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Abstract—This paper presents a complete characterization of
shortest paths to a goal position for a robot with unicycle
kinematics and an on-board camera with limited Field-Of-View
(FOV), which must keep a given feature in sight.

Previous work on this subject has shown that the search for
a shortest path can be limited to simple families of trajectories.
In this paper, we provide a complete optimal synthesis for the
problem, i.e. a language of optimal control words, and a global
partition of the motion plane induced by shortest paths, such that
a word in the optimal language is univocally associated to a region
and completely describes the shortest path from any starting
point in that region to the goal point. An efficient algorithm to
determine the region in which the robot is at any time is also
provided.

Index Terms—Nonholonomic Motion Planning; Shortest Path
Synthesis; Visual Servoing

I. INTRODUCTION

This paper deals with the study of shortest paths for a
directed point moving in a plane to reach a target position
while making so that a point fixed in the plane is kept inside
a cone moving with the point. The point moves subject to
the constraint that its instantaneous velocity is aligned with
its direction.

This problem is motivated by several applications in mobile
robotics, where a vehicle with nonholonomic kinematics of the
unicycle (or Chaplygin sleigh) type, equipped with a limited
Field-Of View (FOV) camera, has to reach a target while keep-
ing an environment feature in sight. An inspiring motivation
for the study, however, comes from the naturalistic observation
of paths followed by raptors during hunting activities [1], see
fig. 1. Indeed, the most acute vision information for raptors
comes from their deep foveae, which point at approximately
45o to the right or the left of the head axis. The deep fovea
system has a limited FOV, so that raptors possess no accurate
front sight. This causes a conflict, for instance in falcons,
which dive a prey from great distances at high speeds: at a
speed of 70 m/s, turning their head sideways to view the prey
with high visual acuity may increase aerodynamic drag by a
factor of 2 or more, and slow the raptor down. In [1], it has
been shown that raptors resolve this conflict by diving along
a logarithmic spiral path with their head straight and one eye
looking sideways at the prey, rather than following the straight
path to the prey with their head turned sideways (see fig. 1).

This paper deals with a closely related problem in robotics,
which is the following: given a robot vehicle with an on-board,
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Fig. 1. In order to keep the prey in view, a raptor follows a logarithmic
spiral rather than a straight line (cf. [1])

limited FOV camera, and subject to nonholonomic constraints
on its motion, find the shortest path to reach a goal, such that
a specified feature of the environment is always kept in sight.

The literature of optimal (shortest) paths stems mainly
from the seminal work on unicycle vehicles by Dubins [2].
Dubins gave a characterization of shortest curves for a car
with a bounded turning radius, proving that optimal solutions
consist of combinations of circular arcs of minimum curvature
(denoted by the symbols R and L for right and left arcs, respec-
tively) and straight lines (S). He showed that an optimal path
can always be found among 6 types only, described by words
using at most three such symbols. A complete optimal control
synthesis for this problem, i.e. a finite partition of the whole
motion plane in regions such that the same word encodes the
shortest path from all points in the same region, has been
reported in [3]. Later on, Reeds and Shepp [4] solved a similar
problem with the car moving both forward and backward.
This problem was revisited, and the solution refined by the
use of tools from optimal control theory, by Sussmann and
Tang in [5]. Souères and Laumond in [6] combine necessary
conditions given by Pontryagin’s Maximum Principle (PMP)
with Lie algebraic tools to provide a global synthesis for the
Reeds and Shepp vehicle. The PMP and Lie algebras have
been used also to obtain minimum wheel rotation paths in [7]
for differential-drive robots. More recently, [8] authors propose
an alternative algorithm to determine time optimal trajectories
for nonholonomic bidirectional robots using switching vectors.
The problem of time optimal trajectories has also attracted
considerable attention, as e.g. related to differential-drive
robots, for which a complete solution was given by [9].

The optimal control of visually guided robotic manipu-
lators has also received considerable attention recently (see



e.g. [10]). Optimal trajectory planning for robot manipulators
controlled via a limited FOV camera has been first presented
in [11], where two algorithms based on homography and on
epipolar geometry, respectively, have been proposed to gener-
ate the optimal trajectory of the robot to its goal configuration.
Minimal trajectories have been also presented in [12] in case
of large displacements, again for a six degrees of freedom
robot manipulator. To date, much less is the work that has
been devoted to optimal control of visually-servoed robotic
vehicles. To the best of the authors’ knowledge, the work
in [13] and [14] represent the first attempts to find minimum
length paths for nonholonomic vehicles equipped with limited
FOV monocular cameras.

In this paper, we start from the observation made in [13] that
extremal arcs for the considered problem are of three types:
rotations on the spot (which will be denoted by the symbol ∗),
straight lines (S) and left and right logarithmic spirals (T L and
T R). The optimal control synthesis presented in [13] consists
of 10 regions, for each point of which the shortest path is of
the same type and described by a word using up to 3 symbols.
In this paper we study the same problem, and show that the
synthesis of [13] is valid locally, i.e. for starting positions of
the robot close enough to the goal. However, a correct and
complete synthesis for the whole plane of motion requires
a finer partition in 18 regions, and the use of words of up
to 5 symbols. Moreover, an efficient algorithm to determine
the region in which the robot is at any time is provided
showing that the region can be determined verifying at most
6 elementary inequalities on the initial position.

The approach that we use is based on the exploitation of
geometric symmetries and invariants (section III). A synthesis
is obtained first for the points on the border of a compact
subset of the motion space (section IV), then for the interior
of this subset (section V), and finally extended to the entire
motion plane (section VI).

II. PROBLEM DEFINITION

Consider a vehicle moving on a plane where a right-
handed reference frame ⟨W ⟩ is defined with origin in OW
and axes Xw,Zw. The configuration of the vehicle is described
by ξ (t) = (x(t),z(t),θ(t)), where (x(t),z(t)) is the position
in ⟨W ⟩ of a reference point in the vehicle, and θ(t) is the
vehicle heading with respect to the Xw axis (see fig. 2). We
assume that the dynamics of the vehicle are negligible, and that
the forward and angular velocities, ν(t) and ω(t) respectively,
are the control inputs to the kinematic model of the vehicle.
Choosing polar coordinates for the vehicle (see fig. 2), i.e.
setting

η =

⎡⎣ρ
ψ
β

⎤⎦=

⎡⎣ √
x2 + z2

arctan
( z

x

)
arctan

( z
x

)−θ +π

⎤⎦ , (1)

the kinematic model of the unicycle-like robot is⎡⎣ρ̇
ψ̇
β̇

⎤⎦=

⎡⎢⎣−cosβ 0
sinβ

ρ 0
sinβ

ρ −1

⎤⎥⎦[ν
ω

]
. (2)

We consider vehicles with bounded velocities which can turn
on the spot. In other words, we assume

(ν ,ω) ∈U, (3)

Fig. 2. Mobile robot and systems coordinates. The robot’s task is to reach
P while keeping OW within a limited FOV (dashed lines).

with U a compact and convex subset of IR2, containing the
origin in its interior.

The vehicle is equipped with a rigidly fixed pinhole camera
with a reference frame ⟨C⟩ = {Oc,Xc,Yc,Zc} such that the
optical center Oc corresponds to the robot’s center [x(t),z(t)]T

and the optical axis Zc is aligned with the robot’s forward
direction.

Without loss of generality, we consider the position of the
robot target point P to lay on the XW axis, with coordinates
(ρ, ψ) = (ρP, 0). We also assume that the feature to be kept
within the on-board camera FOV is placed on the axis through
the origin OW and perpendicular to the plane of motion. We
consider a symmetric planar FOV with characteristic angle
δ = 2ϕ , which generates the constraints

β +ϕ ≥ 0, (4)
β −ϕ ≤ 0 . (5)

Noticed that we place no restrictions on the vertical dimen-
sion of the FOV. Therefore, the height of the feature on the
motion plane, which corresponds to its Yc coordinate in the
camera frame ⟨C⟩, is irrelevant to our problem. Hence, for
our purposes, it is necessary to know only the projection of
the feature on the motion plane, i.e. OW .

The goal of this paper is to determine, for any point Q ∈ IR2

in the robot space, the shortest path from Q to P such that the
feature is maintained in the camera field of view. In other
words, we want to minimize the length of the path covered by
the center of the vehicle, i.e. to minimize the cost functional

L =
∫ τ

0
∣ν ∣dt ,

under the feasibility constraints (2), (3), (4), and (5). Here, τ
is the time needed to reach P that is ρ(τ) = ρP,ψ(τ) = 0.

The time derivative of the FOV constraints computed along
the trajectories of system (2) brings to

β̇ =
sinβ

ρ
ν −ω , (6)

for both constraints. From the theory of optimal control, with
state and control constraints [15], the associated Hamiltonian



is

H(η ,ν,ω) =∣ν ∣−λ1 cosβν +λ2
sinβ

ρ
ν+

+(λ3 +µ1 +µ2)

(
sinβ

ρ
ν −ω

)
,

with λ = (λ1, λ2, λ3) ∕= 0 and µ = (µ1, µ2) ≥ 0. When the
FOV constraints are not active (i.e. µ = 0), extremal curves
(i.e. curves that satisfy necessary conditions for optimality)
include straight lines (corresponding to ω = 0 and denoted
by the symbol S) and rotations on the spot (corresponding to
ν = 0 and denoted by the symbol ∗).

On the other hand, when µ > 0 we have

β +ϕ ≡ 0 ⇒ tanβ =− tanϕ
β −ϕ ≡ 0 ⇒ tanβ = tanϕ ,

and, by (2),

ψ̇ = tanϕ
ρ̇
ρ
= tanϕ

d
dt

(lnρ) , when β =−ϕ (7)

ψ̇ = − tanϕ
ρ̇
ρ
=− tanϕ

d
dt

(lnρ) , when β = ϕ . (8)

By integration, we obtain

ψ = tanϕ ln
(

ρ
ρo

)
, when β =−ϕ (9)

ψ = − tanϕ ln
(

ρ
ρo

)
, when β = ϕ (10)

where ρo is a constant that depends on initial conditions.
Equations (9) and (10) represent two logarithmic spirals

rotating counterclockwise and clockwise around the feature,
respectively. We refer to these two spirals as Right and Left,
and by symbols T R and T L, respectively. The adjectives “right”
and “left” indicate the half–plane where the spiral starts for
an on–board observer aiming at the feature.

We have thus obtained four extremal maneuvers, repre-
sented by the symbols {∗, S, T R, T L}. Rotations on the spot
(∗) have zero length, but may be used to properly connect
other maneuvers.

Extremal arcs can be executed by the vehicle in either
forward or backward direction: we will hence use superscripts
+ and − to make this explicit (e.g., S− stands for a straight
line executed backward). In conclusion, we will build extremal
paths consisting of sequences, or words, comprised of symbols
in the alphabet {∗, S+, S−, T R+, T R−, T L+, T L−}. The set of
possible words generated by the above symbols is a language
L .

The rest of the paper is dedicated to showing that, due
to the physical and geometrical constraints of the considered
problem, a sufficient optimal finite language LO ⊂ L can be
built such that, for any initial condition, it contains a word
describing a path to the goal which is no longer than any
other feasible path. Correspondingly, a partition of the plane in
a finite number of regions is described, for which the shortest
path is one of the words in LO.

Notice that, for ϕ ≥ π
2 , a straight line followed forward

and/or backward so as to keep the feature in view is always
feasible and, hence, trivially optimal. In the rest of the paper,
we will only be concerned with the non-trivial case ϕ ∈ [0, π

2 ].

III. SHORTEST PATHS SYNTHESIS: SYMMETRIES AND
INVARIANTS

In this section, we introduce the basic tools that will allow
us to study the optimal synthesis on the whole state space of
the robot.

Let η(τ) denote a trajectory of the vehicle corresponding to
a solution of equations 2 and 3. Because we are interested in
finding shortest paths for the vehicle’s center point, we define
a path γ as the canonical projection of the graph (η(τ), τ) on
the first two coordinates. In other terms, a path γ parameterized
by t, is a continuous map from the interval I = [0,1] to the
plane of motion γ(t) = (ρ(t), ψ(t)), t ∈ I. We denote with
PQ the set of all feasible extremal paths from γ(0) = Q to
γ(1) = P.

Definition 1. Given the target point P, with P = (ρP,0) in
polar coordinates, and Q ∈ IR2 ∖OW , Q = (ρQ,ψQ) with ρQ ∕=
0, let fQ : IR2 → IR2 denote the map

fQ (ρG,ψG) =

⎧⎨⎩
(

ρGρP

ρQ
,ψQ −ψG

)
for ρG ∕= 0

(0,0) otherwise.
(11)

Remark 1. The map fQ can be regarded as the combination
of a clockwise rotation RQ by an angle ψQ, a scaling SQ by
a factor ρP/ρQ, and an axial symmetry w.r.t. XW . Indeed, if
RQ : (ρ,ψ) 7→ (ρ,ψ −ψQ) and SQ : (ρ,ψ) 7→ (ρ(ρP/ρQ),ψ),
we have RQ ∘SQ : (ρ,ψ) 7→ (ρρP/ρQ,ψ −ψQ).

Definition 2. Given the target point P = (ρP,0) and Q =
(ρQ,ψQ) with ρQ ∕= 0, let the path transform function FQ be
defined as

FQ : PQ → P fQ(P)

γ(t) 7→ fQ(γ(1− t)), ∀t ∈ I.
(12)

Remark 2. Notice that γ̃(t) = FQ (γ(1− t)) corresponds to
γ(t) transformed by fQ and followed in opposite direction.
Indeed, γ̃ is a path from γ̃(0) = fQ(P) to γ̃(1) = fQ(Q)≡ P.

Turning our attention back to the map fQ(⋅), it can be
noticed that point Q is transformed in fQ(Q) = P, while P

goes into fQ(P) =
(

ρ2
P

ρQ
,ψQ

)
.

Consider now the locus of points Q such that it further holds
fQ(P) = Q. This is clearly the circumference with center in
OW and radius ρP. We will denote this circumference, which
will have an important role in the following developments, by
C(P). Properties of FQ will allow us to solve the synthesis
problem from points on C(P), hence to extend the synthesis
to any point inside the circle, and finally to the whole motion
plane.

Remark 3. As a first consequence of the fact that ∀Q ∈C(P),
fQ(P) = Q and fQ(Q) = P, we have that PQ is FQ–invariant,
i.e. Q ∈C(P)⇒∀γ ∈ PQ, FQ(γ) ∈ P fQ(P) ≡ PQ.

Notice that Remark 1 is valid also for FQ. As a conse-
quence FfQ(P)(FQ(γ))≡ γ . Furthermore, FQ transforms forward
straight lines in backward straight lines and viceversa. More-
over, FQ maps left spiral arcs (T L+ and T L−) in right spiral arcs
(T R− and T R+ respectively) and viceversa. Hence, FQ maps
extremal paths in L in extremal paths in L . For example,
let w = S− ∗T R− ∗ S+ ∗ T L+ be the word that characterize a



Fig. 3. Construction of a palindrome symmetric path: γ is a generic path
from Q to P and γ̃ the symmetric to γ w.r.t. the bisectrix r.

path from Q to P, the transformed extremal path is of type
z = T R− ∗ S− ∗T L+ ∗ S+. With a slight abuse of notation, we
will write z = FQ(w).

From previous remarks we also obtain that an extremal path
γ ∈PQ with Q ∈C(P) is mapped in an extremal path γ̃ ∈PQ

symmetric to γ w.r.t. the bisectrix r of the angle Q̂OW P.
In the following, we will denote by D(P) the closed disc

within C(P). Due to the symmetry of the problem, however,
the analysis of optimal paths in PQ can be done considering
only the upper half plane w.r.t. the XW axis. We denote
therefore by DS the closure of the semidisk in the positive
ZW half-plane, by CS the upper semicircumference, and by
PsP the diameter such that ∂DS =CS∪PsP (see fig. 3).

Proposition 1. Given Q ∈ IR2 and a path γ ∈ PQ of length
l, the length of the transformed path γ̃ = FQ(γ) is l̃ = ρP

ρQ
l.

Proof: Given Q∈ (XW ,ZW ), from Remark 1, straight lines
are scaled by ρP/ρQ. The distance of two points P1 = (ρ1, ψ1)
and P2 = (ρ2, ψ2) on a logarithmic spiral with characteristic
angle ϕ is d = (ρ1 −ρ2)/cosϕ . Hence, the distance between
transformed points is scaled by ρP/ρQ. The total path length is
thus scaled by ρP/ρQ, i.e. increased if Q ∈ DS and decreased
if Q /∈ DS.

Definition 3. An extremal path starting from Q and described
by a word w ∈L is a palindrome path if the transformed path
through FQ is also described by w.

Definition 4. An extremal path in PQ which is a palindrome
path and is symmetric w.r.t. the bisectrix r of Q̂OW P, is called
a palindrome symmetric path.

Proposition 2. For any path in PQ with Q ∈CS there always
exists a palindrome symmetric path in PQ whose length is
shorter or equal.

Proof: Consider γ ∈PQ with Q ∈CS, and γ̃ = FQ(γ) the
transformed path, which is symmetric to γ w.r.t. the bisectrix
r of Q̂OW P (see fig. 3). Indeed, in this case, FQ consists only
in a rotation and axial symmetry, hence it corresponds to the
bisectrix symmetry. Hence, from Proposition 1, γ and γ̃ have
the same length l. Let K ∈ r be the intersection point of the
two paths, we denote with γ1 and γ2 (γ̃1 and γ̃2) the sub–paths
of γ (γ̃) from Q to K and from K to P respectively. From the
definition of γ̃ we have that the length l1 of γ1 is equal to the
length l̃2 of γ̃2, and the length l2 of γ2 is equal to the length
l̃1 of γ̃1. Furthermore, l1 + l2 = l̃1 + l̃2 = l.

Fig. 4. Region CG with its border ∂CG = CR
G ∪CL

G and cone ΓG delimited
by half–lines rR

G and rL
G.

Suppose that l1 ≥ l2 = l̃1, then the path from Q to P obtained
from a concatenation of γ̃1 and γ2 has length l̃1 + l2 = 2l2
smaller than, or equal to, the length l of γ , and it is feasible and
symmetric w.r.t. the bisectrix r, i.e. a palindrome symmetric
path. If l1 < l2 the construction of a palindrome symmetric
path can be done equivalently using γ1 and γ̃2.

An important consequence of the properties of the path
transform FQ is the following

Theorem 1. For any path in PQ with Q ∈ ∂DS there always
exists a path in PQ which evolves completely within DS whose
length is shorter or equal.

Proof: We first prove that for any path δ between two
points in C(P), there exists a path completely inside D(P)
whose length is shorter or equal. Let Q′ and P′ be the extremal
points of a sub–path of δ completely outside D(P), and let l
be length of such sub–path. From Proposition 2, there exists
a palindrome path γ from Q′ to P′ of length l or shorter that
evolves completely outside D(P). The intersection of γ with
the bisectrix r of the angle P̂′OW Q′ is a point Z, with ρZ > ρP.
By symmetry, the length of the sub–path γZ from Z to P′ is l/2.
On the other hand, γZ is transformed by FZ in γ̃Z , going from
FZ(Z) to P′, with length ρP

ρZ
l
2 . Joining γ̃Z with its symmetric

with respect to r, a path from Q′ to P′ of length ρP
ρZ

l < l is
found.

As a consequence, any path from Q ∈ C(P) to P can be
shortened by an extremal feasible path completely inside D(P).
Moreover, for Q on ∂DS, γ evolves in DS: indeed, if there
existed a point of intersection Z̄ with the XW axis, the sub–
path γZ̄ from Z̄ to P would be shortened by the segment Z̄P
lying on the axis itself, i.e. on PsP.

IV. OPTIMAL PATHS FOR POINTS ON CS

Our study of the optimal synthesis begins in this section
addressing optimal paths from points on CS. We preliminarily
establish an existence result.



Proposition 3. For any Q ∈CS there exists a feasible shortest
path to P.

Proof: Because of state constraints (4), and (5), and the
restriction of optimal paths in DS (Theorem 1) the state set
is compact. Furthermore, for any point at distance ρ from
OW the optimal path is shorter or equal to ρ + ρP (which
corresponds to the path S+ ∗ S− through OW ). The system is
also controllable (cf. [13]). Hence, Filippov existence theorem
for Lagrange problems can be invoked [16].

A first simple result can be stated for starting points on the
diameter PSP of C(P).

Proposition 4. For Q ∈ PsOW the optimal path is S+ ∗S− with
switching point in OW . For Q ∈ OW P the optimal path is S−.

Proof: The FOV constraint is not active from Q to OW
and from OW to P, hence a straight line is the shortest path.

Definition 5. For a point G ∈ IR2, let CR
G (CL

G) denote the
circular arc from G to OW such that, ∀V ∈CR

G (CL
G), ĜVOW =

π −ϕ in the half-plane on the right (left) of GOW (cf. fig. 4).
Also, let CG denote the region delimited by CR

G and CL
G from

G to OW .

We will refer to CR
G (CL

G) as the right (left) ϕ–arc in G.

Definition 6. For a point G ∈ IR2, let rR
G (rL

G) denote the half–
line from G forming an angle ψG +ϕ (ψG −ϕ ) with the XW
axis (cf. fig. 4). Also, let ΓG denote the cone delimited by rR

G
and rL

G.

We will refer to rR
G (rL

G) as the right (left) ϕ–radius in
G. The following result is obtained by elementary geometric
arguments:

Proposition 5. For any starting point Q, all points of CQ
are reachable by a straight path without violating the FOV
constraint.

A sufficient family of (palindrome symmetric) optimal paths
is obtained in the following theorem.

Theorem 2. For any Q ∈ CS to P there exists a palindrome
symmetric shortest path of type S+T L+ ∗T R−S−.

To prove Theorem 2, we establish first a few preliminary
results.

Proposition 6. If an optimal path γ ∈PQ includes a segment
of type S+ with extremes in A, B, then either B = P ∈ CA or
B ∈CR

A ∪CL
A.

Proof: If B /∈ CA the straight line violates either one of
the FOV constraints. Furthermore, if B ∈CA but B /∈ ∂CA and
P /∈CA, the sub–path from B to P intersects ∂CA in B′. Hence,
γ could be shortened by replacing the sub–path from A to
B′ through B with the segment AB′. If P ∈ CA, then by the
optimality principle B = P.

Remark 4. The argument of Proposition 6 can be repeated
for any point A′ on the S+ segment ending in B. Hence, for
any forward segment AB of an optimal path γ ∈ PQ, it holds
either B ∈ ∩A′∈AB ∂CR

A′ or B ∈ ∩A′∈AB ∂CL
A′ . Notice that this

holds also for the particular cases B = P and B = OW .

Proposition 7. If an optimal path γ ∈PQ includes a segment
of type S− with extremes in B, A, then either A = P ∈ ΓB or
A ∈ rR

B ∪ rL
B.

Proof: If A /∈ ΓB the straight line violates either one of
the FOV constraints. Furthermore, if A ∈ ΓB but A /∈ ∂ΓB and
P /∈ ΓB, the sub–path from A to P intersects ∂ΓB in A′. Hence,
γ could be shortened by replacing the sub–path from B to
A′ through A with the segment BA′. If P ∈ ΓB, then by the
optimality principle A = P.

Proposition 8. If a path γ(t), t ∈ [0,1] is optimal, then its
angle ψ(t) is monotonic.

Proof: Because γ is a continuous path, the angle of its
points varies continuously. Should the angle be not monotonic
(i.e. neither monotonically non-decreasing nor monotonically
non-increasing), then there would exist two points on the
path with the same angle, hence aligned with OW . These two
points could be connected with a feasible straight line, thus
shortening γ , which on the contrary was supposed to be a
shortest path.

Remark 5. By applying Proposition 8 to optimal paths from Q
in the upper half–plane to P, and noticing that ψQ ≥ ψP = 0,
the angle is non increasing. Hence optimal paths in the upper
half–plane, and in particular in DS, do not include counter–
clockwise extremals of type T R+ or T L−.

Proposition 9. If a path γ(t) is optimal, then its distance ρ(t)
has no local maximum for t ∈ (0,1).

Proof: Because γ is a continuous path, the distance ρ(t)
of its points from OW is a continuous function of t. Assume
that the distance has a maximum in an internal point t̄ ∈ (0,1).
Then, by classical analysis theorems, there exist two values tG
and tH in (0,1) such that ρ(tG) = ρ(tH)< ρ(t̄), with the sub–
path between tG and tH evolving outside the disk of radius
ρ(tG). Applying the same arguments used in the proof of
Theorem 1, replacing Q′ with γ(tG) and P′ with γ(tH), it
is shown that a shorter sub–path between tG and tH exists
evolving completely within the disk, i.e. a contradiction.

Remark 6. Observe that the distance from OW is strictly
increasing along backward extremal arcs (i.e. S−, T R−, T L−)
and strictly decreasing along forward extremal arcs (i.e. S+,
T R+, T L+). As a consequence of Proposition 9 in an optimal
path a forward arc cannot follow a backward arc.

Proposition 10. For any two points G, H, consider a spiral
arc T (either left or right) from G to H, and denote by rG, rH
the tangent lines to T in G and H, respectively. Let A= rG∩rH .
Then, the length of T is less than the sum of lengths of the
segments GA and AH (see fig. 5).

Proof: We prove this statement by building a sequence
of piecewise linear paths shorter than GA∪AH which approx-
imates the arc T . Let B be the intersection point with T of
the line from OW to A (see fig. 5). The line rB tangent to T
in B intersects GA and AH in C and D, respectively. The path
GC∪CD∪DH is shorter than GA∪AH. The same construction
and reasoning can be applied now to the sub–arcs of T from G
to B, and from B to H, and so on. Inductively, the logarithmic
spiral between G to H is asymptotically approximated by a
sequence of piecewise unfeasible paths shorter than GA∪AH,



hence the thesis.

Fig. 5. Construction used in the proof of Proposition 10.

Proposition 11. Any path of type S− ∗T R− (resp., T L+ ∗S+)
can be shortened by a path of type T R−S− (resp., S+T L+).

Proof: Let A and B be the initial and final points of the
S− ∗T R−, and let A1 be the switching point between S− and
T R− (see fig. 6). Without loss of generality, we assume that
A1 belongs to rL

A, the left ϕ–radius in A (if not, the path can
be shortened by a path of the same type for which this is
true). Let G be the intersection point between the spiral T R

A
through A and the ϕ–arc CR

B through B. By Definitions 5,6,
and the properties of logarithmic spirals, the line rG through
B and G is tangent to T R

A in G, while rL
A is tangent to T R

A in A.
Let A′ be the intersection of rG with rL

A. The segment A′B is
shorter than the sub–path S− ∗T R− from A′ to B through A1.
By Proposition 10, however, the feasible spiral arc T R

A from
A to G shortens AA′ ∪A′G, hence the thesis. The proof for
T L+S+ is analogous.

Proof of Theorem 2.: According to Propositions 8–
11 and Remarks 5–6, a sufficient optimal language LO for
Q ∈ DS is described in fig. 7. It is straightforward to observe
that the number of switches between extremals is finite and
less or equal to 3, and a sufficient family of optimal paths is
given by the word S+T L+ ∗T R−S− and its degenerate cases.
Furthermore, by Proposition 2, for Q ∈CS optimal paths are
palindrome symmetric.

A palindrome symmetric path from Q on CS to P of the type
S+T L+ ∗T R−S− is shown in fig. 8. By symmetry, it follows
that the sub–paths S+ and S− have the same length, and so do
T L+ and T R−. As a consequence, only two sub-words T L+ ∗
T R− and S+ ∗ S− need be considered, which are obtained as
degenerate cases with zero length arcs.

Referring to fig. 8, let the switching points of the optimal
path be denoted as M2, N, and M1, respectively. Notice that N
is on the bisectrix r of Q̂OW P, while M1 and M2 are symmetric
w.r.t. r. In fig. 8 the region CQ, locus of points reachable by
a linear feasible path from Q, is also reported delimited by
dashed curves.

We now study the length of extremal paths from CS to P
in the sufficient family above. To do so, it is instrumental to
parameterize the family by the angular position of the first
switching point, αM1 .

Theorem 3. The length of a path γ ∈ PQ, Q ∈ CS, of type

Fig. 6. Construction used in the proof of Proposition 11.

Fig. 7. Feasible extremals and sequences of extremals from points in DS.

S+T L+ ∗T R−S− passing through M1 = (ρM1 ,αM1) is

L = 2
ρP

cosϕ
cosαM1 −

2ρP e
(

αM1−
ψQ
2

)
t

cosϕ sinϕ
sin(ϕ −αM1), (13)

when ϕ ∈ ]0, π
2

[
. In the extreme cases ϕ = 0 and ϕ = π

2 , we
have L = 2ρP and L = 2ρP sin ψQ

2 , respectively.

Proof: Recalling that P = (ρP,0), Q = (ρP,ψQ), when
ϕ > 0, M1 ∈CR

P , by the law of sines we have

ρM1 = ρP
sin(ϕ −αM1)

sinϕ
, (14)

On the other hand, for M2 = (ρM2 ,ψQ −αM2) on CL
Q it holds

by symmetry ρM2 = ρM1 .
Also the lengths of segments S+ and S− are equal, and

evaluate to

PM1 = QM2 = ρP
sinαM1

sinϕ
. (15)

From (9), setting t = cosϕ
sinϕ , the right logarithmic spiral

passing through M1 (denoted with T R
M1

) is given by

T R
M1

:
(

ρM1e(αM1−ψ)t ,ψ
)
.

Similarly, the left spiral for M2 (denoted with T L
M2

) is given
by

T L
M2

:
(

ρM2e−(ψQ−αM2−ψ)t ,ψ
)
.



Fig. 8. The palindrome symmetric path of type S+T L+ ∗T R−S− from Q∈CS
to P.

The intersection point between the spirals T R
M1

and T L
M2

is N =
(ρN ,ψN), where

ρN = ρP
e
(αM1

−ψQ+αM2)
2 t

sinϕ

√
sin(ϕ −αM1)sin(ϕ −αM2) =

= ρP
e
(

αM1−
ψQ
2

)
t

sinϕ
sin(ϕ −αM1)

(16)

ψN =
(αM1+ψQ −αM2)

2
− cosϕ

2sinϕ
ln
(

sin(ϕ−αM2)

sin(ϕ−αM1)

)
=

ψQ

2
.

(17)
Notice that for ϕ = π

2 we have M1 ≡ M2 ≡ N and spiral arcs
have zero length. Hence, from (15) and (17), L = 2ρP sin ψQ

2 .
For ϕ ∈ ]0, π

2

[
, the length of the spiral arcs T L+ from M1

to N and T L− from M2 to N are equal, and evaluate to

M1N = M2N =
ρM1 −ρN

cosϕ
.

Adding up, after some simplifications, the total length L is
therefore as reported in (13).

When ϕ = 0, M1 ≡ M2 ≡ OW and spiral arcs have zero
length, hence L = 2ρP.

Having an analytical expression for the length of the path as
a function of a single parameter αM1 (hence indirectly of Q ∈
CS), we are now in a position to minimize the length within
the sufficient family. Notice that we need only to consider
αM1 ≥ 0 (because the problem is symmetric w.r.t. XW ), and
αM1 ≤ ϕ for the geometrical considerations above on CL

Q (see
fig. 4).

Theorem 4. Given Q = (ρP,ψQ) ∈CS,

∙ for 0 < ψQ ≤ ψM ≜ −4tanϕ ln(sinϕ), the optimal path
is of type T L+ ∗T R−;

∙ for ψM < ψQ < ψV ≜ 2ϕ +ψM , the optimal path is of
type S+T L+ ∗T R−S−;

∙ for ψV ≤ ψQ < π , the optimal path is of type S+ ∗S−

Proof: To find the value of αM1 ∈ [0, ϕ ] which minimizes
the length L, consider the first derivative

∂L
∂αM1

= 2ρP
sinαM1

cosϕ

⎛⎝e
(

αM1−
ψQ
2

)
t

sin2 ϕ
−1

⎞⎠ . (18)

The critical points of αM1 are
aαM1 = 0 (19)
bαM1 =

ψQ

2
+2tanϕ ln(sinϕ) . (20)

To determine the local maximum or minimum nature of the
critical values, consider the second derivative of L,

∂ 2L
∂α2

M1

=
2ρP

cosϕ

⎡⎣cosαM1

⎛⎝e
(

αM1−
ψQ
2

)
t

sin2 ϕ
−1

⎞⎠+

+sinαM1

e
(

αM1−
ψQ
2

)
t

tanϕ

⎤⎦ (21)

and

∂ 2L
∂α2

M1

∣∣∣∣∣
aαM1

=
2ρP

cosϕ

(
e−

ψQ
2 t

sin2 ϕ
−1

)
(22)

∂ 2L
∂α2

M1

∣∣∣∣∣
bαM1

= 2ρP sinϕ sin
(ψQ

2
+2tanϕ ln(sinϕ)

)
.(23)

Notice that, when the minimum of L is reached in αM1 = 0,
the path is of type T L+ ∗T R−. From equation (22), the critical

point αM1 = 0 is a minimum of L if ∂ 2L
∂α2

M1

∣∣∣∣
aαM1

≥ 0, that is, if

ψQ ≤−4tanϕ ln(sinϕ)≜ ψM

Hence, the shortest path from Q on CS to P is of type
T L+ ∗ T R− if the polar coordinate of Q are (ρP,ψQ) with
ψQ ∈ [0, ψM]. The point on CS whose polar coordinates are
(ρP,ψM) is point M.

On the other hand, from equation (23), if ψM < ψQ ≤ π the
minimum of L is reached in αM1 ∈ (0, ϕ). This critical point
depends on ψQ, as shown in (20), i.e. αM1 =

ψQ−ψM
2 . In this

case, the shortest path is of type S+T L+ ∗T R−S−.
When the minimum of L is reached in αM1 = ϕ , the optimal

path is of type S+ ∗S−. The first value ψQ ∈ (ψM,π] such that
the optimal path is reached in αM1 = ϕ is, from equation (20),

2ϕ −4tanϕ ln(sinϕ) = 2ϕ +ψM ≜ ψV .

The point on CS whose polar coordinates are (ρP,ψV ) is point
V . For all starting points Q between V and Ps, the shortest path
is of type S+ ∗S−.

We are now interested in determining the locus of switching
points between extremals in optimal paths.

Proposition 12. For Q ∈CS with 0 < ψQ ≤ ψM , the switching
locus is the arc of T R

P within the extreme points P and m =
(ρP sin2 ϕ , ψM/2) (included).

Proof: From Theorem 4, the optimal path from Q ∈ CS
to P is of type T L+ ∗T R−. Hence, the switching occurs in the
intersection of T L

Q and T R
P . The point of intersection varies on

T R
P from P (when ψQ = 0) to m= (ρP sin2 ϕ , ψM/2) = T L

M ∩T R
P

(when ψQ = ψM).

Proposition 13. For Q ∈CS with ψM < ψQ < ψV , the loci of
switching points M1, N, and M2 are the right ϕ–arcs CR

P , CR
m,

and CR
M with M = (ρP, ψM), respectively.



Fig. 9. Optimal path from Q on CS, between M and V , to P. The locus
of switching points between extremals S+ and T L+ is the arc of circle CR

M ,
whereas the locus of switching points between T L+ and T R− is CR

m.

Proof: From Proposition 6, the switching point M1 be-
tween T R− and S− belongs to CR

P .
In the proof of Theorem 4, for Q∈CS with ψM < ψQ <ψV ,

the relation ψQ = 2αM1 +ψM between angles in the optimal
path has been obtained. Hence, from (14), (16), and (17), the
coordinates of the switching points N are given by

ρN = ρM1e(−
ψM

2 )t = ρM1 sin2 ϕ (24)

and
ψN = αM1 +

ψM

2
. (25)

Hence, N corresponds to M1 after a rotation of ψM
2 and a scal-

ing by e(−
ψM

2 )t = sin2 ϕ , which do not depend on ψQ. Notice
that, applying the same rotation and scaling, P = (ρP, 0) is
transformed in m, and the right ϕ–arc CR

P goes in CR
m. Hence,

the locus of switching points N is CR
m.

Finally, for the palindromic symmetry of optimal paths, it
holds that ρM1 = ρM2 , αM1 = αM2 and ψQ −αM2 = αM1 +ψM .
Hence, M2 corresponds to M1 after a rotation ψM , which does
not depend on Q. With the same rotation, P is transformed in
M and the locus of switching points M1, CR

P , in the locus of
switching points M2, CR

M .
Finally, for Q ∈CS with ψV ≤ ψ < π , the switching locus

reduces to the origin OW . We provide an explicit procedure to
compute the switching points for any given Q ∈CS:

Proposition 14. Given Q = (ρP,ψQ) ∈CS,

∙ for 0 < ψQ ≤ ψM , the switching point is T R
P ∩T L

Q ;
∙ for ψM < ψQ < ψV , the switching points are M2 ∈CR

M ∩
CL

Q, N ∈CR
m ∩T L

M2
, and M1 ∈CR

P ∩T R
N .

∙ for ψV ≤ ψQ < π , the switching point is OW .

Proof: From the proof of Proposition 12, for Q ∈ CS
with 0 < ψQ ≤ ψM , the switching point is T L

Q ∩ T R
P =

(ρP e−
ψQ
2 t ,

ψQ
2 ).

From Proposition 13 and Proposition 6, for a given Q ∈CS
with ψM < ψQ < ψV , the switching point M2 of the optimal
path from Q to P is the intersection point between CR

M and CL
Q

that is univocally determined.
N belongs to CR

m and lays on the arc T L. Hence, it can be
computed from M2 as CR

m ∩T L
M2

.
M1 belongs to CR

P and lays on the arc T R. Hence, it can be
computed from N as CR

P ∩T R
N .

Fig. 10. Partition of DS.

Finally, for ψV ≤ψQ < π , the optimal paths is characterized
by αM1 = ϕ (proof of Theorem 4). From (14) and (16) it holds
ρN = ρM1 = ρM2 = 0. Hence, in this case, the switching point
is OW .

V. OPTIMAL PATHS FOR POINTS IN THE HALF-DISC DS

Having solved the optimal synthesis for points on the
boundary of DS, we now address optimal paths for internal
points in DS by using the following simple idea: for any
Q ∈ DS ∖ ∂DS, find a point S ∈ ∂DS such that an optimal
path γ from S to P goes through Q. By Bellmann’s optimality
principle, the sub–path from Q to P is also optimal.

Consider the partition of DS in six regions illustrated in
fig. 10.

Regions of the partition are generalized polygonals whose
vertices are the characteristic points in DS and whose bound-
aries belong either to the extremal curves, to the switching
loci, or to ∂DS (cf. section IV). All regions have three vertices,
except Region I which has two. The boundary arc T R

P between
Region II and Region VI is a degenerate case of measure zero
in DS, and will be denoted as Region II′.

Theorem 5. The optimal synthesis for Q ∈ DS is described
in fig. 10 and table I. For each region, the associated optimal
path type entirely defines a feasible path of minimum length
to the goal.

Region Included Included Optimal
Vertices Boundaries Path Type

I OW CR
P , OW P S−

II M CS, T L
M T L+ ∗T R−

P
II′ m T R

P T R−
P

III V PSOW , OWV , CS S+ ∗S−
IV CS S+T L+ ∗T R−S−
V CR

M T L+ ∗T R−S−
VI CR

m T R−S−

TABLE I
OPTIMAL SYNTHESIS IN THE HALF-DISC DS.

Proof: We study each region separately:
Region I: From any point in this region it is possible to reach
P with a straight path (in backward motion) without violating
the FOV constraints (cf. Proposition 5). Such path is obviously
optimal.



Region II: For any Q in Region II consider the point s obtained
by intersecting the spiral T L

Q with CS. By the non-intersecting
properties of left spirals, s lies between P and M on CS. By
Theorem 4 the optimal path γs from s to P is of type T L+

s ∗T R−
P .

The path T L+
Q ∗T R−

P from Q is a sub–path of γs, hence it is
also optimal.
Region II′: For any Q in the arc of T R

P from m to P, the path
T R−

P from Q to P is a degenerate case of T L+ ∗T R−
P with a

zero-length T L+ arc, hence it is also optimal.
Region III: For any Q in Region III consider the line through
OW and Q, which intersects CS in a point s between V and Ps.
By Theorem 4, the optimal path from s to P is of type S+ ∗S−
with the switch ∗ in OW , hence (by the same argument) the
thesis.
Region IV: For any Q in Region IV consider the left ϕ–arc
CL

Q, and the intersection point r =CL
Q ∩CR

M ∖OW .
Consider now the straight line through Q and r, and let

its intersection with CS be denoted s. Such intersection lies
between V and M. Indeed, the arc of circle through s, r and OW
is CL

s and V is such that CL
V is tangent to CR

M in OW . Hence,
by Theorem 4, the optimal path γs is of type S+T L+ ∗T R−S−.
By Remark (4), γs contains Q in its first straight line segment,
hence the thesis.

To finalize the synthesis, we recall that, as a straightforward
consequence of Proposition 13, the optimal path for Q ∈ CR

m
is of type T R−

Q S−, while for Q ∈CR
M , the optimal path type is

T L+
Q ∗T R−S−, where the two spiral extremals have the same

length. Hence we have:
Region V: For any Q in Region V consider the intersection
point s of the spiral T L

Q with CR
M . The optimal path γs from

s ∈CR
M to P is of type T L+

s ∗T R−S−, and contains Q in its first
arc, hence the thesis.
Region VI: For any Q in Region VI consider the intersection
point s of the spiral T R

Q with CR
m. The optimal path γs from

s ∈CR
m to P is of type T R−

s S− and contains Q in its first arc,
hence the thesis.

Remark 7. From the argument of the proof above and
Proposition 3, the existence of optimal paths from points in
DS follows directly.

VI. OPTIMAL PATHS FOR POINTS OUTSIDE DS

In this section we exploit the properties of the path trans-
form FQ to extend the optimal synthesis outside the half–disk
DS.

Indeed, recall from section III that FQ transforms a path

from Q to P in a path from fQ(P) =
(

ρ2
P

ρQ
,ψQ

)
to P. To

highlight the dependence of the new initial point fQ(P) on Q,
we will use alternatively the notation F(Q) := fQ(P). Notice
that F : IR2∖(0, 0) → IR2 is continuous and is an involution,
i.e. F(F(Q))≡ Q, hence F−1 = F . The locus of fixed points
of F is CS. Notice also that, if Q is inside the half–disk DS,
F(Q) is outside, and viceversa.

To relate regions of the optimal synthesis inside and outside
DS we need the following definition.

Definition 7. Two regions A and B are complementary (A ↭
B) when Q ∈ A ⇔ F(Q) ∈ B.

It is worthwhile to highlight the following result, which is
an immediate consequence of Proposition 1:

Proposition 15. If A ↭ B, optimal paths from points Q ∈ A
of type wA are mapped by FQ in optimal paths from F(Q) =
fQ(P) ∈ B of type wB = FQ(wA).

Remark 8. Existence of optimal paths from points in the
upper half–plane outside DS follows from Remark 7 and the
previous proposition. Indeed, for any point Q /∈DS, an optimal
path from F(Q) ∈ DS to P exists, which is mapped by FQ
in an optimal path from Q to P. Piecing together this with
the results of Proposition 3 and Remark 7, and using the
symmetry of optimal paths in the lower half–plane, we thus
have established the global existence of optimal paths to our
problem.

To determine the borders of the regions outside DS we now
describe how F maps the borders of regions inside DS.

Proposition 16. Map F transforms:
1) arcs of CS into themselves;
2) line segments from Q ∈ DS to OW in half-lines from

F(Q) to infinity with the same slope;
3) arcs of a right spiral T R

Q in arcs of a left spiral T L
F(Q),

and viceversa;
4) arcs of a circle CR

Q with Q ∈ DS in half-lines from F(Q)
with slope tan(ϕ +ψQ)

Proof:
1) The first statement follows straightforwardly from the

definition of points of CS.
2) Points on the segment from OW to Q ∈ DS have polar

coordinates (ρ, ψQ) with ρ ∈ (0, ρQ]. Such points are
mapped by F in (ρ2

P/ρ, ψQ) with ρ2
P/ρ ∈ [ρ2

P/ρQ,+∞],
hence in the half-line from F(Q) = (ρ2

P/ρQ, ψQ) with
slope ψQ.

3) Points on the arc of a right spiral T R from A =
(ρA, ψA) to B = (ρAe(ψA−ψB)t , ψB) have coordinates
(ρAe(ψA−ψ)t , ψ) with ψ ∈ [ψA, ψB]. Map F transforms
such points in (ρ2

P/ρAe−(ψA−ψ)t , ψ). These are points
on a left spiral T L from F(A) = (ρ2

P/ρA, ψA) to F(B) =
(ρ2

P/ρAe−(ψA−ψB)t , ψB). The viceversa follows from the
involutive property of F .

4) Points of CR
Q have coordinates (ρQ sin(ϕ − ψ +

ψQ)/sinϕ , ψ) with ψ ∈ [ψQ, ψQ +ϕ ]. Such points are
mapped in (ρ2

P sinϕ/(ρQ sin(ϕ −ψ +ψQ)), ψ). On the
other hand, the straight line from F(Q) forming an angle
ϕ +ψQ with the XW axis is described by the equation

y = tan(ϕ +ψQ)x− ρ2
P

ρQ

sinϕ
cos(ϕ +ψQ)

.

Rewriting this equation in polar coordinates, it is
straightforward to check that it is satisfied by the image
of CR

Q under F , hence the thesis.

Let rP be the right ϕ–radius in P of equation
y = tanϕ(x−ρP); X+

W (X−
W ) the half–line from P (PS) in the

direction of the positive (negative) XW axis; rV the half–line
from V parallel to OWV ; rM the right ϕ–radius in M, which
is tangent to the spiral T L

M , and rMm the right ϕ–radius in



Fig. 11. Partition of the upper half–plane with ϕ = π/4.

Fig. 12. Examples of optimal paths from points Q in different regions to P.

Mm = F(m) which is tangent to the spiral T L
P . Notice that

rMm is described by the equation

y = tan
(

ϕ +
ψM

2

)(
x− ρP

sinϕ sin
(
ϕ + ψM

2

)) .

Theorem 6. The optimal synthesis for Q outside DS is
described in fig. 11 and table II.

Region Included Included Optimal
Vertices Boundaries Path Type

Ic X+
W , rP S+

IIc T R
M T L+ ∗T R−

P
II′c Mm T L

P T L+
P

IIIc rV , X−
W S+ ∗S−

IVc S+T L+ ∗T R−S−

Vc rM S+T L+ ∗T R−
P

VIc rMm S+T L+
P

TABLE II
OPTIMAL SYNTHESIS OUTSIDE THE HALF-DISC DS.

Proof: We only need to show that Region “R” and Region
“Rc” are complementary, for R = I, II, . . . VI. To do so, by
continuity of F , it will be enough to prove that the borders of
R are mapped in the borders of Rc. This is in turn a direct
consequence of application of Proposition 16.

VII. GLOBAL OPTIMAL SYNTHESIS

From results in section V and VI, it can be observed that
optimal paths from Region II and IIc are of the same type,
i.e. wII = wIIc . The same holds for Region III and IIIc, and
for Region IV and IVc. These three pairs of regions can be
merged in a single region in the final partition of the plane.

The optimal path synthesis can be therefore summarized
as reported in fig. 11 and in table III. Conditions on ρQ
and ψQ determining the inclusion of Q in each Region are
also reported in table III in term of a number of elementary
inequalities.

1: procedure REGIONTEST(ρQ, ψQ)
2: Constant Parameters: ϕ , ρP
3: if ψQ ≤ ψm then

4: if ρQ ≤ ρP
sin(ϕ−ψQ)

sinϕ then {Q is below or on CR
P}

5: return Region I
6: else if ρQ < ρP e−ψQ t then {Q is below T R

P }
7: return Region VI
8: else if ρQ = ρP e−ψQ t then {Q is on T R

P }
9: return Region II′

10: else
11: return Region II
12: end if
13: else if ψQ ≤ ψM then
14: if ρQ ≤ ρP sinϕ sin(ϕ −ψQ) && ψQ ≤ψm +ϕ then {Q is below

or on CR
m}

15: return Region VI
16: else if ρQ ≤ ρP e(ψQ−ψM)t then {Q is below or on T L

M}
17: return Region V
18: else
19: return Region II
20: end if
21: else if ψQ ≤ ψV then

22: if ρQ ≤ ρP
sin(ϕ−ψQ)

sinϕ && ψQ ≤ ψM +ϕ then {Q is below or on
CR

M}
23: return Region V
24: else
25: return Region IV
26: end if
27: else
28: return Region III
29: end if

30: end procedure

Fig. 13. Region Test Algorithm for points inside CS

Given any initial position Q inside CS, algorithm reported
in fig. 13 returns the Region in which Q lays. For an external
point Q (ρQ > ρP), the procedure is applied to F(Q), i.e.

replacing ρQ with ρ2
P

ρQ
and complementing the output region.

Remark 9. The region in which Q = (ρQ, ψQ) lays can be
determined verifying at most 6 inequalities on ρQ and ψQ.
Indeed, the first inequality is the test ρQ ≷ ρP, while algorithm
reported in fig. 13 consists in at most 5 inequality tests.

Examples of optimal paths from points of different regions
are plotted in fig. 12.

It should be noticed that, while the obtained synthesis is
valid in general, the position of the characteristic points and the
shape of the regions varies with the FOV angle ϕ : compare e.g.
the partition in fig. 11, obtained for ϕ = π/4, with the partition
corresponding to ϕ = π/3, which is reported in fig. 14.

A particular case occurs for ϕ = π/2 (see fig. 15). Here,
M ≡ m ≡ Mm ≡ P, CR

m ≡CM
R ≡CP

R , and the spiral arcs T R
P and

T L
P degenerate to zero length in a point on CR

P . All optimal
paths turn out to be of type S+ ∗S−, S+, or S−.

The partition of the whole plane of motion is obtained
simply by symmetry with respect to the XW axis, and is
reported for completeness in fig. 16. Regions in the lower half–
plane are denoted with a subscript s (for symmetry), and are
associated to optimal words obtained exchanging superscript
R with L in the words reported in table III for the symmetric
region.

A comparison with the synthesis obtained in [13], reported
in fig. 17, is in order at this point. As it can be easily



Region Optimal Path
Type Inclusion Conditions

I S−
ρQ ≤ ρP

sin(ϕ −ψQ)

sinϕ
,

ψQ ≤ ϕ

Ic S+
ρQ ≥ ρP

sinϕ
sin(ϕ −ψQ)

,

ψQ ≤ ϕ

II∪ IIc T L+ ∗T R−
P

ρP e(ψQ−ψM)t ≤ρQ ≤ ρP e−(ψQ−ψM)t ,

ρP e−ψQ t <ρQ < ρP eψQ t ,

ψQ ≤ ψM

II′ T R−
P

ρQ = ρP e−ψQ t ,

ψQ ≤ ψM

2

II′c T L+
P

ρQ = ρP eψQ t ,

ψQ ≤ ψM

2
III∪ IIIc S+ ∗S− 2ϕ +ψM ≤ ψQ ≤ π

IV∪ IVc S+T L+ ∗T R−S−
ρP

sin(ϕ −ψQ)

sinϕ
≤ρQ ≤ ρP

sinϕ
sin(ϕ −ψQ)

,

ψM ≤ψQ ≤ 2ϕ +ψM

V T L+ ∗T R−S−
ρQ ≤ ρP

sin(ϕ −ψQ)

sinϕ
,

ρP e−(ψQ−ψM)t ≤ρQ ≤ ρP e(ψQ−ψM)t ,

ψM

2
≤ψQ ≤ ψM +ϕ

Vc S+T L+ ∗T R−
P

ρP
sinϕ

sin(ϕ −ψQ)
≤ρQ ≤ ρP

1
sinϕ sin(ϕ −ψQ)

,

ρQ ≥ ρP e−(ψQ−ψM)t ,

ψM

2
≤ψQ ≤ ψM +ϕ

VI T R−S−
ρP

sin(ϕ −ψQ)

sinϕ
≤ρQ ≤ ρP sinϕ sin(ϕ −ψQ) ,

ρQ ≤ ρP e−ψQ t

ψQ ≤ ϕ +
ψM

2

VIc S+T L+
P

ρP
1

sinϕ sin(ϕ −ψQ)
≤ρQ ≤ ρP

sinϕ
sin(ϕ −ψQ)

ρQ ≥ ρP eψQ t

ψQ ≤ ϕ +
ψM

2

TABLE III
OPTIMAL SYNTHESIS IN THE UPPER HALF–PLANE AND REGION

INCLUSION CONDITIONS FOR INITIAL POSITION Q.

Fig. 14. Partition of the upper half plane with ϕ = π/3.

checked, the synthesis in [13] is correct for all initial points
that are inside a circle centered in the goal point P and going
through the characteristic point m. However, extrapolation of
the synthesis in [13] outside this circle leads to quite different
results from our synthesis, which is valid globally.

Fig. 15. Partition of the upper half plane with ϕ = π/2.

Fig. 16. Partition of the (XW , ZW ) plane with ϕ = π/4.

Fig. 17. Partition of the (XW , ZW ) plane with ϕ = π/4 according to [13].

VIII. CONCLUSIONS AND FUTURE WORK

We have provided a complete characterization of shortest
paths for a moving directed point with nonholonomic kine-



matics to reach a target while keeping a fixed point within a
conical region relative to itself. Symmetries and invariants of
the problem have been exploited to determine optimal paths
from any point of the motion plane to the goal, providing a
substantial refinement and correction of existing results. Ap-
plications of these results to robotics will enable for instance
to plan shortest paths for a wheeled platform with unicycle-
like kinematics so that a given feature is maintained inside the
limited field-of-view of a camera mounted on board. Indeed,
the robot can use the provided algorithm to determine the
region where it stands based on the current position verifying
at most 6 inequalities.

Several extensions of the considered problem are possible
and are the objectives of current work. In the present setup,
we have ignored constraints on the vertical position of the
feature in the image plane. While this is perfectly acceptable
for features that lie in the motion plane, a further vertical
constraint on the FOV should be considered in general, which
would induce an off-limit zone for the robot close to the
feature position. Furthermore, the problem of determining
optimal paths in the case of more than one feature would also
be useful to consider. Finally, different cost functions to be
minimized can be considered, such as e.g. the time to reach
the goal, and different types of vehicles (e.g. Dubins’ or Reeds
and Shepp’s cars of limited curvature).
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