) sin �1

�
;

v̂2 =

�
(v2 + q2) cos �2
(v2 + q2) sin �2

�
;

and the di�erence vector:

v̂1 � v̂2 =

�
(v1 + q1) cos(�1)� (v2 + q2) cos(�2)
(v1 + q1) sin(�1)� (v2 + q2) sin(�2)

�
:

The two lines parallel to v̂1� v̂2 that are tangent to aircraft
2 localize a segment on the direction on motion of 1 (refer
to Figure 1): we will refer to this segment as the shadow of
aircraft 2 along the direction of 1. A conict occurs if the
aircraft 1 with his safe disc intersects the shadow generated
by aircraft 2, or vice-versa since v̂1 � v̂2 and v̂2 � v̂1 are
parallel.
Consider now the two non-parallel straight lines that are

tangent to the discs of both aircraft (see Figure 2). Let l12,
r12 be the angles between these two straight lines and the

Fig. 2. The two non parallel straight lines tangent to the safety discs
of radius d=2 for two aircraft at distance A12=2.

horizontal axis. We have l12 = !12 + � and r12 = !12 � �

with � = arcsin
�

d
A12

�
where A12 is the distance between

the two aircraft and !12 is the angle between the line that
joins the aircraft and the x-axis.
No conict occur if

(v1 + q1) sin(�1)� (v2 + q2) sin(�2)

(v1 + q1) cos(�1)� (v2 + q2) cos(�2)
� tan(l12)

or

(v1 + q1) sin(�1)� (v2 + q2) sin(�2)

(v1 + q1) cos(�1)� (v2 + q2) cos(�2)
� tan(r12)

(3)

To obtain non conict constraints for n aircraft we need to
consider non conict conditions described in (3) for all pairs
of aircraft. Let then consider the general pair of aircraft
(i; j). We have to distinguish two possible cases: 1) (vi +
qi) cos(�i)� (vj + qj) cos(�j) < 0 and 2) (vi + qi) cos(�i)�
(vj + qj) cos(�j) > 0. Let hi = tan(lij) cos(�i) � sin(�i),
hj = tan(lij) cos(�j)�sin(�j), ki = tan(rij) cos(�i)�sin(�i)
and kj = tan(rij) cos(�j)� sin(�j), we obtain the following
groups of constraints:
Case 1: (vi + qi) cos(�i)� (vj + qj) cos(�j) < 0�

� cos(�i)qi + cos(�j)qj � vi cos(�i)� vj cos(�j)
hiqi � hjqj � �vihi + vjhj

or�
cos(�i)qi � cos(�j)qj � �vi cos(�i) + vj cos(�j)
�hiqi + hjqj � vihi � vjhj

(4)

Case 2: (vi + qi) cos(�i)� (vj + qj) cos(�j) > 0�
� cos(�i)qi + cos(�j)qj � vi cos(�i)� vj cos(�j)
�qiki + qjkj � viki � vjkj

or�
cos(�i)qi � cos(�j)qj � �vi cos(�i) + vj cos(�j)
qiki � qjkj � �viki + vjkj

(5)
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These two groups of constraints will be included in the
model as or-constraints.
The case (vi + qi) cos(�i) � (vj + qj) cos(�j) = 0 can be

easily handled, considering a rotation of the airspace such
that the above condition is not satis�ed. In fact the VC
problem is obviously invariant with respect to rotations of
the ight plane.
All constraints obtained are linear in the velocity vari-

ation qi. To conclude the formulation of the problem we
must consider the upper and lower bounds in (2) that are
already linear in qi.
If the goal of each aircraft is to avoid all possible conicts

in minimum time then we want to maximize the value of
qi such that if qi is negative we minimize the admissible
deceleration.
If we want to formulate this as a minimization problem

we can chose
Pn

i=1�qi as the cost function.
Obviously a solution to the conict problem does not al-

ways exist, for example in the case of head-to-head conict
a change of velocity is not suÆcient to avoid the conict.
Cases like the head-to-head conicts can be easily solved
with an heading angle change maneuver. In next section
we then consider this kind of maneuver to avoid conict.

IV. Conflict avoidance constraints for the

HAC problem

The HAC problem consists of n aircraft that y at the
same constant velocity v and that can maneuver only once
with an instantaneous heading angle deviation [7]. The i-
th aircraft changes its heading angle of a quantity pi that
can be positive (left turn), negative (right turn) or null (no
deviation).
The problem is then to �nd an admissible value of pi

for each aircraft such that all conicts are avoided with
the new heading angle (direction of ight), �i + pi. In
this section, we formulate the non-conict constraints for
the HAC problem as inequalities that are linear in the un-
knowns pi; 8i = 1; :::; n and that are function of the aircraft
initial con�gurations (xi; yi; �i); i = 1; :::; n.
As in previous section we restrict to the case of two

aircraft to obtain conict avoidance conditions and then
we will consider the general case of n aircraft. Con-
sider two aircraft denoted 1 and 2, respectively. Let
(xi; yi; �i + pi); i = 1; 2 be the aircraft's states after the
maneuver of amplitude pi. In this section we show that
it is possible to predict the existence of conicts between
the two aircraft based on those aircraft's initial con�gu-
rations. The constraints will be obtained by geometrical
construction.
In order to build non conict constraints for the HAC

problem we can easily give some conditions of non conict.
In fact, considering the case of a pair of aircraft that have
directions of ight that are not intersecting, we are sure
that conicts will never occur. In the following subsection
we consider the case of non intersecting directions of ight
and we obtain conditions of non intersections by geometri-
cal constructions. Then the case of intersecting directions
of ight will be considered.

Fig. 3. Case of two aircraft, if the heading angle of Aircraft 2 does
not lie in the outlined sector of amplitude Æ then the trajectories
do not intersect and no conict will occur.

A. Non-intersecting directions of motion

Consider the case when the geometric half-lines repre-
senting the extrapolated trajectories of the two aircraft
do not intersect. Consider for example Figure 3: aircraft
1 (on the left) has heading angle �1 + p1. If the head-
ing angle (�2 + p2) of the second aircraft does not lie in
the outlined sector of amplitude Æ then the half lines ob-
tained by projecting forward the motion of both aircraft
do not intersect. Conditions when such a case occurs can
be expressed easily via some inequality constraints. Let
!12 be the angle between the line that joins the aircraft
and the horizontal axis, two possible cases of relative posi-
tions have to be considered: case 1) 0 � !12 � � from the
case 2) �� � !12 � 0. Furthermore consider the quantity
g1 = p1 + �1 � !12: if g1 � � or g1 � �� we have to shift
the value g1 of a quantity �� or � respectively, so that
the values that we consider lie in [��; �], while no shift for
the case �� � g1 � � is needed. Due to those possible
cases we obtain three groups of constraints for each one of
the two cases of !i2. Then the following conict avoidance
conditions, linear in p1 and p2, are obtained by geometric
construction:

Case 1: 0 � !12 � �

8>>>><
>>>>:

!12 � � � �1 � p1 � !12 � �1
and8<
:

�1 + p1 � �2 � p2 � �
or
�� � �2 � p2 � !12 � � � �2;

or8<
:

!12 � �1 � p1 � � � �1
and
!12 � � � �2 � p2 � p1 + �1 � �2

or8>>>><
>>>>:

�� � �1 � p1 � !12 � � � �1
and8<
:

!12 � � � �2 � p2 � � � �2;
or
�� � �2 � p2 � p1 + �1 � �2;

(6)
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Fig. 4. Geometric construction for conict avoidance constraints in
the case of intersecting trajectories for the HAC problem. In this
case the aircraft 1 intersect the shadow of aircraft 2, then a future
conict between the two aircraft has been detected.

Case 2: �� � !12 � 0
8>>>><
>>>>:

!12 � �1 � p1 � !12 + � � �1
and8<
:

�� � �2 � p2 � p1 + �1 � �2
or
!12 + � � �2 � p2 � � � �2;

or8<
:

�� � �1 � p1 � !12 � �1
and
p1 + �1 � �2 � p2 � � + !12 � �2

or8>>>><
>>>>:

!12 + � � �1 � p1 � � � �1
and8<
:

�� � �2 � p2 � !12 + � � �2;
or
p1 + �1 � �2 � p2 � � � �2;

(7)

Just one of the two groups of constraints will be included
in the model as or-constraints depending on the sign of !12.
In the general case of n aircraft, we have one of those group
of or-constraints for each pair of aircraft (i; j); for i < j.

B. Intersecting directions of motion

Referring to Figure 4, consider two aircraft (x1; y1) and
(x2; y2) with heading angles �1 and �2 respectively. Mo-
mentarily consider p1 = p2 = 0 for simplicity (the gen-
eral equation will be expressed in the next section). Con-
sider the angle of amplitude (�1 � �2) comprised within
the aircraft ight directions. The bisector b is then a
straight line that forms an angle (�1 + �2)=2 with the x-
axis, while the orthogonal to the bisector forms an angle of
m12 = (�1 + �2 + �)=2 with the x-axis.
The family of straight lines of slope tan(m12), orthogonal

to the bisector, represents also the projection of one aircraft

along the direction of motion of the other. The two lines in
this family that are tangent to aircraft 2 localize a segment
on the direction on motion of 1 (refer to Figure 4): we
will refer to this segment as the shadow of aircraft 2 along
the direction of 1. As described in section III, a conict
occurs if aircraft 1 with his safe disc intersects the shadow
generated by aircraft 2, or vice-versa since the angle m12

is symmetric in �1 and �2.
Consider again �gure 2, let l12 = !12+� and r12 = !12�

� with � = arcsin
�

d
A12

�
where A12 is the distance between

the two aircraft and !12 is the angle between the line that
joins the aircraft and the x-axis. The condition of non
intersection of the shadows is equivalent to the following
condition:

m12 � r12
or
m12 � l12;

(8)

where m12 =
�1+�2+�

2
.

Consider now n aircraft and their initial con�gurations
(xi; yi; �i + pi); 8i = 1; :::; n. We have shown in previous
sections that with some geometric considerations it is pos-
sible to predict a conict between pairs of aircraft using
only information given by initial states of all n aircraft and
the deviations pi. While the constraints given by (6) and
(7) are linear in the heading angle deviation pi, the con-
straints obtained above are not explicity expressed in pi.
We now reformulate them as linear constraints in pi.
Considering the general case of n aircraft and deviations

pi, from Equation (8) no conict between the aircraft i and
aircraft j occurs if

�i + pi + �j + pj + �

2
� rij

or
�i + pi + �j + pj + �

2
� lij

(9)

where �i has been replaced by the new heading angle �i+pi
after the maneuver of amplitude pi. Values of lij and rij

are given by !ij � arcsin
�

d
Aij

�
and lij > rij where Aij =p

(xi � xj)2 + (yi � yj)2, and !ij = arctan
�
yi�yj
xi�xj

�
,

Let's now de�ne Lij = lij �
�i+�j+�

2
and Rij = rij �

�i+�j+�

2
. In order to avoid conicts each pair of aircraft

(i; j) with i < j and such that
�i+pi+�j+pj+�

2
2 [��; �]

must satisfy one of the following inequalities:

pi + pj � 2Rij

or
�pi � pj � �2Lij

(10)

If
�i + pi + �j + pj + �

2
� �

or if
�i + pi + �j + pj + �

2
� ��

the quantities Ri;j and Li;j must be shifted of a quan-
tity � and �� respectively, so that we work with angles in
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Fig. 5. Example of forbidden sectors in the Los Angeles control
sector. For the aircraft A we need to introduce more constraints
on the direction of ight due to forbidden zones of airspace.

[��; �]. Hence considering all possible cases for the values

of
�i+pi+�j+pj+�

2
we obtain three groups of constraints:

1. Case
�i+pi+�j+pj+�

2
2 [��; �]:

pi + pj � � � �i � �j
�pi � pj � �3� + �i + �j
pi + pj � 2Rij

or
pi + pj � � � �i � �j
�pi � pj � �3� + �i + �j
�pi � pj � �2Lij

(11)

2. Case
�i+pi+�j+pj+�

2
> �:

�pi � pj � �� + �i + �j
pi + pj � 2Rij + 2�
or
�pi � pj � �� + �i + �j
�pi � pj � �2Lij � 2�

(12)

3. Case
�i+pi+�j+pj+�

2
< ��:

pi + pj � �3� � �i � �j
pi + pj � 2Rij � 2�
or
pi + pj � �3� � �i � �j
�pi � pj � �2Lij + 2�

(13)

These three groups of constraints will be included in the
model as or-constraints.
The model of the HAC problem is now complete. In the

case of heading angle maneuvers we can consider in the
model also other kind of constraints. For example we can
consider the possible existence of forbidden zone of airspace
due to sever weather or overloaded space, see Figure 5.
To model those forbidden zone, it is suÆcient to consider
bounds of the heading angle deviations pi.

V. Problem Formulation

The set of constraints obtained in sections III and IV
are linear in the decision variables qi and pi for the VC
and the HAC problems respectively. We now show how to
recast them as mixed-integer linear constraints suitable for
standard optimization software such as CPLEX [10].

A. Writing or-constraints as mixed-integer programming
constraints

Let now consider, for simplpicity, an example of or-
groups of constraints similar to the conict avoidance con-
straints described in previous sections:

8<
:

c1 � 0
and
c2 � 0

or8>>>><
>>>>:

c3 � 0
and
c4 � 0
and
c5 � 0

or8<
:

c6 � 0
and
c7 � 0

(14)

where the terms ci, i = 1; : : : ; 7 are linear expressions in
the decision variables (heading angle deviations or velocity
variation).
The way to transform these or-constraints into more con-

venient and-constraints is to introduce Boolean variables
[15]. Let fk with k = 1; 2; 3, be a binary number that
takes value 1 when one of the or-constraint is active and
zero otherwise (for example f1 = 1 if constraints c1 and c2
are active, f1 = 0 otherwise). Let G be a large arbitrary
number, then the previous set of constraints is equivalent
to:

c1 �Gf1 � 0
c2 �Gf1 � 0
c3 �Gf2 � 0
c4 �Gf2 � 0
c5 �Gf2 � 0
c6 �Gf3 � 0
c7 �Gf3 � 0
f1 + f2 + f3 � 2

(15)

The last constraint indicates that at least one of the three
groups of and-constraints must be veri�ed.

B. Variables and constraints

Applying the procedure described in the previous section
to our model of the aircraft conict resolution and writing
all the constraints in the form aizi+ajzj � bk where zi = qi
for the VC problem and zi = pi for the HAC problem, for
each pair of aircraft we obtain:

� VC problem:
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{ 9 linear constraints, 4 from (4), 4 from (5), and 1
boolean variable constraint.
{ 4 Boolean variables due to the presence of 2 groups of
constraints in (4) and 2 in (5),
� HAC problem:
{ 35 linear constraints, 20 from (6) or (7), 14 from (11),
(12) and (13), and one constrain on the boolean variables
(similar to the last one in (15)).
{ 11 Boolean variables, due to the presence of 5 groups of
constraints in (6) or (7), and 6 in (11), (12) and (13) that
are in or-relation.

In section III, for the VC case, we have chosen the cost
function to be

Pn
i=1�qi. Given n aircraft we have n(n �

1)=2 aircraft pairs, resulting in a total of n+4n(n�1)=2 =
2n2�n variables and 4n(n�1)=2+2n constraints, the last
2n are due to the upper and lower bounds on the velocity.

A useful cost function for the HAC problem is to min-
imize the in�nity norm of vector pi; 8i = 1; :::; n, i.e.
minimize the max(jp1j; :::; jpnj). A linear cost function is
obtained introducing one auxiliary variable � such that
pi � �; and � pi � �. Given n aircraft we have n(n� 1)=2
aircraft pairs, resulting in a total of n + 11n(n� 1)=2 + 1
variables and 35n(n� 1)=2 + 2n constraints.

Another possible choice for the cost function is the 1-
norm of vector p = (p1; :::; pn), i.e. minimize

Pn
i=1 jpij; in

this case n more variables must be introduced (gi such that
pi � gi and �pi � gi, for i = 1; :::; n).

VI. Case studies

As shown in previous sections given the initial positions
and the goal con�gurations of the aircraft we can easily
obtain a mixed integer linear problem. In this section we
report the results obtained using CPLEX to solve both the
VC and the HAC problems. Unless speci�ed, the stan-
dard value of safety distance of 5nm (nautical miles) has
been considered. In the �rst group of case studies, we have
considered aircraft symmetrically distributed on a circle of
radius 60nm centered in the origin. Each aircraft is initially
headed towards the origin and the goal position is the point,
on the circle, that is symmetric to the initial position with
respect to the origin. In the second group of case studies
a general case in which no symmetry is involved and each
aircraft has generic initial and �nal con�gurations has been
considered. In the following, results for both problems are
presented.

A. Case studies for VC problem

Consider VC problem results and the case in which all
aircraft in the current con�guration are on a circle centered
in the origin and would have a conict at the origin at
the same time, the cases of 5 and 11 aircraft have been
considered (see �g. 7 top left and top right respectively).
Unpair numbers of aircraft have been chosen in order to
avoid the case of head-to-head conicts that are unsolvable
in the VC case.

All aircraft are ying at velocity 8:7nm/min per unit of
time with lower and upper bound of value 8 and 8:7nm/min
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Fig. 6. Generic case of 8 aircraft in a shared airspace, three pairs of
aircraft are involved in four conicts.

. Given the cost function presented in III we want to max-
imize the velocity of each aircraft such that no conict oc-
cur.
Consider also the generic case of 8 aircraft considered in

�gure 6 in which four pairs of aircraft are involed in three
conicts.
Results of those scenarios are reported in the following

table. In the table we indicate the computational time (in
seconds) of CPLEX to �nd the optimal solution to the MIP
problem for the VC case. With # var. and # cons. we
indicate the number of variables and of constraints in the
VC problem respectively. Let n be the number of aircraft
considered in the simulations:

n TIME (sec) # var. # cons.
5 0.01 45 50
8 0.01 120 128
11 1.13 231 242

B. Case studies for HAC problem

Consider the HAC problem and the case in which, in ab-
sence of maneuvers, all aircraft would have a conict at the
origin at the same time (same scenario as the one consid-
ered for VC case studies). Figure 7 shows the symmetric
scenario of the aircraft (5, 11, 13 and 15 aircraft) if no ma-
neuver is done while in �gure 8 the solutions of the HAC
problem of the four scenario are plotted.
In �gure 9 (top left) is shown a generic scenario of 11

aircraft in an airspace of 180nm� 140nm. Other aircraft
have been adjoin in order to obtain a scenario with 13, 15
and 17 aircraft. In the case of 11 aircraft 4 conict are
detected, while 9, 12 and 16 conicts are detected for the
case of 13, 15 and 17 aircraft respectively. In �gure 10 the
solutions of the HAC problem, obtained using CPLEX, for
the four scenario are plotted.
In the following table we indicate the computational time

(in seconds) of CPLEX to �nd the optimal solution to the
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Fig. 7. We consider the case of 5,11, 13 and 15 aircraft in a symmetric
con�guration, the aircraft lie in a circle centered in the origin and
of radius 60nm. All the aircraft will to cross the origin at the same
time.
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Fig. 8. In this �gure is plotted the scenario of �gure 7 when the
aircraft has done the conict avoidance maneuver obtained by
CPLEX as the solution of the HAC problem.

MIP problem for the HAC case and the maximum angular
deviation (��) from the original path. With # var. and #
cons. we indicate the number of variables and of constraints
in the HAC problem respectively. Let n be the number of
aircraft considered in the case study; the asterisc indicates
the symmetric case while 17b is the same scenario as for
the 17 aircraft case (non symmetric case) in which we have
considered d = 4:5nm instead of d = 5nm. Equivalently,
we have scaled the airspace such that aircraft have greater
relative distances at t = 0. It is important to notice that
the time is considerably decreased in the 17b case respect
to the 17 aircraft case.
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Fig. 9. We consider the case of 11, 13, 15 and 17 aircraft in a generic
con�guration, di�erent conict will occur if no conict avoidance
maneuver is done.
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Fig. 10. In this �gure is plotted the scenario of �gure 9 when the
aircraft have done the conict avoidance maneuver obtained by
CPLEX as the solution of the HAC problem for the di�erent
scenario.

n TIME (sec) �� (rad) # var. # cons.
5* 0.10 0.07 116 360
11 1.38 0.11 617 1947
11* 2.17 0.14 617 1947
13 4.69 0.11 872 2756
13* 8.62 0.17 872 2756
15 6.73 0.11 1171 3705
15* 15.82 0.2 1171 3705
17 13.05 0.15 1514 4794

17bis 6.82 0.14 1514 4794

The computation times are quite low, compared with
other methods used to solve similar problems [7]. Thus this
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Fig. 11. Multi-segmented paths for the problem of 5 aircraft crossing
the origin solved every 5 minutes, the obtained path is a multi-
segmented path and the aircraft reach their �nal con�gurations.

conict solver may be used in a real or fast-time simulation
environment.
For example consider the case of 5 aircraft in the

symmetric scenario plotted in �gure 7 (top left). Sup-
posing that the aircraft are ying with a velocity of
8nm/min(480nm/h), we solve the HAC problem every
�T = 5min and obtain the paths illustrated in �gure 11.
The algorithm is rerun twice because all paths take around
15min; in the �gure we have plotted also the con�gurations
relative to the instants in which the algorithm has been run
(t = 0, t = 5, t = 10 minutes).
Every time the algorithm is rerun current con�gurations

are considered and in particular the new direction of ight
is the direction through the original goal con�guration. In
such a way aircraft will be able to reach the �nal destination
also if have deviated from the original destination in order
to solve conicts.
The lower computational time for the VC problem re-

spect to the HAC problem are due to the smaller number
of constraints and boolean variables in the VC model as de-
scribed in section V. On the contrary, the VC strategy does
not solve all possible conicts also between a pair of air-
craft, as in the head-to-head conict that is easily solved by
the HAC strategy. Furthermore, also in presence of conict
between few aircraft the velocity variation strategy seems
to cost more (in term of time of ight) than the heading
angle deviation strategy. This is clear especially for the
symmetric case considered in the simulation presented in
this section. If for example we consider the case in �gure
12 on the left and we solve both HAC and VC problems.
In the HAC problem in order to compare the total time of
ight between the two strategies, we allow aircraft to ma-
neuver with another single heading change in order to reach
the original goal con�guration. This maneuver is done as
soon as possible and do not generate another conict be-
tween the two aircraft. In �gure 12, on the right, the total

path for the HAC case is plotted. If we consider a velocity
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Fig. 12. On the left there is the scenario that we consider for both
HAC and VC problems, on the right is the scenario for the HAC
problem with the maneuver that allow aircraft to reach the �nal
con�guration.

of 8; 7nm per unit of time also in the HAC case, with the
data obtained by CPLEX we can compute the total time
of ight for both airplane: 13:8min for both airplanes in
the HAC case and 13:7min and 15min for the aircraft in
the VC case. Then in the HAC case we have a total ight
time of 27:6min that is less than 28:7min that is the total
ight time in the VC case.

VII. Conclusions and future work

Two conict resolution maneuvers have been considered
and two relative models have been presented. Based on
simple geometric construction of the conict avoidance con-
straints two di�erent linear minimization problems with
linear constraints and some integer variables have been ob-
tained. The CPLEX software package has been used to
solve the problem and due to the fast computation of the
tool we were able to handle a large number of aircraft. Op-
timal solutions have been found quickly (in few seconds)
on diÆcult cases such as the one of 15 aircraft that want
to cross the same point at the same time. Future investi-
gation of the optimal maneuver (speed change or heading
angle), in term of time of ight, are part of a future work.
Due to the nonlinearity that follow from considering both

heading angle and velocity variation, a future work is to
consider other variables and formulate it as a mixed integer
linear problem by extending the approach proposed in [6],
for example.
Another issue is to consider the MIP problem as an ap-

proximation of the non linear problem presented in [4]; this
can be done considering the perturbation in the right hand
side vector of the MIP models.
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