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Towards Cooperative Visual-Based Localization,
Mapping, and Servoing

Antonio Danesi

Abstract— In this paper we consider the problem of nav-
igating an autonomous robot using primarily vision for lo-
calizing the robot, building a map of the environment, and
navigating through viapoints to goals. This can be regarded
as an attempt to bridge the gap between existing techniques
for image—based localization and mapping, and methods for
visual servoing of mobile robots, i.e. between robotic per-
ception and action.

A visual servo scheme is used that can steer the wheeled
vehicle among images. Goal images do not necessarily cor-
respond to images physically taken from the desired vehicle
posture, as servoing to reconstructed virtual images is possi-
ble. A topological image map is constructed to support this,
based on images grabbed by on-board cameras, along with
a global feature-based metric map, using extended Kalman
filter techniques. The method also enables a team of mul-
tiple vehicles to merge their information, and to coordinate
navigation using each other’s images.

Realistic assumptions on limited communication band-
width between agents and available memory storage are
taken into account considering informative, memory-safe
maps. Simulations and preliminary experimental results on
a laboratory setup are reported.

I. INTRODUCTION

One of the main obstacles that still hinder penetration
of mobile robots into wide consumer markets is the un-
availability of powerful, versatile and cheap sensing. Vision
technology is potentially a clear winner as far as the ratio
of information provided versus cost is considered: cameras
of acceptable accuracy are currently sold at a e which is one
to two orders of magnitude less than laser scanners. As a
consequence, much attention is being devoted to solving
the non—trivial problems implied by using visual informa-
tion for building maps, localizing and navigating through
the environment.

This paper deals with the problem of using off-the-shelf
cameras fixed on inexpensive mobile platforms, to enable
navigation and control to given goal configurations in space
based on visual maps of the unknown environment, which
are contextually built in the process. To this purpose,
some powerful tools have been provided recently in the lit-
erature on localization and mapping for autonomous ve-
hicles mainly by CS and AI techniques, and separately
by research work on visual servoing of robots, coming
mostly from an automatic control background. Our effort is
mainly focused on the integration between advanced tech-
niques of sensing and understanding the ambient (percep-
tion), and the necessity of making and implementing deci-
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sions (action) based on real-time sensorial feedback fromthe
environment,.

The problem of simultaneous localization and map build-
ing, or SLAM ([6], [24], [37]), and the control of a vehicle
are clearly both intrinsically sensor-related. Nevertheless,
control aspects are often disregarded in the classical ap-
proach to SLAM, whereby the map is most often built off—
line and with no explicit reference to the usage of data that
will be done to close the loop on the controller actions. On
the other hand, localization (i.e., full state information) of
the vehicle is often taken for granted in the rather exten-
sive autonomous vehicle control literature ([25], [8], [11],
[7]). In system-theoretic terms, such decoupling of the es-
timation problem from the feedback design problem seems
to appeal to a generalization of the separation principle
of linear stochastic control, which unfortunately is a mere
leap of faith in the context of robotic systems with highly
nonlinear dynamics and sensors (see e.g. [5] for a discussion
of SLAM from a system-theoretic viewpoint).

A. Previous work

Visual servoing of vehicles can be regarded as an at-
tractive shortcut for the estimation/control problem, im-
plementing feedback directly on output measurements, i.e.
grabbed images. Previous work has considered the case
of a camera that can move independently from the vehi-
cle ([17]), or is carried by an articulated arm mounted on
the robot ([41]). The more economically viable solution of
fixed onboard cameras has been considered e.g. by [16],
[10]. Furthermore, [30] considered the practically most rel-
evant problem of keeping features to be tracked within sight
of a limited—aperture camera while the vehicle maneuvers,
and proposes a hybrid controller that solves the stabiliza-
tion problem. A modified version of the controller in [30],
whereby the technique is generalized to require no a-priori
information on the 3D environment, is also adopted as a
component of the architecture proposed in this paper.

To achieve the goal of an autonomous system capable
of navigating in a complex environment using only vision
(along with odometry when available), the capability of ser-
voing to a given prespecified image is clearly not enough.
The system should also build and update maps for the en-
vironment, in terms that are both informative enough for
control tasks (to allow e.g. a vehicle to accurately reach
arbitrary positions in the environment), and aware of re-
source limitations (such as memory space, or communica-
tion bandwidth for multiple robot systems). In this sense,
our work is indebted with the SLAM literature, particu-
larly for vision-based localization and mapping ([35], [33],
[18] [28], [23]). Cooperative localization and map build-
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ing by multiple agents may allow minimizing the time for
building complex maps and incrementing the accuracy of
the produced maps with augmented fault tolerance ([12],
[22], [33], [34], [39]).

A relatively novel approach in robot control uses Aug-
mented Reality, based on virtual representation of the en-
vironment taken from virtual cameras. In [31] an auto-
matic generator of camera motion using motion planning
techniques is presented to help users navigate in virtual en-
vironments specifying only the starting and final position
of the virtual camera. In [29], a virtual environment con-
taining objects’ models and a robotic arm with eye-in-hand
camera is used to train the visual based controller. Virtual
visual servoing [27] combines augmented reality techniques
with the servoing architecture for pose computation, by
modifying the parameters of a virtual camera (position, ori-
entation, and if necessary intrinsic parameters) using the
visual servoing paradigm. Other useful applications are to
non-linear camera calibration ([26]) or to robust pose esti-
mation with respect to marker partial occlusions by virtual
objects ([9]).

At a higher level, reasoning about planning necessitates
the abstraction (or “anchoring”) of metric data to logic
entities or “symbols” (such as rooms, corridors, doors).
Topological approaches have been widely investigated in
the computer science community, often in connection with
studies on cognitive maps in human learning processes
([42], [32], [15], [19]). The seminal paper of Kuipers on
Spatial Semantic Hierarchy (SSH) ([20]) defines a useful ar-
chitecture for robot navigation using different semantic lay-
ers, comprehensive of a cognitive map builder and a fuzzy
navigation controller. In [21], [4], [14] the SSH approach
has been adopted and adapted to different problems. In
the literature of mobile robots control, Dudek et al.. have
introduced robot graph navigation [13] and a global map
based on a set of reliable and accurate local maps orga-
nized in a topological structure in [36]. Thrun et al. have
studied this particular problem in [38], integrating grid-
based maps and topological maps generated partitioning
the former into coherent regions. In [40], the map pro-
cess is split in two phases: a topological mapping phase
solves the global position alignment problem while a met-
ric mapping phase produces a fine-grained metric map of
the environment.

B. The V-SLAMS architecture

The system we are developing to address the problem
of visual-based simultaneous localization and mapping for
servoing (V-SLAMS) is comprised of several interconnected
components. The final goal of our project is to have mul-
tiple mobile agents, equipped with cameras and possibly
basic odometry, cooperatively build a visual map of the
environment. The map should be such as to allow any
single vehicle to localize itself, and navigate through the
map to reach an arbitrary position, which may not have
been reached in advance. The mapping and servoing phases
should not necessarily be thought as consecutive in time.

In our proposed architecture, sensorial data organization
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Fig. 1. Fixed frame < W >, camera frame < C >, and relative

coordinates (£1,&2,£3) and (p, ¢, B)

starts with stochastic estimation of the 3D coordinates of
image features, and possibly of uncertain parameters in
the camera and environment models, via Extended Kalman
Filter (EKF) techniques. Estimated values are merged into
a general 3D feature map, useful for robot navigation and
localization. The flexibility of the feature map allows a
rather simple improvement of the extracted information
using standard computer vision algorithms, like texture ex-
traction and homography plane detection (see [12] for pre-
liminary results on this topic using a cooperative architec-
ture). A topological image-based map is also maintained in
parallel, which is induced by the used architecture, to effec-
tively connect the feature-based map and the topology of
the surrounding ambient. Once vehicles are localized with
respect to any point of the map, cooperation is enabled by
sharing the global feature-based map and the image map,
allowing robots to regroup in any position with respect the
environment or relative vehicles position. Virtual visual
servoing based on reprojected desired images and features
can then be used in our scheme to accurately place the ve-
hicle even in unexplored portions of the environment. Par-
ticular attention is to be devoted in the implementation of
the V-SLAMS architecture to produce maps whose require-
ments in terms of memory allocation and communication
bandwidth for sharing are limited.

In this paper, we describe our preliminary work towards
the solution of the cooperative V-SLAMS problem. We
use one or more vehicles with fixed cameras on-board, and
build upon a combination of previous results on visual ser-
voing techniques. Simulations and preliminary experimen-
tal results on a laboratory vehicle are reported, showing
the practicality of the proposed approach.

II. BUILDING THE MAPS

We consider vehicles equipped with a fixed calibrated
monocular camera, whose axis is aligned with the forward
motion direction of the vehicle (which will be assumed to
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Fig. 2. Fixed frame < W >, camera frame < C > and relative
feature coordinates.

behave like a kinematic unicycle). A moving camera frame
< C > is rigidly placed on the mobile robot chassis with
the origin in the camera pinhole, with the Z. axis directed
along the camera optical axis and with the Y. axis per-
pendicular to the plane of motion and passing through the
middle point of the unicycle axle (see fig. 1). From the
current image, n > 3 characteristic points (features) are se-
lected with corresponding coordinates in the camera frame
“pP; = “Ipi,ps,pi]T. The vehicle motion is assumed to
be constrained on the “X x ©Z plane. This hypothesis
is justified when the robot moves at a fixed level, e.g. on
the floor of an office or factory space, and implies that the
coordinates °pi = h; of each feature are constant and rep-
resent the height of the feature on the plane of motion (see
fig. 2).

The position of each feature in the image plane is de-
scribed by the well known perspective projection mapping
T:R’ - R’

szi
Y% {m}:l“?] (1)
Yi ayc_gé
where (z;,y;) are the feature coordinates in the image
plane. «, and a, are camera calibration parameters that
represents the focal length and the pixel dimension scale
factor on the image.

Consider now a fixed frame < W > whose origin is co-
incident with the origin of < C' > when the robot is in the
initial configuration, and with X,, = Z. and Y,, = Y.. Let
We = Wig 6,6]7 € R? x S denote the robot posture.
More precisely, (£1,£2) are the cartesian coordinates of the
middle point of the unicycle axle, and &3 is the orientation
of the unicycle between the Z. axis and the X, axis, as
represented in figure 1. From the initial unknown position
of the vehicle (i.e. V¢ ="][0,0,0]T) an image of a portion
of the scene in view is grabbed and stored as the first im-
age of the topological image-based map (see fig. 3, image A
taken from starting position 1). From the image in view, a
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Fig. 3. Topological image map. Grabbed images are indicated with
a capital letter, say A, B. The corresponding numbers are the 3D
vehicle position with respect to the relative image.

subset of features are selected following some standard cost
index, such as minimum distance between two features, lu-
minosity, or tracking simplicity. Let W P; = W[pi, pi, pi]T
be the i—th feature coordinates with respect to < W > —
note that all the features are motionless in < W >. The
same feature coordinates in the initial camera frame < C' >
are: “P; = “pi ph, pi]T = C[=Wpi, Wph, Wpi]T. At this
point, a simple image-based control law is implemented al-
lowing the robot to track the feature while it moves in any
direction. An Extended Kalman Filter (EKF) is imple-
mented on camera measurements to estimates the relative
spatial position of the feature in camera frame < C >.
It is worthwhile to note that localization of the robot can
be disregarded during this initial step, being it sufficient
that the robot keeps viewing and tracking the features,
thus uncorrelating the estimation process for each feature
and eliminating outlier mismatch possibilities. The esti-
mated EKF state is S7 = [S{,8],50,...,8] | 8I T =
[“p1,C ps,Cpk, ... O pr O pB]T, ie. the n features coordi-
nates to estimate in the < C' > camera frame. The kine-
matic model is computed for state prediction assuming the
camera fixed as specified in figure 1, obtaining

S k+1) S (k) + ST (k)ua (k) + wi (k)
S (k +1) A S{ (k) + ws (k)
J(k+1) _ 1 (k) — ua (k) = S (kyuz(k) + ws (k)
S0 || S0+ waa®
Sk +1) S5 (k) — (k) — 87,y (K)uz(k) + wsn (k)
where U(k) = [u1(k),u2(k)]T are the encoder measure-

ments for forward and angular velocity, obtained from
uy (k) = RM and uq(k) = RM respec-
tively. w, and w; are the rotational encoder for the right
and left wheel, R is the wheel radius and L is the length
of the wheel axle. w = (wy,ws,ws, ..., W3n 1,wsz,)7 is
the additive zero mean gaussian noise comprised of model
dynamical errors and noisy odometry measurements. Per-
spective projection inversion acts as the filter measurement
correction, again added with zero mean gaussian noise rep-
resenting image coordinates extraction inaccuracy. Covari-
ance error matrices are weighted taking into account odom-
etry lack of accuracy (typically due to wheels slipping and
skidding).

Once feature position estimations have converged to the
“real” desired value, that is features’ positions known with
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Fig. 4. Topological image map. Graph nodes represent grabbed
images. Arcs connecting two image nodes are marked with the
corresponding estimated feature, useful for visually servoed nav-
igation.

a low level of uncertainty, a grabbed image is inserted in
the topological image map with the relative vehicle posi-
tion, and estimated feature coordinates are inserted in the
feature-based map. In figure 3, the image B grabbed from
position 2 is joined with A with an arc representing the
subset of estimated feature. The wheeled mobile robot lo-
calization of position 2 in < W > fixed frame is achievable
knowing the initial image A, more precisely knowing ¢ P;
with ¢ = 1..n in B and the feature correspondences in A. In
this way the vehicle is able to be visually servoed between
image A and B.

From image A or B (i.e. from position 1 or 2) the algo-
rithm is repeated, adding new image to the topological im-
age map and new estimated feature to feature-based map
(see fig. 4). Topological map images are hence regarded
as graph nodes, connected each other by feature arcs (see
fig. 4), representing the necessary visual servoing controller
features. It is worthwhile to note that a single connection
between two nodes is used to travel back and forth the node
images (desired image and final image are interchangeable),
so that graph navigation is dead-lock free.

The described structure is ready-to-use with standard
graph visiting algorithm, permitting path selection in the
image graph to steer the vehicle in the environment, possi-
bly with a cost function, such as minimum time, minimum
distance or minimum control effort, implemented by simply
associating weights to arcs. The presented representation
implies two different representations of the vehicle state:
a point in the continuous space of planar configurations
SE(3), and a discrete state in the topological graph.

III. VISUAL SERVOING

The baseline of the visual scheme adopted within this
work is the hybrid Position-Based Visual Servoing scheme
presented in [30]. With respect to that scheme, which is
based on least mean squares localization and assumed the
knowledge of the constant feature heights “ps =" py = h,
the solution adopted here introduces some improvements.
We employ an EKF for estimation of feature coordinates
and camera and environment parameters, maintaining only
the assumption that the vehicle moves in a plane.

77

Knowing the current position of the feature ¢ P; in the
camera frame (see equation (1)), related to "V P; in the fized
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Fig. 5. Perspective projection for Z. optical axis direction. The

point P;" is the 3D feature real position. Erroneous image coordi-
nates measurements will corrupt 3D feature estimation, wrongly
positioning the feature in P;¢. The error is magnified if the cor-
responding y; image coordinate approaches the zero (3D feature
near the horizon).

frame by a rigid-body motion (see fig. 2), and by some stan-
dard geometric calculations, a relationship among the fea-
ture coordinates in the fixed and moving frames with respect
to the robot posture, is obtained as

I [ B
Ps i W 0 1 )7
with
—cosés
b— sin &3 (3)

&y cosés — & sinés
—&1cosé3 — Easinés

Equation (2) can be regarded as providing two nonlinear
scalar equations in the 3 unknown robot state space vari-
ables (&1,&2,&3), for each feature observed in the current
and reference images. Therefore, localization problem is
solvable for each position of the vehicle in IR® x S by solv-
ing —in a least-squares sense — for b, provided only that the
n > 4 features do not belong to a single plane perpendicular
to the plane of motion.

Strictly speaking, this approach works if camera measure-
ments are noise-less, that is, in practical applications with
low-cost visual apparatuses, unconsistent. Due to inverse
perspective projection of 1 for the i—th feature

ﬂhiﬂ
— Qg Yi
|- [ i ] ()

noisy image plane measurements are particularly dangerous
as estimated features are close to the horizon, that is with y;
coordinate close to zero as shown in figure (5), corrupting
the 3D feature estimation of “pi and ©p and the result-
ing localization. In [30] an heuristic algorithm named Fea-
ture Migration has been proposed. In this paper, an Ex-
tended Kalman filter has been adopted. Selecting a number
of n feature for robot localization, estimated filter state
is § = [Sla 527 537 S47 557 Sﬁa ) 53n+17 53n+2; 53n+3]T =
[€1, 6,6, 1,V pb, W ps, Y W ps W pi]T where the
fist three elements represent the vehicle localization. Uni-

£
j2
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cycle kinematic model is assumed for state prediction, as

LR L) S (k) + cos(S3(k))ua (k) + wi (k) ]
o2(k +1) Sa(k) + sin(S3(k))uy (k) + wa (k)
AS(k +1) S3(k) + us (k) + ws(k)
S4(k +1) 0
S5 (k + 1) 0
e(k' + 1) = 0

Sanp1(k+1) 0

Sanpa(k + 1) 0

L §3n+3(k +1) J - 0 -

(5)
where U(k) = [u1(k),u2(k)]T are the encoder measure-
ments for forward and angular velocity, obtained from
uy(k) = RM and us(k) = RM respec-
tively. w, and w; are the rotational encoder for the right
and left wheel, R is the wheel radius and L is the length of
the wheel axle. w = (w1, ws,ws)T is the additive zero mean
gaussian noise comprised of model dynamical errors and
noisy odometry measurements. In a static structured envi-
ronment, the feature are motionless in fixed frame < W >
and supposed to be known. The latter hypothesis may be
relaxed including imperfect knowledge of feature position
with respect fixed frame < W >. Knowing the localization
estimation and the feature position in frame < W >, it is
possible to obtain the feature coordinates with respect to
mobile frame < C > and, by inversion of equation 5, the
estimated measurement to compare with CCD plane real
coordinates. The measurement correction is, once again,
added with zero mean gaussian noise. Covariance error
matrices are weighted taking into account odometry lack
of accuracy (typically due to wheels slipping and skidding)
and [30] localization problems. Simulation results are re-
ported in figure 6, with the least mean squares localiza-
tion method and with the additional EKF localization com-
pared for each vehicle coordinates.

IV. VIRTUAL VISUAL SERVOING

In a generic position the robot is localized using EKF
described in section IIT, obtaining V¢ = W[¢;, &, &]7 that
corresponds to a specific image A (see fig. 3). Suppose
that the robot has to reach a new position, say Wf, ex-
pressed once again in the global metric reference map. If
Wf corresponds to a topology mapped location, which has
an associated image C, a graph visiting algorlthm can be
implemented to steer the vehicle so that A — C, travelling
through image B using the visual servoing controller. Note
that a minimum travelling path algorithm could be imple-
mented, constrained to topological map images, giving to
each possible path between two images a proper weight.
Closed loop connections between the path planners and
the topological image map is ensured by the visual servo-
ing controller.

If Wé has not yet been mapped in the topological map,
the problem is now to reach an unknown, unmapped po-
sition. The first step is to retrieve information about the

&, Localization Error

&, Localization Error

Least Mean

Squares
2 Localiation

i E] E
Number of EKF iterations

Fig. 6. Comparison between least mean squares and EKF local-
ization methods for each robot coordinates Wl¢y, &, &]T. Asit
was expected, the EKF acts as a noise low pass filter, improving
localization noise rejection.

Fig. 7. Grabbed image. The image belongs to a certain topological
map location, which corresponds to a 3D position W €.

necessary visual servoing controller desired feature posi-
tions. Knowing mapped features position in the global
metric map, it is now possible to reproject feature in the
virtual mobile frame < C' > positioned in the desired Wé
by equation (2). Using equation (1), the feature in < C' >
are reprojected in the virtual image plane, using limited
field-of-view camera constraint.

If a set « of at least four metrical mapped feature belongs
to the virtual image plane, the topological image map fur-
nish the image, say D, that has the same set « (as shown
in figure 7, with the associated « set). At this point, the
first problem is to steer the vehicle to image D, using, once
again, the topological image map and a standard algorithm
to visit the corresponding graph.

As the robot reaches the topological image D, that is the
metric position " ¢, the transformation W F = [Fy, Fy, F3]T
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Fig. 8. Virtual image. The image contains reprojected image feature
signed with crosses in fig. 7, as they appear in the unmapped
desired position Wf. The virtual image plane is obtained once
the homogeneous transformation 7 has been computed.

between "¢ and W¢ is computed, simply noting that
WE =W ¢ -W ¢ The homogeneous transformation Ty =
[R,t], where R is the rotation matrix of angle F3 performed
with respect to Yo mobile frame axis and t = [Fy,0, Fy, 1]T
is the translation vector, is applied to the set a belonging
to image D obtaining the virtual image (see fig. 8). The
virtual image represents the desired, offset 3D feature po-
sition, expressed in the moving camera frame < C' >. Vir-
tual points in virtual image are used by the visual servoing
controller as task targets.

It is worthwhile to note that outlier problem is intrin-
sically solved in the virtual image creation procedure. As
aforementioned, the visual servoing controller works with
the same paradigm and accuracy in real or virtual image,
ensuring convergence in the desired, unmapped position.
As the robot reaches the desired position and orientation
Wf, the real image is grabbed and added to topological
map (see fig. 9), adjusting topological map arcs with cor-
responding feature information.

Generating virtual images, we have to deal with occlu-
sion problems: given a desired location, the features of
a are in the field of view of the virtual camera, but can
be occluded by other objects during the servoed position-
ing. If the location of the projection belongs to a path
between two mapped nodes of the topological map it is al-
ways possible to find reliable features without occlusions.
It is worthwhile to note that servoing controller needs at
least four features to complete the navigation, so occluded
features can be discarded till the necessary minimum num-
ber is reached. In this work, the features in virtual image
are simply chosen belonging to the closest path of the map
to the virtual location, without going deeper in the occlu-
sion problem. Furthermore, as the vehicle moves in the
topological virtual images, it is able to identify and esti-
mate new unknown features of the environment, growing

Fig. 9. Final servoed image. Note that image features correspond to
the highlighted features in fig. 8, within the vision system noise.

the detail of the metric map and introducing new images
in the topological map.

Existence of the set o of metrical mapped feature in the
virtual image plane is a sufficient condition. If a does not
exist, a heuristic position planner could be used, search-
ing for a set of positions I' = {&/}, with j = 1,...,m,
where ¢! is a valid virtual position, i.e. where exist a set of
valid mapped feature a', reachable from a topological im-
age position. Both metric and topological maps, together
with the I' set, are built up as the robot navigates to the de-
sired position, using desired global " ¢ position to drive the
choices of subsequent &/, If a solution exist, that is if the
environment is sufficiently visual informative, last element
of the I set, ¢™ and associated topological images, contains
the necessary information to reach the desired position.
Due to the “sufficiently visual informative” constraint, the
described algorithm is heuristic and, at this time, there is
not rigorous demonstration of its effectiveness.

It is worthwhile to note that within the proposed vir-
tual images mechanism, the discrete topological image map
could be treated as a continuous image stream of the en-
vironment, but storing only the finite number of necessary
images.

V. COOPERATION AND COORDINATION

Cooperative localization and map building is another
attractive research field, minimizing the time for build-
ing complex maps and incrementing the accuracy of the
produced maps with augmented fault tolerance. Within
the proposed solution, map building cooperation could be
addressed once multiple agents start the exploration from
known relative positions. Each vehicle built up its own
maps with respect the fixed common frame. At a certain
time, produced maps could be fused in a unique global map
that could be shared among the autonomous vehicles.

As stated in section IV, using virtual images is possible
to reach an unmapped position of the environment. This
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Fig. 10. Feature coordinates estimation with respect mobile camera
frame < C' >. Note that the Z coordinate varies depending on
the particular controls applied to the robot.

potentiality is also used for robot cooperation, once com-
mon global maps are shared among the agents. Indeed,
each robot is able to specify a global or relative target po-
sition for the rest of the robots, leaving to the latter the
virtual images computation.

The particular implementation of the Visual SLAM for
Servoing produce shared maps that are memory-safe and
communication bandwidth-safe.

VI. EXPERIMENTAL RESULTS

A low-cost apparatus was employed, to highlight the ap-
plicability potential of the proposed technique. The ex-
perimental setup was comprised of a K-Team Koala vehi-
cle [2], equipped with a cheap Kodak EZ200 web-cam [3]
placed on the front part of the robot platform. The ve-
hicle has two symmetric rows of three wheels on its sides,
each actuated by a single low-resolution stepper-motor ac-
tuator: the construction implies that slipping and skidding
of some of the wheels occurs whenever the vehicle moves
along a curved trajectory. Such conditions make it hard
to use odometry for localization and control, and strongly
motivates the use of visual servoing. The controller is im-
plemented under Windows XP on a 1130MHz Pentium III
laptop mounted on-board. The Intel OpenCV [1] library
wes used to compute optical flow and to track features.
The hardware communication between the robot and the
laptop is performed by a RS-232 serial cable.

Figure 10 shows experimental results for feature coordi-
nates extimation. EKF techniques was employeed, starting
with a strongly erroneous initial guess. The image based
controller used in this first, preliminary experimental result
was comprised of a simple back-and-forth controller, able
to avoid feature occlusions and able to take into account
limited field of view constraint.

Data retrieved from this experiment are relative to mo-
bile camera frame < C' >, so feature estimation for Z¢ co-

ordinate, that represents the distance of the feature from
the robot, varies depending on image based controller that
has been chosen.

VII. CONCLUSIONS

In this paper, we have proposed the Visual SLAM for
Servoing, a preliminary solution to the well known SLAM
problem based on a previously developed visual servoing
control schema. The connection between control tech-
niques (Action) and sensorial data interpretation (Percep-
tion) has been taken into account.

Economicity of the whole system has been addressed us-
ing off-the-shelf cameras fixed on a inexpensive consumer
mobile platform.

The proposed solution is strictly related to the Extended
Kalman Filter used to estimates feature positions.

Two dissimilar maps are naturally induced by the pro-
posed architecture: a metric 3D maps, containing the esti-
mated feature and robot posture as it is usually assumed in
control literature, and a topological image map, composed
of images of the mapped surrounding environment that an
higher level of explored ambient perception.

Feature-based metric maps allows future improvements
adopting more sophisticated visual feature extraction, like
textures mapping or edge detection and tracking algo-
rithms.

The proposed work implements a virtual visual servoing
based on reprojected desired image feature, allowing au-
tonomous exploration of unmapped environment regions.

The virtual visual servoing is also able to find a solu-
tion for coordination and cooperation among different au-
tonomous agents. Produced maps are memory-safe and
communication bandwidth-safe, facilitating the map shar-
ing among mobile agents.

Simulations and preliminary experimental results on a
laboratory vehicle are reported, showing the practicality of
the proposed approach.
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