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On Optimal Cooperative Conflict Resolution for
Air Traffic Management Systems

Antonio Bicchi and Lucia Pallottino

Abstract—In this paper, we consider optimal resolution of air
traffic (AT) conflicts. Aircraft are assumed to cruise within a given
altitude layer and are modeled as a kinematic system with constant
velocity and curvature bounds. Aircraft cannot get closer to each
other than a predefined safety distance. For such system of mul-
tiple aircraft, we consider the problem of planning optimal paths
among given waypoints. Necessary conditions for optimality of so-
lutions are derived and used to devise a parameterization of pos-
sible trajectories that turns into efficient numerical solutions to the
problem. Simulation results for a realistic aircraft conflict scenario
are provided. A decentralized implementation of the optimal con-
flict resolution scheme is introduced that may allow free-flight co-
ordination in a cooperative airspace management scheme. Impact
of decentralization on performance and safety is finally discussed
with the help of extensive simulations.

Index Terms—Air traffic (AT) management systems, conflict res-
olution, optimal control.

I. INTRODUCTION

A IRCRAFT coordination in increasingly crowded air space
is becoming a major concern for air traffic control (ATC)

authorities in the United States, Japan, and Europe [1], [2].
Conventional management schemes are being replaced by ex-
tensively computer-integrated air traffic management systems
(ATMS) to maintain safety levels and increase throughput of
congested airways. On the other hand, today’s aircraft instru-
mentation and communications allow increasingly complex
decisions to be taken on board, thus enabling a progressive
move toward decentralized control scenarios often referred to
as free-flight ATMS [3], [4].

Our work is aimed at providing efficient algorithms for con-
flict resolution and strategies, which are inherently safe and
minimize fuel consumption, and to address pollution as well as
economic concerns. In this paper, we apply optimal control and
game theory (with particular reference to the branch addressing
cooperative games, also known as team theory), to a kinematic
model of AT.

Specifically, we will address the problem of planning mo-
tions of a system of multiple aircraft whose dynamics are de-
scribed by the point-mass model [6], [7]. Aircraft conflicts are
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modeled as collisions between the “conflict envelopes” that sur-
round each aircraft. We make the central assumption that con-
flicts are to be solved while aircraft cruise within a fixed altitude
layer. We also assume that aircraft dynamics and disturbances
are dealt with, and “backstepped” to [8], first-order rate equa-
tions by autopilot controllers. Aircraft can thus be modeled in a
purely kinematic fashion, as points in a plane with an associated
fore axis and conflict envelope radius. The task of each vehicle is
to reach a given goal configuration from a given start configura-
tion (start and goal configurations represent way points planned
for the aircraft by the higher level planner). Optimal solutions
in the sense of minimizing total flight time will be considered.

Another important assumption we make is that all interacting
aircraft cooperate toward optimization of a common goal as
agents in the same team. This will apply to all aircraft in the cen-
tralized schemes to be discussed, while cooperation will only be
assumed among aircraft that belong to the same cell of the in-
formation structure in our proposed decentralized scheme. Such
a cooperative game approach has been considered already in
the ATC literature (see, e.g., [9]) and should be contrasted with
the antagonistic approach developed by [10], which results in
single-aircraft strategies that are safe against worst-case maneu-
vers of all other potentially conflicting vehicles.

In the remaining sections of this paper, we will present the
adopted model of AT (Section II) and discuss necessary condi-
tions for optimality of conflict resolution schemes (Section III)
from which numerical algorithms are derived (Section IV). Fur-
thermore, the decentralized implementation of this AT man-
agement scheme will be described within the game—theoretic
framework of teams (Section V). The performance and robust-
ness of this decentralization scheme is assessed by means of
simulation trials in Section VI.

II. M ODELING

The point-mass aircraft model is a widely accepted descrip-
tion of dynamical effects encountered in civil aviation [11]. It
consists of six equations, which, disregarding earth rotation and
curvature, are

(1)

(2)

(3)

(4)

(5)

(6)
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Fig. 1. Aircraft coordinate system.

Here, denote the components of the position of the
center of gravity (CG) of the aircraft in a ground-based ref-
erence frame and are usually referred to as down range (or
longitude), cross range (or latitude), and altitude, respectively.
Angles are also defined with respect to the same frame:is
the bank angle; is the heading angle; andis the flight-path
angle (see Fig. 1). The ground-speed velocityis assumed
to be equal to airspeed, where is the engine thrust, is
the aerodynamic drag, the aircraft mass, the gravity
acceleration. Notice that the thrust depends on the altitude

, Mach number , and throttle by an assumedly known
relationship . Also, it is assumed that the drag
is a known function of , , and of the aerodynamic lift

. The bank angle , the engine thrust ,
and the load factor are the control variables for the aircraft.
The bank angle is commanded combining rudder and ailerons
trims; the thrust is commanded by the engine throttle, and the
load factor by elevators . Using suitable nonlinear
feedback of states (described in detail e.g., in [8] or [11]), the
point-mass model can be linearized to Brunovsky’s canonical
form, i.e.,

(7)

and the ensuing linear system can be easily controlled along
planned trajectories , , by adopting robust
linear control techniques. The linearized equations (7), comple-
mented with constraints on applicable inputs, form the basis of
many aircraft trajectory optimization problems in the literature.
Constraints are usually written in terms of original state vari-
ables and controls. The most common constraints considered are
upper and lower bounds on airspeed, altitude, load factor, and
thrust, and maximum climb and descent rates. These constraints
can be translated in the linearized coordinates and controls, al-
though this usually generates very involved formulations of the
constraints that contribute a major obstacle toward analytic so-
lution of optimization problems.

In AT conflict resolution, a crucial consideration is the sepa-
ration constraint imposing that the so-called conflict envelopes
of all aircraft do not overlap during flight. The current defini-
tion of conflict [12] of two aircraft involves that their altitude
differs by less than 600 m (2000 ft) or that they get closer in a
horizontal plane than 9260 m (5 nmi). The constraint can be vi-
sualized by considering for each aircraft a disk 600 m (2000 ft)

Fig. 2. The airspace is structured in separate layers within which traffic
conflicts have to be resolved.

high and with a 4630 m (2.5 nmi) radius, centered in the aircraft
representative point (e.g., the CG); in this case, the separation
constraint imposes that the disks do not overlap during flight.

In order to make an analytical solution of the optimal AT con-
flict resolution problem possible and to gain the geometric in-
sight that is often missing from numerically obtained solutions,
the dynamic point-mass model is still too complex. Based on
current practice in ATC, we introduce here a few simplifying as-
sumptions that will make the problem tractable, while keeping
the model reasonably close to real aircraft cruise conditions.

First, we consider ATC problems that possess an altitude-lay-
ered structure, in which the airspace is subdivided in horizontal
layers of depth (see Fig. 2). Each aircraft is supposed to be
given waypoints belonging to the same layer and not to be al-
lowed to leave the layer while cruising between the waypoints.
Buffer layers of depth are interposed between different alti-
tude layers, where flight is forbidden. By imposing this structure
on the airspace with m , the conflict resolution
problem is effectively decoupled, as no conflict can happen be-
tween aircraft of different layers. Conflicts need only to be re-
solved among aircraft flying within the same layer and only the
distance between projections of the aircraft CGs on a horizontal
plane need to be considered. As a consequence, to all prac-
tical purposes in the problem at hand, we may assume that lon-
gitudinal dynamics are regulated independently from the con-
flict resolution problem and disregard altitude variations in the
model. A simplified planar aircraft model can then be adopted
as

(8)

(9)

(10)

where is the horizontal velocity, and
. Furthermore, we assume that forward

dynamics (6) can be effectively controlled by the autopilot
so as to track a given reference with
negligible errors, provided that the reference airspeed belongs
to a given interval and is sufficiently smooth. Henceforth, we
will regard and as control inputs to the kinematic model
(8) through (10). Bounds on the airspeed
and on the flight-path angle reflect in bounds on
the new inputs as

(11)

The other input to the kinematic planar aircraft model is,
whose physical dimensions are those of an angular velocity and
will be termedyaw rate. Constraints on the yaw rate result from
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constraints on the bank angle and on the aerody-
namic lift (proportional to the square of airspeed: ).
Accordingly, a bound on the yaw rate is obtained as

(12)

where

The constant has the dimensions of a length and, actually, in
the kinematic model (8)–(10), (12) defines the minimum cur-
vature radius that planar trajectories of the aircraft may achieve
(the bound is actually achieved in planar cruise ).

A. Optimization Problem Statement

According to the previous discussion, consideraircraft
in the plane, whose individual configuration is described by

. Each aircraft is assigned two
waypoint configurations and , respectively. The initial
waypoint time is assigned and denoted by. Assume aircraft
are ordered such that . We denote by

the time at which theth vehicle reaches its goal and let

. Motions of the th airplane before and after
are not of interest.

The th aircraft motion is described by the control system
, with

(13)

All vehicles are subject to the following constraints.

1) Linear velocity is bounded: .
2) Path curvature is bounded: , where

and denotes the minimum
curvature radius of trajectories for theth vehicle.

3) Distance between two vehicles must remain larger than
or equal to a given separation limit:

, at all times
.

The length of the planar path joining the waypoints for theth
vehicle is

(14)

Consider the optimal conflict resolution problem for multiple
vehicles defined as

(15)

where for shortest total path problems and for
minimum total time problems. In this paper, we restrict to the
case that the aircraft velocity are constant. In this hypothesis,
the two problems are equivalent and, henceforth, we will use the
minimum total time formulation.

B. Formulation as an Optimal Control Problem

Notice that the cost for the total time problem
is not in the standard

Bolza form. In order to use powerful results from optimal
control theory, we rewrite the problem as follows. Let
denote the Heavyside function, i.e.,

and define the window function .
Then the minimum total time cost is written as

(16)

Using the notation , define the
aggregated state , controls
and and define the admissible con-
trol set accordingly. Also, define the separation vector

and define the
vector field . Finally, introduce
matrices , with if , else

and functions , where is a
vector of configurations. Our optimal control problem is then
formulated as follows.

Problem 1: Minimize subject to , ,
and to the two sets of interior-point constraints

(unspecified).

III. N ECESSARYCONDITIONS

Necessary conditions for problem 1 can be studied by ad-
joining the cost function with the constraints multiplied by un-
specified LaGrange covectors. Omitting to write explicitly the
extents of iterative operations when extending from 1 to, let

(17)

with and costates of suitable dimension and with if
, if , and and are the unknown

multiplier vectors corresponding to imposing initial and final
conditions, respectively. Let the Hamiltonian be defined as

(18)

Substituting (18) in (17), integrating by parts, and computing
the variation of the cost, one gets

(19)
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(recall that ). Therefore, we have the following neces-
sary conditions for an extremal solution:

(20)

(21)

(22)

(23)

admiss. (24)

Extremal trajectories for theth aircraft will be comprised in
general of unconstrained arcs (with , ) and
of constrained arcs, where the constraint is marginally satisfied

. We will accordingly distinguish the discussion
of necessary conditions.

A. Extremal Unconstrained arcs

Suppose that for theth vehicle, the separation constraints are
not active in the interior of an interval ,

, i.e., , , . The character-
ization of optimal solutions in the unconstrained case proceeds
along the lines of the classical Dubins solution (see [13]–[15]).
We succinctly report some results here for the reader’s conve-
nience.

Expanding (23), one gets

(25)

By integrating (25) one gets ,
, and

, with constant , .
In light of these relationships, (20) and (21) imply that the

costate components and are piecewise constant, with
jumps possibly at the start and arrival time of theth aircraft.
The addend in the Hamiltonian relative to theth vehicle and

can be written, respectively, as

and

(26)

where and .
As the model is not explicitly time-dependent, from Pon-

tryagin minimum principle (PMP), we have const.
along time-extremal unconstrained arcs. Also, from PMP, we
have that extremal arcs correspond to values of the control

that minimize the Hamiltonian.
Extremals of within the open segment can

only obtain if

(27)

Notice that (27) is the equation of a straight line in the flight
plane. In the following, such lines will be referred to assup-
porting lines.

If condition (27) holds on a time interval of nonzero measure,
then on the interval: this implies ,
hence either or and then .

In the former case we have const.,
hence, possible paths are either a line segment (denoted by a
letter ) or an arc of circle (denoted by a letter). Clearly, such
solution applies only to initial and final waypoints lying on the
same line or circle, respectively. For , conditions (27) and
(26) imply and then for . In such
an interval, the aircraft is flying on a straight route (coinciding
with a supporting line) in the horizontal plane described in
(27).

Other extremals of occur at the boundaries of the input set
. The sign of the minimizing yaw rate is opposite

to that of ; in other words, the supporting line also represent
the switching locus for the yaw rate input. Trajectories corre-
sponding to correspond to circles of minimum
radius followed counterclockwise or clockwise, respectively.

The following propositions can be proved to hold along ex-
tremal paths [15]:

1) the quantity remains
constant;

2) straight arcs and inflexion point (changes in curvature)
belong to the supporting line;

3) any circular arc between two points where has
length .

In the case of a single vehicle, the discussion of optimal un-
constrained arcs can be further refined by several geometric ar-
guments, for which the reader is referred directly to the literature
[13]–[15]. Optimal paths for a single vehicle necessarily belong
to either of two path types in the Dubins’ sufficient family

(28)

where the subscripts, indicating the length of each piece, are
restricted, respectively, to

(29)

A complete synthesis of optimal paths for a single Dubins ve-
hicle is reported in [16]. The length of Dubins paths between
two configurations denoted by is then unique and
defines a metric on . One simply has

for a path, and
for a path.

If a set of noncolliding Dubins’ trajectories exists, then this is
obviously a solution of the minimum total time problem. How-
ever, if with all combinations of possible independent Dubins
trajectories a collision results, then the optimal solution must be
searched among other longer extremal solutions or among paths
with at least a constrained arc. While the latter case is discussed
in the next subsection, we consider here an explicit characteri-
zation of all possible unconstrained extremal paths. This is done
by distinguishing two cases as follows.

Case A—Unconstrained Extremal Paths Containing a Linear
Segment:We know that all linear segments in an extremal path
belong to a single supporting line. Furthermore linear segments
have to be tangent to any circular arcs in the path. Hence, pos-
sible supporting lines are at most four [see Fig. 3(a)]. Switch-
ings of among zero, and can only occur when
the aircraft center is on the supporting line. As a consequence,
for any extremal arc of type of length , there exists a
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(a) (b)

Fig. 3. (a) Four extremal arcs of typeCSC joining two waypoints. (b) Extremal arc for the same waypoints including a “waiting” circle.

family of extremals of type ,
with , whose length is . Arcs of type

can be interpreted as “waiting” circular maneuvers for an-
other aircraft to pass by and avoid collision [see Fig. 3(b)]. For
any pair of waypoints, there are, therefore, four families of un-
constrained extremal solutions of this type. For each family of
extremals, the solution with smallest for which there exist

that make it collision-free is the shortest pos-
sible solution within the family.

Case B—Unconstrained Extremal Paths Containing No
Linear Segments:In this case, all inflexion points are aligned
with a supporting line parallel to the lines joining the centers of
tangent circles to the initial and final configurations (only the
two pairs that can be followed with the same direction need be
considered). Let denote the distance between two centers:
for any , , one can have an extremal
path formed by a concatenation of exactly circular
arcs of type , where and

(see Fig. 4). For any pair of waypoints, there are,
therefore, two families of unconstrained extremal solutions of
type , each containing a countable infinity of
paths. The solution with smallest, which is collision-free is
the shortest possible solution within these families of extremals.

B. Extremal Constrained Arcs

Some further manipulation of the cost function is instru-
mental to deal with constrained arcs, i.e., arcs in which at least
two vehicles are exactly at the critical separation ( ,

). To fix some ideas, let us consider a constrained arc
involving only vehicles 1 and 2. Along a constrained arc, the
constraint and its derivatives must vanish, i.e.,

(30)

(a)

(b)

Fig. 4. Two unconstrained extremal solutions of typeCCC . . .CCC , with
(a)n = 2 and (b)n = 3, respectively.

with . Let be the direction of the segment joining the
two vehicles so that

(31)
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Fig. 5. Possible constrained arcs for two vehicles with the same airspeed: aircraft velocities may be (a) equal or (b) symmetric.

From the second equation in (30), one gets

(32)

and, using (31)

(33)

When the constraint is active, the two aircraft envelopes are in
contact, and the relative orientation of the two vehicles must
satisfy (33), which defines (for given , ) two manifolds of
solutions in the space described
as

(34)

(35)

The two solutions correspond to two different types (“a” and
“b”) of relative configurations in contact. For instance, for

, one has

(36)

(37)

In case a), the two vehicles have the same velocity, while in case
b), velocities are symmetric with respect to the segment joining
the vehicles (see Fig. 5). In order to study constrained arcs of
extremal solutions, it is useful to rewrite the cost function (17)
as

(38)

with along a constrained arc. The jump conditions at the
entry point of a constrained arc occurring at timeare now

(39)

(40)

where , and

A further distinction among constrained arcs of zero and
nonzero length should be done at this point. Consider first a
constrained arc of zero lengthoccurring at a generic contact
configuration, which is completely described by the configu-
ration of one aircraft (e.g., ), by the angle and
by the contact type. Assume for the moment that there is only
one constrained arc of zero length in the optimal path between
start and goal of the two aircraft. Equation (39), taking into
account that costates of each aircraft are determined (once the
start, goal, and contact configurations are fixed) up to constants

, in (26), provides a system of six equations in
six unknowns of the form
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where the explicit expression of matrix for each con-
tact type can be easily evaluated in terms of, , , , and
is omitted here for space limitations. Nontriviality of costates
implies that must satisfy . A further con-
straint on contact configurations is implied by the equality of
flight times from start to contact for the airplanes, which is
expressed in terms of Dubins distances as

, where denotes the configuration of aircraft
2 at contact that is uniquely determined for each contact type.
If constrained arcs of zero length are present in an optimal
solution, similar conditions apply (with start and goal configu-
rations suitably replaced by previous or successive contact con-
figurations), yielding equations in unknowns. On the
other hand,constrained arcs of nonzero lengthcan be studied
by recasting the problem in a reduced configuration space. So-
lutions consist in optimal trajectories for aircraft that remain
constantly at the minimum tolerated distance. As such, these
solutions are of interest in coordinating flight of aircraft for-
mations (employed, e.g., for reducing fuel consumption by re-
ducing aerodynamic drag) and have been studied in detail by
the authors in [17]. However, this type of borderline solution
seem to be unacceptable in conflict resolution for commercial
AT. Henceforth, we disregard the possibility that in an optimal
resolution of a conflict, there are constrained arcs of nonzero
length.

IV. NUMERICAL COMPUTATION OF SOLUTIONS

The necessary conditions studied in the previous sections pro-
vide useful hints in the search for an optimal solution to the
problem of planning trajectories of aircraft in a common
airspace. Although a complete synthesis has not been obtained
so far, we will describe in this section an algorithm that finds
suboptimal solutions to the optimal planning problem under
some simplifying assumptions.

Based on the discussion of the sections above, the optimal
conflict resolution paths for multiple aircraft may include mul-
tiple waiting circles (Fig. 3) or winding paths (Fig. 4) and con-
strained arcs of both zero and nonzero length. However, based
on heuristic considerations about acceptability to passengers,
we assume, henceforth, that the following are not allowed:

h1 constrained arcs of nonzero length (see Section V);
h2 multiple zero-length constrained arcs among the same

aircraft;
h3 concatenations of arcs of type (see Sec-

tion III-A).
Moreover, for simplicity of description, in the following we

assume that all aircraft have equal geometric characteristics and
equal speed (removal of these hypotheses does not alter substan-
tially the algorithm described below).

Consider first the case of two aircraft. If the Dubins’ trajec-
tories joining the way-points configurations do not collide, then
this is the optimal solution. Otherwise we compute the shortest
contact-free solution with waiting circles and let its length be

. Hence, we look for a solution with a concatenation of two
Dubins’ paths and a single constrained zero-length arc of either
type a) or b) for both aircraft. Such solution can be searched
over a two-dimensional submanifold of the contact configura-

tion space . The optimal solution can be ob-
tained by using any of several available numerical constrained
optimization routines: computation is sped up considerably by
using very efficient algorithms made available for evaluating
Dubins’ paths [16]. The length of such solution is compared
with , and the shorter solution is retained as the two-aircraft
optimal conflict management path with at most a single con-
strained zero-length arc (OCMP21, for short). Some examples
of OCMP21 solutions are reported in Fig. 6, where two aircraft
are involved in a conflict and the solution is a concatenation of
two Dubins paths, before and after the contact, respectively. This
example, as well as others to be presented, refer to a scenario
with two equal aircraft, with mass kg (185 klbm),
airspeed m/sec (500 ft/sec), load factor ,
max. bank angle , hence, (for ), the minimum
curvature radius results m ( nmi) [11].

If aircraft fly in a shared airspace, their possible conflicts
can be managed with the following multilevel policy.

Level 0 Consider the unconstrained Dubins paths of
all aircraft, which may be regarded as
single-aircraft optimal-conflict management
paths, or OCMP10. If no collision occurs,
the global optimum is achieved and the algo-
rithm stops. Otherwise, compute the shortest
contact-free paths (with waiting circles) and
go to next level.

Level 1 Consider the possible solutions
with a single contact [of either type a) or b)]
between two aircraft and possibly waiting
circles for other aircraft and compute the
shortest path in this class. If this is longer
than the shortest path obtained at Level 0,
exit. Otherwise, continue.

Level Consider the possible so-
lutions involving zero-length constrained
arcs between different pairs of aircraft and
(possibly) waiting circles for other aircraft
and compute the shortest path in this class. If
this is longer than the shortest path obtained
at level , exit. Otherwise, continue.

A few three-aircraft conflict resolution trajectories at different
levels are reported in Fig. 7.

When the number of aircraft increases, the number of opti-
mization problems to be solved grows combinatorially. How-
ever, in practice, it is hardly to be expected that conflicts be-
tween more than a few aircraft at a time have to be managed
that require solutions of a level higher than 2.

V. DECENTRALIZED IMPLEMENTATION FORFREEFLIGHT

In decentralized ATMS schemes, each agent (aircraft) is al-
lowed to take decisions autonomously based on the information
that is available at each time. Several models of decentralized
ATC are conceivable, which may differ in the degree of coop-
erative/competitive behavior of the agents and in the informa-
tion structure [11], [10]. In this paper, we consider a cooperative
scheme, which falls within the scope of the theory of teams (cf.
[18], [19]). In particular, we consider a scheme in which
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(a) (b)

(c) (d)

Fig. 6. Numerically computed solutions to optimal cooperative conflict resolution for two aircraft. Minimum curvature circles are reported at the start and goal
configurations, along with safety discs of radiusd=2 (dashed).

• the th agent has information on the state and goals of all
other agents, which are at a distance less than an “alert”
radius ;

• each agent plans its flight according to an optimal strategy,
which consists of minimizing the sum of the time-to-goals
of all aircraft of which the agent is aware.

Let denote the set of indexes of aircraft within distance
from the th aircraft at time . The goal of the th agent at

time with information is, therefore, to minimize

(41)

under the constraints , . Obviously,
when all are large with regard to the dimension of the consid-
ered airspace, each agent solves the same problem the central-
ized controller would solve and the resulting performance would
be equal (although with -fold computational redundancy).

When, during execution of flight maneuvers that
were planned based on a certain information structure

, an aircraft with gets at distance
from aircraft , the information structure is updated, and

optimal paths are replanned according to the new cost and
constraints for aircraft .

The system resulting from the above decentralized ATMS
scheme is described by a set of continuous variables ,

, and a set of variables that take values over
discrete sets. To each different information structurethere
corresponds a working mode for the system, i.e., dynamics (13)
driven by controls optimizing under constraints ,

, which can be computed as described in previous sec-
tions of this paper. The resulting hybrid system is composed of a
finite-state machine and of associated continuous-time dynamic
systems, transitions among states being triggered by conditions
on the continuous variables.
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(a) (b)

(c) (d)

Fig. 7. Four cases of three-aircraft conflict resolution. (a) Conflict is resolved at level 0. (b) Level 1 solution. (c) Level 2 solution. (d) Level 2 resolution that
generates a roundabout-like maneuver.

For instance, in the case with , , there
are eight possible states (modes of operation), corresponding to
different information structures (see Fig. 8).

At every state transition, each agent evaluates in real-time the
optimal steering control from the current position to the goal
for itself as well as for all other aircraft within its alert radius.
Only the control policy evaluated by an agent for itself is then
executed, as the one calculated for others may ignore part of the
information available to them (as e.g., it happens in states,

, and in Fig. 8).
All optimal policies coincide for large s. However, for

small alert radii, the localization of conflict solution might give
raise to a cascading effect on other conflicts, with possibly
destabilizing consequences. To avoid this problem, a possible
solution is to make the information structurereflexive and
transitive. In our setup, an information structure is reflexive
if ; it is transitive if and

. Imposing a reflexive and transitive structure how-
ever might quickly destroy advantages of decentralization by
increasing the size of the optimization problems to be solved.
In the following, we will not impose such conditions, and will
leave the provision of safety guarantees as a fundamentally
open problem for the hybrid model in Fig. 8.

The decentralized solutions of a two-agent conflict manage-
ment problem is reported in Fig. 9. It can be observed that the
two aircraft initially are not aware of each other and follow their
unconstrained Dubins path, which would be bound for collision
(indicated by little crosses). When they enter the alert zones
(this happens roughly at the third step after start in Fig. 9),
an OCMP21 is obtained by both agents. Notice that, in this
two-agent problem with equal alert radius, the same problem is
solved by both agents by means of the same algorithm, hence,
the same solution is obtained. Aircraft start following their mod-
ified paths, which differ from both the unconstrained Dubins
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Fig. 8. A decentralized ATMS with three aircraft having equal alert radius.
Each node in the graph corresponds to different costs and constraints in the
agents’ optimal steering problem. Optimizing controllers for such problems
cause different continuous time dynamics at each node. Switching between
modes is triggered when an airplane enters or exits the alert neighborhood of
another (D changes sign).

paths and the optimal paths that would have been computed by
a centralized planner.

VI. PERFORMANCE AND FAULT TOLERANCE OF THE

DECENTRALIZED IMPLEMENTATION

A number of issues should be considered when deciding on
the appropriate level of centralization such as efficiency, com-
plexity, robustness, and flexibility.

In order to assess the effects of increasing decentralization in
ATMS, we performed a number of simulations whose results are
reported below.

In particular, we experimentally compared results obtained by
a centralized planner with those achieved by several decentral-
ized planners with decreasing alert zone radius. The alert zone
radius can be regarded as an inverse measure of the degree of
centralization for an information structure such as that intro-
duced in the section above.

The first set of simulations concerns performance evaluation.
The performance measure, i.e., the total length cumulatively
flown by all airplanes for the problem described in Fig. 9 has
been calculated for three different values of the safety radius.
Results of simulations are reported in Fig. 10 and show that the
increase of the alert zone radius entails a rather smooth decrease
of the total length flown by aircraft. As an effect of the pres-
ence of local minima in the numerical optimization process, the
length does not decrease monotonically as it would have been
expected.

The second set of simulations was performed to assess fault
tolerance and involved the same scenario and planning algo-
rithms under degraded control conditions. In particular, we as-
sume that some of the controllers fail during flight. Theth
failure period (or “crisis”) of theth controller is initiated at time

(with ) and resolved at time .
During a crisis, the th controller provides random erroneous
references for theth aircraft. At the end of a crisis, the con-
troller is supposed to access correct data again and to replan

Fig. 9. Decentralized solution of the two-agent conflict management problem
(trajectories traced by small circles). Alert discs are drawn in solid lines around
the initial and final configurations of agents. The unconstrained Dubins’ paths
are superimposed for reference.

Fig. 10. Total length flown by aircraft at varying the alert zone radius. The
measures are in nautical miles.

accordingly. Under decentralized ATC, other agents are able to
maintain their correct operation mode and replan in real time to
try and avoid collisions.

It is important to notice that two crisis scenarios are possible,
corresponding to whether or not the crisis of theth controller
is detected by other agents operating regularly. We assume that
whenever a critical situation is detected by any agent, then the
operating mode of the agent is switched from the cooperative
strategy described in this paper to an antagonistic approach such
as that reported in [10]. Therefore, we assume in what follows
that failures of one agent are not detected by other agents.

In simulations reported below, the crisis periods have been
chosen to have constant length , in all simula-
tion runs: is set to approximately 3% of the expected flight
time between the waypoints. The initial crisis time is a uni-
formly distributed random variable over both the aircraft index
and the flight time span. Casual references for critical aircraft
are generated by applying the usual planning algorithm to a
random goal configuration.
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Fig. 11. Fault tolerance to controller failures at varying the degree of
decentralization. The number of accidents is relative to 100 crisis situations.
Labels on thex axis refer to alert radii measured in nautical miles.

As a figure of fault tolerance of ATMS schemes, we consider
the number of accidents for 100 crisis situations. Results of sim-
ulations, relative to the same initial scenario as in Fig. 9, are
reported in Fig. 11. In the centralized ATMS case, all aircraft
are assumed to receive random flight directions from the single
centralized controller when this enters a critical situation: 12
crises out of 100 led to accidents in this configuration. The per-
centage of unrecoverable crises under a decentralized strategy is
reduced to roughly 9% with an alert radius of 10 nmi down to 5%
when the radius is doubled. These results agree with the expec-
tation that introducing decentralization can achieve some degree
of robustness of ATC with respect to centralized schemes. The
fact that robustness is enhanced by increasing the alert radius
is clearly explained by the degree of computational redundancy
introduced.

VII. CONCLUSION

In this paper, we have studied the problem of planning op-
timal conflict resolution maneuvers for kinematic models of air-
craft flying in a horizontal plane with constant velocity. Neces-
sary conditions have been derived and an algorithm for numeri-
cally finding suboptimal solutions has been described. A decen-
tralized implementation has been introduced, and extensive sim-
ulations have been employed to establish its performance and
fault tolerance.

Future work on this topic will address the problem of finding
a complete optimal synthesis at least for the simplest cases (
), and extending to the case of variable longitudinal velocity.

Further refinement of the algorithm can be sought, to exploit
more of the rich structure of optimal solutions. The case when
the aircraft speed can be varied needs also to be studied in detail.
An ever standing issue is that of computational efficiency of
the optimization algorithm, to achieve real-time solutions for
conflicts involving more than three aircraft. A crucial problem is
to analyze in depth the properties of the hybrid system in Fig. 8,
and to determine exact regions of state–space for which safety
guarantees can be given for given perturbation levels.

ACKNOWLEDGMENT

The authors would like to thank S. Sastry, J. Lygeros, C.
Tomlin, G. Pappas for creatively programming the algorithm.
They would also like to thank J.-P. Laumond for his helpful re-
marks and suggestions on a previous version of this paper.

REFERENCES

[1] Honeywell Inc., “Markets Rep.,”, Tech. Rep. NASA Contract AATT,
1996.

[2] T. S. Perry, “In search of the future of air traffic control,”IEEE Spectrum,
vol. 34, pp. 18–35, Aug. 1997.

[3] RTCA Task Force 3, “Final Tech. Rep.: Free flight implementation,”,
Washington, DC, Radio Tech. Commission Aeronaut., Oct. 1995.

[4] Ed. Board, “Special report on free flight,”Aviation Week Space Technol.,
vol. 143, pp. 38–48, July 1995.

[5] C. Tomlin, G. Pappas, J. Kosecka, J. Lygeros, and S. Sastry, “Advanced
air traffic automation: Acase study in distributed decentralized control,”
in Control Problems in Robotics and Automation, B. Siciliano and K.
Valavanis, Eds. New York: Springer-Verlag, 1997, pp. 261–295.

[6] R. C. Nelson,Flight Stability and Automatic Control. New York: Mc-
Graw-Hill, 1989.

[7] B. Etkin, Dynamics of Atmospheric Flight. New York: Wiley, 1982.
[8] G. Meyer, R. Su, and L. R. Hunt, “Application of nonlinear transfor-

mations to automatic flight control,”Automatica, vol. 20, pp. 103–107,
1984.

[9] Y.-J. Chiang, J. T. Klosowski, C. Lee, and J. S. B. Mitchell, “Geometric
algorithms for conflict detection/resolution in air traffic management,”
in Proc. 36th IEEE Conf. Decision and Contr., San Diego, CA, 1997,
pp. 1835–1840.

[10] C. Tomlin, G. J. Pappas, and S. Sastry, “Conflict resolution for air traffic
management: A case study in multi-agent hybrid systems,”IEEE Trans.
Automat. Contr., vol. 43, pp. 509–521, Apr. 1998.

[11] P. K. Menon, G. D. Sweriduk, and B. Sridhar, “Optimal strategies for
free-flight air traffic conflict resolution,”J. Guidance, Contr., Dynam.,
vol. 22, no. 2, pp. 202–211, Mar.–Apr. 1999.

[12] H. Erzberger and W. Nedell, “Design of automated system for manage-
ment of arrival traffic,” NASA Ames Res. Ctr. Tech. Memo 102 201,
June 1989.

[13] L. E. Dubins, “On curves of minimal length with a constraint on average
curvature and with prescribed initial and terminal positions and tangent,”
Amer. J. Mathematics, vol. 79, pp. 497–516, 1957.

[14] H. J. Sussmann and G. Tang, “Shortest paths for the Reeds–Shepp car:
A worked out example of the use of geometric techniques in nonlinear
optimal control,” SYCON, Rutgers Ctr. Syst. Contr. Tech. Rep. 91-10,
New Brunswick, NJ, Tech. Rep. 91–10, Sept. 1991.

[15] J. D. Boissonnat, A. Cerezo, and J. Leblond, “Shortest paths of bounded
curvature in the plane,” inProc. Int. Conf. Robot. Automation, Nice,
France, May 1992, pp. 2315–2320.

[16] X. N. Bui, P. Souères, J.-D. Boissonnat, and J.-P. Laumond, “Shortest
path synthesis for Dubins nonholonomic robots,” inProc. Int. Conf. on
Robotics and Automation, San Diego, CA, Apr. 1994, pp. 2–7.

[17] A. Bicchi and L. Pallottino, “Optimal planning for coordinated vehicles
with bounded curvature,,” in Proc. Int. Workshop Algorithmic Founda-
tions Robot., B. Donald, K. Lynch, and D. Rus, Eds. Dartmouth, NH,
Mar. 2000, to be published.

[18] Y. C. Ho and K. C. Chiu, “Team decision theory and information struc-
tures in optimal control problems—Part I,”IEEE Trans. Automat. Contr.,
vol. AC-17, pp. 15–21, 1972.

[19] M. Aicardi, F. Davoli, and R. Minciardi, “Decentralized optimal control
of markov chains with a common past information set,”IEEE Trans.
Automat. Contr., vol. AC-32, pp. 1028–1031, Nov. 1987.

Antonio Bicchi was born in Toscana, Italia, in 1959.
He received the Laurea degree from the University
of Pisa, Italy, in 1984, and the Ph.D. degree from the
University of Bologna, Italy, in 1988.

He has been a Postdoctoral Scholar at the Mass-
achusetts Institute of Technology (MIT) Artificial
Intelligence Laboratory, Cambridge, from 1988
to 1990. He is currently an Associate Professor
of systems theory and robotics in the Department
of Electrical Systems and Automation (DSEA),
University of Pisa. Since 1990, he has been leading

the Robotics Group at the Interdepartmental Research Center “E. Piaggio,”
University of Pisa. His main research interests within robotics are in dextrous
manipulation, including force/torque and tactile sensing, haptics and sensory
control, dynamics, kinematics, and control of complex mechanichal systems,
and motion planning and control for nonholonomic and quantized systems.



232 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 1, NO. 4, DECEMBER 2000

Lucia Pallottino was born in Rome, Italy, in 1974.
She received the Laurea degree in mathematics from
the University of Pisa, Italy, in 1997. She is currently
working toward the Ph.D. degree in robotics and
industrial automation from the Department of Elec-
trical Systems and Automation (DSEA), University
of Pisa. Her main research interests within robotics
are in motion planning and control for nonholonomic
systems and air traffic management.


