
Mixed Integer Programming for Aircraft Conict Resolution

L. Pallottino � E. Feron y A. Bicchi z

January 3, 2001

Abstract

This paper considers the problem of solving conicts arising among several aircraft. Considering

the case when only aircraft heading changes are allowed, we propose a formulation of the multi-aircraft

conict avoidance problem as a mixed-integer linear program, whose solution may be obtained within

seconds with standard optimization software. While such a problem formulation and solution is still

unsuitable for operational implementation, it may be used as part of a real or fast-time simulation.

1 Introduction

The increasing demand for air transportation is progressively bringing the entire system in an overloaded
and congested state. However, the continuing improvement of aircraft instrumentation and communi-
cation systems carries the potential of resolving these problems via new air tra�c control such as the
free-ight concept of operations.

The current enroute air tra�c control system consists for the most part of a geographical network in
which aircraft are allowed to y only along �xed routes. The safety of this architecture is supported by
many decades of operations. Under this architecture, the dynamics of the air transportation system is
dominated by its network structure. Relatively recently, airlines and the Federal Aviation Administration
(FAA) have proposed the concept of \Free Flight" ([1], [2]) as a concept of operations relying upon
improved communication, navigation and surveillance technology to increase pilot and airline freedom:
For example, each pilot would be able to optimize its own trajectory, to minimize the time of ight or to
avoid zone of severe weather.

However, the impact of Free Flight upon system safety, as well as the relation between unstructured
aircraft ows in Free Flight and air tra�c ow management constraints remains largely unknown. Part
of building some understanding about Free Flight's safety and e�ciency requires building fast simulation
environments incorporating automated and optimal conict detection and resolution schemes. Many
approaches have been proposed in the last few years to address the conict resolution problem when
many aircraft are involved; a complete overview of these approaches with a complete bibliography may
be found in [5].

The approach proposed in this paper involves centralized, numerical optimization, and is in this regard
closely connected to recent approaches proposed by Niedringhaus [6], Durand and Alliot [8] and more
recently by Frazzoli et al. [7].

We consider the problem of resolving conicts arising among many aircraft in a cooperative approach,
other cooperative approach in ATC literature have been considered [3], [4].

We make the following central assumptions:

� Aircraft are assumed to cruise within a �xed altitude layer. Aircraft can thus be modeled in a purely
kinematic fashion, as points in a plane with an associated fore axis, that indicates the direction of
motion, and conict envelope radius. The task of each vehicle is to reach a given goal con�guration
from a given start con�guration (start and goal con�gurations may represent way points planned
for the aircraft by the higher level planner).
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� All interacting aircraft cooperate towards optimization of a common goal, as agents in the same
team. This will apply to all aircraft in the same airspace, de�ned by zone in which they can
exchange information on position velocity and goals.

� Aircraft maneuvers consist of instantaneous heading change and then the total path result piece
wise linear. If the relative initial distances between aircraft are big \enough" then it is a good
approximation of the non linear model described in [4]. In this scenario, the problem of �nding the
shortest conict-free paths can be modeled as a Mixed Integer Programming (MIP) problem, which
may be solved using optimization tools such as CPLEX [10].

This paper is organized as follows: In the �rst section we describe the problem and hypotheses to formulate
it as a MIP. In the second and third sections we obtain conict avoidance constraints and formulate them
as mixed integer linear constraints. The full mixed integer programming optimization problem is provided
in Section 5.

Section 6 presents an extension of the previous problem by allowing aircraft to recover their original
trajectory following the conict avoidance maneuver. In section 7 initial performance estimates are
provided comparing initial trajectories with conict-free trajectories using the proposed optimization
framework. Furthermore numerical examples are introduced and solved using CPLEX and performance
of the CPLEX resolution for di�erent numbers of aircraft are presented.

2 Problem Statement

In this paper we consider a �nite number n aircraft sharing the same airspace; each aircraft has an initial
and a �nal, desired con�guration (position, heading) and the same goal: Reach the �nal con�guration
in minimum time while avoiding conicts with other aircraft. A conict between two aircraft occurs if
the aircraft are closer than a given distance d (current enroute air tra�c control rules often consider this
distance to be 5 nautical miles) [9].

Each aircraft is identi�ed by a point in the plane (position) and an angle (heading angle, direction,
that is constant and can be changed with a maneuver) and thus by a point (x; y; �) 2 R�R� S1. Let
(xi(t); yi(t); �i(t)) be the con�guration of the i-th aircraft at time t; a conict occurs when the distance
between two aircraft is less than d, i.e. a conict between aircraft i and j occurs if for some value of t,

q
(xi(t)� xj(t))2 + (yi(t)� yj(t))2 < d: (1)

In this paper we restrict to the hypothesis that the aircraft are moving on a horizontal plane and
have the same constant normalized linear velocity v = 1. The latter assumption may be relaxed at the
expense of more notation.

Each aircraft is allowed to make a maneuver at time t = 0 to avoid conicts with other aircraft. The
maneuver used in this paper is an instantaneous heading angle change. Finally we assume that no conict
occurs at time t = 0.

The problem is to �nd a minimum heading angle deviation pi for each aircraft in order to avoid any
conict. In the following sections we formulate conict avoidance constraints that are linear in those
angular deviations pi.

3 Conict avoidance constraints

Each aircraft can maneuver only once with an instantaneous heading angle deviation and then we suppose
that the i-th aircraft changes its heading angle of a quantity pi that can be positive (left turn), negative
(right turn) or null (no deviation).

The problem then is to �nd an admissible value of pi for each aircraft such that all collisions are
avoided, the new heading angle and direction of ight is then �i + pi. In this section we formulate some
constraints that are linear in the unknowns pi; 8i = 1; :::; n.

A conict can occur between pairs of aircraft and then we restrict to the case of two aircraft to obtain
collision conditions. Consider two aircraft denoted 1 and 2, respectively.
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Let (xi; yi; �i+ pi); i = 1; 2 be the aircraft's states after the maneuver of amplitude pi. In this section
we show that it is possible to predict the existence of conicts between the two aircraft based on those
aircraft's initial con�gurations.

Obviously, if the future trajectory for each aircraft (described by a half line) do not intersect, then no
conict can occur. Otherwise a conict may occur. We now discuss those two cases separately.

3.1 Non-intersecting directions of motion

Consider the case when the geometric half-lines representing the extrapolated trajectories of the two
aircraft do not intersect. Consider for example Figure 1: Aircraft 1 has heading angle �1 + p1. Assume
the second aircraft is on the straight line forming an angle !12 with the x-axis. If the heading angle
(�2 + p2) of the second aircraft doesn't lie in the outlined sector of amplitude � then the half lines
obtained by projecting forward the motion of both aircraft do not intersect. The condition upon such a
case occurs may be expressed easily via some inequality constraints. Let !12 be the angle between the
line that joins the aircraft and the x-axis, considering all the possible case of relative position, we have
such non-collision constraints that are linear in p1 and p2:8>>>>>>>><

>>>>>>>>:

0 � !12 � �
and
!12 � � � �1 � p1 � !12 � �1
and8<
:

�� � �2 � p2 � p1 + �1 � �2
or
�� � �2 � p2 � !12 � � � �2;

8>>>>>>>><
>>>>>>>>:

�� � !12 � 0
and
!12 � �1 � p1 � !12 + � � �1
and8<
:

�� � �2 � p2 � p1 + �1 � �2
or
!12 + � � �2 � p2 � � � �2;

or or8>>>><
>>>>:

0 � !12 � �
and
!12 � �1 � p1 � � � �1
and
!12 � � � �2 � p2 � p1 + �1 � �2

or

8>>>><
>>>>:

�� � !12 � 0
and
�� � �1 � p1 � !12 � �1
and
p1 + �1 � �2 � p2 � � + !12 � �2

or or8>>>>>>>><
>>>>>>>>:

0 � !12 � �
and
�� � �1 � p1 � !12 � � � �1
and8<
:

!12 � � � �2 � p2 � � � �2;
or
�� � �2 � p2 � p1 + �1 � �2;

8>>>>>>>><
>>>>>>>>:

�� � !12 � 0
and
!12 + � � �1 � p1 � � � �1
and8<
:

�� � �2 � p2 � !12 + � � �2;
or
p1 + �1 � �2 � p2 � � � �2;

(2)

In the general case of n aircraft we have a group of such constraints for each pair of aircraft (i; j); 8i < j.

3.2 Intersecting directions of motion

For the other cases not included in the previous section we can refer to �gure 2, and consider two
aircraft (x1; y1) and (x2; y2) with heading angles �1 and �2 respectively, we will consider for the moment
p1 = p2 = 0 for simplicity, the general equation will be expressed in the next section. We compute
the amplitude (�1 � �2) of the angle formed by the intersection of the aircraft ight directions and the
amplitude ( �1+�2

2 ) of the angle of his bisector (straight line r) with the x-axis . The bisector r is then

a straight line of slope tan
�
�1+�2

2

�
and the orthogonal to the bisector that passes through aircraft 1 has

equation y�y1+(x�x1)
1

tan
�
�1+�2

2

� = 0. The two straight lines that are tangent to aircraft 1 are obtained

by the previously de�ned straight line with a vertical translation of a quantity �v. It is easy to see that
v = d

2 sin
�
�1+�2

2

� .
These two parallel straight lines localize a segment on the straight line followed by the other aircraft.

If the disc of radius d=2 centered around aircraft 2 intersects this segment then there will be a conict
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between the aircraft. This happens when

����y2 � y1 + (x2 � x1)
1

tan
�
�1+�2

2

�
���� < d

sin
�
�1+�2

2

� . Equivalently

a conict occurs if
��sin � �1+�2

2

�
(y2 � y1) + (x2 � x1) cos

�
�1+�2

2

��� < d. Denote with A12 the distance
between the two aircraft and !12 the angle between the line that joins the aircraft and the x-axis. With
this notation a conict between the two aircraft occurs if����A12 cos

�
�1 + �2

2
� !12

����� < d: (3)

For example, in �gure 3 four aircraft share the same airspace; equation (3) is represented geometrically
by the shadow projected by each aircraft projects onto the other aircraft trajectories. The shadowed area
projected by the aircraft A on the trajectory of B, intersects the disc of radius d=2 centered in B (and
vice versa), hence a conict between A and B will occur. The disc centered in B doesn't intersect the
shadowed area projected by the aircraft C and then no conict between B and C will occur.

4 Linear constraints formulation

Let now consider n aircraft and their initial con�gurations (xi; yi; �i + pi); 8i = 1; :::; n. We have shown
in previous sections that with some geometric considerations it is possible to predict a conict between
aircraft using only information given by initial states of all the n aircraft. While the constraints given by
(2) are linear in the heading angle deviation pi, the constraints obtained in section 3.2 are not expressed
in pi. We now reformulate them as linear constraints in pi.

Considering the general case of n aircraft and deviations pi, from equation (3) a conict between the
aircraft i and aircraft j occurs if

����Aij cos

�
�i + pi + �j + pj

2
� !ij

����� < d (4)

where we have replaced the heading angle �i with the new heading angle �i + pi after the maneuver of

amplitude pi, where Aij =
p
(xi � xj)2 + (yi � yj)2, and !ij = arctan

�
yi�yj
xi�xj

�
, when �i + pi + �j + pj 6=

��. If �i + pi + �j + pj = �� equation (4) is replaced by jyj � yij < d.

Let now suppose that �i + pi 6= �� + �j + pj , and let de�ne �ij =
�i+�j

2 � !ij , in order to avoid
collision, the following inequality must be satis�ed

����cos
�
pi + pj

2
+ �ij

����� > d

Aij

(5)

In order to avoid collisions each pair of aircraft (i; j) with i < j and such that
pi+pj

2 + �ij 2 [��; �]
must satisfy one of the following inequalities:

pi + pj � 2 arccos
�

d
Aij

�
� 2�ij ;

pi + pj � �2 arccos
�

d
Aij

�
� 2�ij ;

or
pi + pj � 2� � 2�ij ;

pi + pj � 2� � 2 arccos
�

d
Aij

�
� 2�ij ;

or

pi + pj � �2� + 2arccos
�

d
Aij

�
� 2�ij ;

pi + pj � �2� � 2�ij :

(6)

Given initial con�gurations (xi; yi; �i) (before the maneuver), let us introduce the following notation for
each aircraft pair (i; j):

- �ij =
�i0+�j0

2 � !ij ;
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- Upper and lower bound for pi + pj for the three or-constraints in equation (6)

{ U1ij = 2arccos
�

d
Aij

�
� 2�ij ;

{ L1ij = �2 arccos
�

d
Aij

�
� 2�ij ;

{ U2ij = 2� � 2�ij ;

{ L2ij = 2� � 2 arccos
�

d
Aij

�
� 2�ij ;

{ U3ij = �2� + 2arccos
�

d
Aij

�
� 2�ij ;

{ L3ij = �2� � 2�ij ;

With those notations, and considering all the possible values of
pi+pj

2 + �ij , the constraints (6) may
be rewritten as

8>>>>>>>><
>>>>>>>>:

�2� � 2�ij � pi + pj � 2� � 2�ij
and8>>>><
>>>>:

L1ij � pi + pj � U1ij ;
or
L2ij � pi + pj � U2ij ;
or
L3ij � pi + pj � U3ij ;

or8>>>>>>>><
>>>>>>>>:

pi + pj � �2� � 2�ij
and8>>>><
>>>>:

L1ij � 2� � pi + pj � U1ij � 2�;
or
L2ij � 2� � pi + pj � U2ij � 2�;
or
L3ij � 2� � pi + pj � U3ij � 2�;

or8>>>>>>>><
>>>>>>>>:

2� � 2�ij � pi + pj
and8>>>><
>>>>:

L1ij + 2� � pi + pj � U1ij + 2�;
or
L2ij + 2� � pi + pj � U2ij + 2�;
or
L3ij + 2� � pi + pj � U3ij + 2�;

(7)

5 Problem Formulation

With the obtained constraints the problem cannot be formulated as a mixed integer programming problem
because we have many or constraints. We now use a classical approach to formulate or constraints as
and constraints.
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5.1 Writing or-constraints as mixed-integer programming constraints

The conict avoidance constraints described earlier may be generically written as

8<
:

c1 � 0
and
c2 � 0

or8>>>><
>>>>:

c3 � 0
and
c4 � 0
and
c5 � 0

or8<
:

c6 � 0
and
c7 � 0

(8)

where the terms ci, i = 1; : : : ; 7 are linear expressions in the decision variables (heading angle deviations).
The way to transform these or-constraint into more convenient and-constraint is to introduce Boolean

variables. Let tk with k = 1; 2; 3, be a binary number that takes value 1 when one of the or-constraint is
active and zero otherwise. For example fk = 1 if constraints c1 and c2 are active fk = 0 otherwise. Let
G be a large arbitrary number, then the previous set of constraint is equivalent to

c1 �Gf1 � 0
c2 �Gf1 � 0
c3 �Gf2 � 0
c4 �Gf2 � 0
c5 �Gf2 � 0
c6 �Gf3 � 0
c7 �Gf3 � 0
f1 + f2 + f3 � 2

(9)

The last constraint indicates that at least one of the three groups of and-constraints must be veri�ed.

5.2 Variables and constraints

Applying the procedure described in the previous section to the aircraft conict resolution constraints
results in 46 mixed integer linear constraints and 14 Boolean variables for each aircraft pair.

In order to minimize the maximum value of pi; 8i = 1; :::; n one might introduce an auxiliary variable
q such that pi � q; and � pi � q and minimize q. Given n aircraft we have n(n � 1)=2 aircraft pairs,
resulting in a total of n (pi)+14n(n�1)=2 (fi)+1 (q)= 7n2�6n+1 variables and (46+1)n(n�1)=2+2n
constraints.

Given all the constraints, we can build the matrix A1, A2 and the vector B such that the constraints
are generically described by the system of linear inequalities

A1p+A2T � B (10)

Where p = (p1; :::; pn), T is the vector that takes account of the Boolean variables and A1 and A2 are
sparse matrices.

Finally the problem can be formulated as a Mixed Integer Programming problem:

min q
A1p+A2T � B
pi � q
�pi � q
f boolean vector

(11)
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This optimization model can be entered as input to optimization tools such as CPLEX and provably
optimal solutions may be obtained.

Another possibility is to minimize the norm 1 of vector p = (p1; :::; pn), in order to have a linear cost
function other n variables must be inroduced. In simulations described in section 7 we have minimized
the in�nite norm of vector p.

6 Return maneuvers back to goal con�gurations

After the �rst maneuver the aircraft have deviated respect to the original direction (�i). In this section
we briey consider one possible option for returning aircraft back to their original desired trajectory.

Consider a distance s that localize the goals positions for each aircraft: (xi + s cos(�i); yi + s sin(�i)),
for simplicity the distance between start and goal con�guration is equal to s for each aircraft. We want
the aircraft to join those con�gurations avoiding all conicts, more precisesly we want to �nd the �rst
instant such that the aircraft can maneuver with another heading angle deviation in order to reach the
goal positions without any other conict.

Referring to �gure 4, is not restrictive to consider an aircraft in (0; 0) with initial heading angle 0
which have maneuvered with a change p respect to the original angle. After a time t the position of the
aircraft will be (t cos(p); t sin(p)) and then to reach the position (s; 0) another angle deviation is required.
The maneuver consists of one heading angle change such that the future direction of motion would be
p
jpj� where � =

���arctan� t sin(p)
s�t cos(p)

����. The problem unfortunately is no more linear in t and we �nd a

good approximation of the minimum time t with an algorithm implemented in MATLAB that increase t
if collisions occur and decrease t if no collisions occur.

In �gure 5 we have two aircraft that have safety distance d = 0:1units and reach their goal with a
path longer than the direct one for 0:0037units that had length 6units.

7 Simulations

In those simulations we have considered the standard value of the safety distance d = 5nm. In the �rst
group of simulations we have considered aircraft symmetrically distributed on a circle of radius 60nm
centered around the origin (this radius is increased to 100nm for the case of 11 aircraft). Each aircraft
is initially headed towards the origin and the goal position is the point on the circle that is symmetric
respect to the initial position.

In the absence of maneuver all aircraft would conict at the origin. In �gure 6 we show the scenario of
the aircraft if no maneuver is done (left), if the aircraft maneuver optimally to avoid the conict using the
mixed integer programming formulation introduced in this paper (center) and the complete simulation
in which each aircraft maneuver back to the goal (right).

In the last simulation (�gure 7) we consider 10 aircraft in a shared airspace that are not in a symmetric
con�gurations.

In the next table we indicate the computational time (in seconds) of CPLEX to �nd the optimal
solution to the MIP problem (TIME) and the di�erence of the length of the path that is collision free
with the original path during which collisions occur (� in nautical miles). Let n be the number of aircraft
considered in the simulation:

n TIME (sec) � (nm)
5 0.34 0.25
7 1.18 0.55
10 5.91 0.45
11 10.4 0.79

The computation times are quite low, compared with other methods used to solve similar problems [7].
Thus this conict solver may be used in a real or fast-time simulation environment.
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8 Conclusions

We have formulated the aircraft conict resolution problem via heading angle deviations as a mixed
integer problem and we have solved it for multiple aircraft using standard optimization software. Optimal
solutions have been found quickly (a few seconds) on di�cult cases such as the one of 11 aircraft that
want to cross the same point at the same time.

After the �rst maneuver, collisions are avoided but the aircraft are no more directed through their
original goal con�guration. To address this issue we have developed an algorithm that allow the aircraft
to maneuver back to the goal con�guration as soon as possible while avoiding the creation of new conicts.

In future works we will extend to the case of aircraft with di�erent constant speed and aircraft that
y in a three-dimensional space. Future work will also address the case of multi-segmented maneuvers.

Another issue is to consider the MIP problem as an approximation of the non linear problem presented
in [4], this can be done considering the perturbation in the B vector in (11).
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Figure 1: Non-intersecting geometrical trajectories.
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Figure 2: Geometric construction for conict avoidance constraints in the case of intersecting trajectories.
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Figure 3: Aircraft ying in a shared airspace, a conict involving aircraft A and B is predicted because
B is in the \shadow" generated by A.
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Figure 4: After the maneuver to avoid collision, the aircraft maneuvers to reach the goal con�guration
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Figure 5: Two aircraft have avoided the conict and they reach their �nal goal
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Figure 6: From the top to the bottom we consider the case of 5,7 and 11 aircraft. Left: Scenario with
no maneuver. Center: scenario with the non collision maneuver. Right: Complete simulation with two
maneuvers.
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Figure 7: Case of 10 aircraft. Left: Scenario with no maneuver. Center: scenario with the non collision
maneuver. Right: Complete simulation with two maneuvers.
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