
Quality of service control in soft real-time applications�

Luigi Palopoli, Tommaso Cucinotta
ReTiS Lab, Scuola Sup. Sant’Anna, Pisa, Italy

Antonio Bicchi
Facoltà di Ingegneria, Universit`a di Pisa, Italy

Abstract

In this paper we present results obtained in the context of
Quality of Service (QoS) control for soft real-time appli-
cations. The discussion addresses the issue of dynamically
adjusting the bandwidth for a set of periodic tasks, when a
reservation-based (RB) CPU scheduling policy is used. RB
techniques are particularly suitable for this kind of applica-
tions since they allow an accurate mathematical modelling
of the dynamic evolution of the QoS experienced by tasks.
Based on this model, a control policy guaranteeing specified
QoS levels for different tasks is illustrated, along with nec-
essary and sufficient conditions for its existence. Moreover,
the problem of steering a task QoS back into its nominal
level is tackled, in response to deviations due to temporary
overload conditions. Simulation results are reported, for the
purpose of validating the approach.

1 Introduction

An emerging class of time-sensitive applications is imple-
mented in computer systems by means of software tasks.
Important examples are multimedia streaming programs,
video/audio players, software sound mixers, etc. . . . Other
examples are embedded systems used in data-intensive con-
texts, where relatively high volumes of sensor data are flow-
ing and must be processed and analyzed in real time (i.e.
radar systems). In such systems it frequently occurs that
tasks share a pool of hardware/software resources, such as
the CPU, RAM memory, disks, device drivers, data struc-
tures of the operating system and so forth. Therefore, a
scheduling policy is needed to ensure compliance with real-
time constraints of the tasks.

This work is focused on the management of a particular
type of resource - the CPU - but most considerations are ap-
plicable to other types of resources. Traditional hard real-
time CPU scheduling techniques are based on worst case
assumptions for the computation demand of the tasks, since
even a single failure in respecting real-time constraints is
not deemed acceptable. However, for the applications con-
sidered in this work, hard real-time scheduling can be overly
conservative because the computation demand of tasks ex-
hibits large fluctuations in time. Moreover, occasional fail-

�This work has been partially supported by the European OCERA IST-
2001-35102 and RECSYS IST-2001-32515 projects.

ures in respecting the timing constraints of a task can be
acceptable, if the Quality of Service (QoS) provided by the
application does not degrade beyond acceptable limits.

Thus, it is desirable to tune the scheduling policy based on
average execution times. This way a larger number of tasks
can be admitted to run onto a system, than a hard real-time
policy would allow. Clearly, during the system lifetime, it
is expected that occasionally the computation requirement
by the tasks is higher than available, leading to deadline
misses. Desirable features of soft real-time systems in such
situations (system overload) are: 1) the scheduling anoma-
lies due to the overload should be limited to the task that
caused the overload (this property is calledtemporal isola-
tion), 2) it should be possible to have at least a stochastic
assessment of the behavior of the system (e.g. knowing the
probability of deadline misses based on the stochastic distri-
bution of the execution times). More generally, a desirable
feature of soft real-time systems is to achieve a fluid alloca-
tion of the processor: each task should execute as if it were
on a dedicated, slower processor regardless of the presence
of other tasks. A good approximation of this abstraction is
achieved byCPU reservation algorithms. They were first
proposed in [10] for the CPU and have been implemented
in a number of different systems using different scheduling
algorithms [14, 1, 6, 15].

One of the biggest problems of CPU reservation systems
is the correct allocation of CPU bandwidth to each task.
In presence of wide variations of the required computation
time, a static choice for the bandwidth might result, at dif-
ferent times, into a wasteful use of system resources or into
degradations of the QoS. To cope with this problem, many
authors proposed the use of feedback control mechanisms
inside the operating system. A first proposal of this kind for
time sharing systems dates back to 1962 [5]. More recently,
feedback control techniques have been applied to real-time
scheduling [11, 16, 7, 9] and multimedia systems [17, 2].
Owing to the difficulties in modeling schedulers as dynamic
systems, these works could offer little analytical evidence of
the effectiveness of their approaches.

This gap has been filled in, for the CPU reservations, in
[3], where the authors showed that a CPU reservation is a
discrete event system that can realistically be modeled as a
switching and parametric dynamic system. Based on this
result, in [12] a feedback control approach based on switch-
ing linear controllers was proposed. Both the controller’s

p. 1

synthesis and the closed loop system’s performance were
attacked using Lyapunov tools for quadratic stability, result-
ing into the definition of convex optimization problems. Po-
tential drawbacks of this approach are: 1) convex optimiza-
tion problems are heavy to solve on-line (within operating
systems or middle-ware layers), 2) the system’s analysis is
based on merely sufficient conditions such as quadratic sta-
bility. Moreover, the application of linear controllers is not
necessarily the best policy in terms of cost and performance.

In order to cope with these problems, in the present pa-
per, we propose a different design approach. Specifications
of QoS requirements are associated to regions in the state
space of the system modeling the execution of each task.
Control techniques are described to make such regions in-
variant and attractive. In this way, it is possible to provide
the desired QoS whilst the bandwidth associated to each
task remains close to its actual needs. An important prob-
lem, which is also addressed in the paper, is the presence
of saturation constraints on the command variable due to
the limited availability of CPU power. Despite its simplic-
ity, the approach is applicable to a wide range of applica-
tions. Both the proposed analysis techniques and the control
law are computationally inexpensive and have been imple-
mented in a Linux based real-time system.

The paper is organized as follows. In Section 2 we will
shortly review some basic concepts concerning real-time
scheduling theory. In Section 3 we will formalize the QoS
management as a control problem and in Section 4 we will
propose our solutions. Finally some conclusions and dis-
cussions on future development are reported in Section 5

2 Background on real-time scheduling

Before developing a formal model for reservation-based
scheduling, it is useful to introduce some definitions and to
briefly discuss traditional scheduling solutions from which
the former are derived.

2.1 The real-time task model
According to the real-time task model, a task� � is a stream
of jobs�����. Each job����� arrives (becomes executable)
at time�����, and finishes at time����� after executing for a
time �����. Moreover,����� is characterized by a deadline
�����, that is respected if����� � �����, and is missed if
����� � �����. For the sake of simplicity, we will only
considerperiodic tasks, in which ���� � �� � ����� � ��,
where�� is thetask period. Moreover, we will assume that
����� � ����� � ��; hence,���� � �� � �����. A quantity
of interest for some real-time applications based on periodic
tasks is the so calledjitter on the finishing time defined as
the difference:������ ����� ��� � . Having a small jitter
allows one to consider the task as a fixed delay element and
to use this information in the design of the overall system.

2.2 Reservation-based scheduling.
A reservation relative to a task�� is represented by a pair
���	 �

�
� �, meaning that, for eachreservation period � �

� fol-
lowing each job����� arrival time�����, �� is allocated a
CPU timebudget of ��, whenever in need. Defining the
allocated CPUbandwidth as
� � ���� �

� , the reservation
can equally be represented by the pair�
 �	 �

�
� �.

Define thevirtual finishing time v���� as the time a job
would finish if it were running on a dedicated processor of
speed
� times the real CPU speed. The time����� be-
comes eligible for execution is given by� ���� if ���� � ��
finished in due time and���� � �� otherwise. Hence,

����� �

�
����� �

�����
��

if ���� � �� �����

���� � �� � �����
��

otherwise.
(1)

It is well known that a bandwidth reservation approximates
a fluid allocation up to a granularity dictated by the choice
of � �

� . This is highlighted, for example, in [6], where it is
proved that, for a job associated to a reservation�� �	 �

�
� �,

it holds that:

������ Æ � ����� � ����� � Æ	 (2)

with Æ � � �
� �� �
��. Throughout this paper,� �

� will be
assumed to be fixed while�� is a free parameter.

A reservation mechanism is often implemented on the top
of a “host” hard real-time scheduler (e.g. Rate Monotonic
or Earliest Deadline First [8]). This imposes constraints on
the choice of the�� parameters for the task set. It has been
proved that each task�� attached to a reservation�
�	 �

�
� � is

guaranteed to receive its reserved amount of execution time
provided that:

�
���������
� � �		 with �	 � � depending

on the “host” scheduling algorithm.

2.3 Quality of service metrics
When dealing with soft real-time application it is impera-
tive to formally define clear metrics to gauge the Quality
of Service supplied by the tasks. This paper deals with
two types of QoS requirements: 1) the scheduling error job
����� starts with, which is the deviation from the deadline
experienced by������� � ���������������, 2) the jitter
������ ���� � ��� � . It is useful to relate both quantities
to the period considering the ratio����� � ����� � �� �
���� � ����� and����� � ������ � ���� � �� � � ��� .
The two quantities are related:����� � ���� � ��� �����.
Furthermore,����� is by definition lower bounded by��.

The management of the QoS is more easily done consider-
ing the “virtual evolution”. To this purpose introduce the
virtual scheduling error ����� and thevirtual jitter �����
defined as:

����� �

��������������

�

����� �

�����
��������

� � ���� � ��� ������
(3)

p. 2

Considering the result in equation 2, it is possible to write:

� �
�

��
� ����� � ����� � ������

� �
�

��

�
� �
�

��
������ � ����� � ��

� �
�

��
������

Thereby, assuming that the� �
� ��� ratio be small enough,

it is possible to approximate the scheduling error and the
jitter with their virtual counterparts. Hereinafter, we will no
longer make this distinction. As a final remark, observe that
bounding the evolution of the scheduling error� ���� in a set
���	 �	 with � �
 and� � � �
, amounts to bounding
the jitter����� in the set�������	 �����	. Summing up,
QoS requirements considered in this paper can be expressed
as “acceptable” connected regions for the evolution of the
virtual scheduling error�����.

3 Problem statement

Consider a set of periodic tasks��	 ��	 � � � 	 �� executing on
the same processor. Job����� has a computation time�����,
which is randomly varying in a predefined set�� �	 ��	. Sup-
pose that after the termination of each job it is possible to
decide the bandwidth
� that the task will receive for the
next job. The problem that we will cope with is how to take
such a decision in order for a set of QoS requirements asso-
ciated to the tasks to be respected.

The choice of a strategy is largely dependent on the charac-
terization of the random process�����. With this respect, we
consider two cases: thedeterministic bound case, in which
at each� it holds�������� � ������	 ������	� � �, where
����� represents the probability and������	 ������	 is a
known interval; theprobabilistic bound case, in which at
each� it holds�������� � ������	 ������	� � � � and
�������� �� ������	 ������	� � ���	 where��������
�. This classification covers a significant range of applica-
tions. Under these scenarios it is beneficial to dynamically
adjust the bandwidth devoted to each job, upon its finishing
time, by a QoS controller implementing a feedback control
scheme. The QoS controller has a finite bandwidth avail-
ability, so the best strategy is one that allocates each job
bandwidth based on all task states. This situation is depicted
in Figure 1. A tough problem on this way is that QoS mea-
sures are collected asynchronously for the different tasks.
So, at each point the controller can only rely on a partial in-
formation. Effective approaches to tackle this problem are
currently under investigation.

In this paper, we take a simplified view and design a de-
centralized scheme where each task is endowed with a ded-
icated controller. The constraint

�

� � �	 is simply en-

forced by requiring
���� �

����
� with

�

����
� � �	.

As well as being a first step toward the construction of
a more general theory, the simplification may have itself
two practical applications, which in the general case make
it preferable to the static allocation of a fixed bandwidth

CPU + low level scheduler

Task 1

c (k)
1

c (k)
n

Task n

QoS1

n

B1

n

QoS Controller

B

1

QoS

Information processed at step f (k)
nInformation processed at step f (k)

Figure 1: Feedback control scheme for QoS management.

����
� . The first one is controlling the jitter within guar-

anteed bounds. The second one is keeping allocated band-
width to the actual needs of the task at each time. The un-
used bandwidth thus reclaimed can be devoted to secondary
tasks that executein background with no guaranteed band-
width. Before coming to a formal definition of goals and
constraints for the controller, we show how to model a sin-
gle CPU reservation as a dynamic system.

3.1 Dynamic Model of a Single Reservation.
Due to the properties of reservation based algorithms (i.e.
the temporal isolation property), the dynamic model can be
built for a single task regardless of other tasks present in
the system. From now on, we adopt a simplified the nota-
tion by removing the task index from all the quantities. The
evolution of the system is evaluated at the termination����
of each job. The scheduling error���� is considered as a
state variable defined in the set	� �	��� while bandwidth

��� can be thought of as a command variable. The evolu-
tion of the scheduling error can be derived from Equation 1,
and it is different depending on whether� ��� � �� termi-
nates within the deadline or not. It can be easily proved that
(see [3] for details) the scheduling error evolves according
to:

��� � �� �

�
���� � ����

����� � � ���� �

����
����� � � ����
�

(4)

In the sequel, it will be useful to re-write the above as

��� � �� �

�
���� � ����

����� � � ���� �

����
����� � � ����
�

(5)

where we introduced���� � ��
��� and the required
bandwidth����� � ������. Thus, the control action����
acts affinely on the state variable����.

3.2 Constraints and goals
Recalling the discussion in the previous section, we will for-
malize QoS requirements by specifying an admissible con-
nected region� � ���	 �	, with � � � �
, and� �
,

p. 3

for the evolution of����. If one sets� � �, then jitter re-
quirements are irrelevant and the only requirement is on the
maximum deviation from the deadline. The measure of�
can also be regarded as a cost function: minimizing	 � 	
corresponds to minimizing the jitter variations. Due to the
occurrence of perturbing events it can be acceptable that the
scheduling error can evolve for some time outside of� . In
this case, we require that the region be reachable under some
control policy: i.e. there exists a sequence���� that steers
���� back into� .

As far as the command variable���� is concerned, a satura-
tion constraint is induced by the upper limitation
 ���� in-
troduced above. Therefore constraints on���� can be gen-
erally expressed as:���� � ����� � �.

Observe that an ideal controller, i.e. a controller know-
ing the computation time���� of a job before executing it,
would simply set���� � �����. Thereby, in order to ensure
bandwidth reclaiming and to avoid excessive QoS fluctu-
ations, it is desirable that the ratio���������� varies by a
“little” extent around�. The latter property can be related
to the existence of an invariant region� for ���� by the fol-
lowing fact, which is easy to show.

If ���� � ���	 �	, then �� � ����
����� � �,

where�� � � � � and� � ���
�� �� � ��	
�.

Summarizing, constraints on the system evolution are: 1)
���� � � , for some� chosen at the user’s convenience; 2)
���� � �����. The design goals that we shall consider
are: 1) constraining the evolution of���� to a region� � �
� of “minimum” measure; 2) constraining the evolution of
the ratio between���������� to a “small” interval���	 ��	
with �� � � and�� � �; 3) requiring that in response to
perturbation���� returns into� in minimum time.

4 Control Design

In this section, after introducing some definitions, the con-
trol design problem is tackled for both the deterministic and
probabilistic bound cases. We denote by� the family of
functions���	 �� 	 �� of real arguments�, �� , and �,
with �� � �. Such functions represent feedback con-
trollers that, at step�, read� and decide the command vari-
able� knowing that� will be in the range��	 �� 	. We
assume that the bound��	 �� 	 is produced, step by step,
by another system component, that is application dependent
(see Figure 2). The subset of� respecting the constraint on
the choice of� (���� � �����) will be denoted as�� . The
following definitions are adapted from standard set invari-
ance theory [4]:

Definition 1 Consider system 5 and let and � be two

R.B. Scheduler

Task

QoS Controller

C

u

Predictor

[c ,c]m M

ε

Figure 2: Block diagram for QoS controller

connected subsets of the real set �: is said a robustly
controlled invariantif, ��, there exists a feedback control
law � � �� that, ����� � 	����� � �����	 �� ���	, guar-
antees that ������ � ; is said reachablefrom � if there
exists a feedback control law ���	 �� 	 �� � �� s.t. ����� �
�, �� � � s.t. for all sequences
���� � �����	 �� ���	�
with � � �	 ���	 ��	 ���� �, it holds ��� ��� � ; is
said globally reachableif it is reachable from 	� �	���.

4.1 Deterministic bound
In this subsection we find conditions for existence of a con-
trolled invariant and globally reachable set in case of deter-
ministic bounds for variations of����.

Theorem 1 Let � � ���	 �	 be an interval of the real set
with � � � �
 and � �
, let � be defined as: � �

���

�
�����
�� ���

�
, and �� � ����
�� ����. � is a controlled

invariant set for System 5 if and only if:

� � �� � �� � �
�

��
� ����� (6)

Proof: The proof is constructive in that it shows the fam-
ily of controllers making the set� invariant. First, we con-
sider invariance of� with respect to a single step�. This
can be seen as a result of a game between two players:
the controller, that chooses����, and the disturbance, that
chooses����. The controller plays first knowing���� and
the range of possible moves�����	 �� ���	 for the distur-
bance. For each possible move� of the disturbance and for
each���� � � there is a set of legal moves (i.e. respecting
���� � �����) for the controller, denoted by���	 �����,
ensuring that��� � �� will be in � . As the controller plays
first, the latter condition can be guaranteed if and only if
it chooses a move in the set

�
����������� ���� ���	 �����.

Hence,��� � �� remains in� if and only if ����� � � the
intersection

�
����������� ���� ���	 ����� is not empty.

For the sake of brevity, in the following we consider only
the case� � � �. Let ���� be defined as���� � �����

�� ��� .
The computation of the set

�
����������� ���� ���	 ����� is

p. 4

done considering that the range of admissible���� ensuring
� � ������ � �� is given by: �

�� ��� ����� �������� �

���� � �
�� ��� �� � � � ��������	 where���� � � if � �

and���� �
 if � �
. The intersection over� of the set of
acceptable command variables
����� is given by:

�
� � � ����

���
��

�
�� ��� �� � � � �������� � �

� � �
����� ��� �� ��������

� � �����

�
(7)

Such an intersection is not empty if and only if:

� � ����� � �� ���� �
�

�� ���
� ������

The proof is ended considering the intersection of the con-
straints for all possible�.

Corollary 1 The smallest possible controlled invariant set
is given by: � �
 and � � ��� ��.

Remark 1 If the evolution of ���� is constrained to the
smallest controlled invariant and ���� varies in a small set,
then the ratio ����

����� is also constrained in the small set ��	 �	,
thus complying with the second design goal stated in sec-
tion 3.2.

The following results show how to steer the system from an
arbitrary initial state into a controlled invariant set. Their
proof is omitted for the sake of brevity, and can be found in
[13].

Theorem 2 Let � � ���	 �	 be a controlled invariant
set for System 5, and let the average maximum execution
time ��� be defined as: ��� � !������

�
�

��
� �� ���.

A sufficient condition for the global reachability of � is
� � ���� , while a necessary condition is � � ���� .
Moreover, if the condition � � ��� holds, with �� �
����
�� ����, then there exists a control law that steers the
scheduling error from an initial value ��
� � � into � in at

most � �
	

��	���
������������

� � steps.

Remark 2 In the case in which the range �����	 �� ���	 is
constant and equal to ��	 � 	, it is possible to prove that � is
globally reachable for System 5 if and only if � � ������ .

4.1.1 Numerical example: The proposed tech-
niques were validated by both simulation and implemen-
tation in the Linux kernel. For demonstrative purposes we

0 50 100 150 200 250

0.4

0.6

0.8

Bandwidth

0 50 100 150 200 250
8

10

12

14

Computation time

50 100 150 200 250

−10

−5

0

5

10

scheduling error

c(k)
h
H

−e
E
e(k)

B(k)

Figure 3: First row: computation times c(k). Second row:
scheduling error evolution. Third row: allocated CPU
Bandwidth B(k)

report here some simulation results. The assumed varia-
tions for the computation time were relative to a random
walk: ��� � �� � � � ���� � ��� � �� � �, i.e.
��	 �� 	 � ����� ����	 ��� �����	. The���� control
variable has been chosen in the middle of the set of possible
values identified in the proof of theorem 1.

Figure 3 reports the job computation times along with lower
and upper bounds (� and�) in the first row. The second row
reports the evolution of the scheduling error with respect
to the controlled invariant set limits: the error starts from
outside of the invariant region, due to a temporary system
overload, then it is steered back into it. The third row shows
the allocated bandwidth during the system evolution.

4.2 Probabilistic bound
The control strategy for the deterministic bound is based
on the definition of a controlled invariant set� which can
be reached by using an appropriate control law. The ba-
sic result is that the tighter is the bound�����	 �� ���	 the
smaller can� be made. This simple strategy can be adapted
for tasks respecting the probabilistic bound model. Indeed,
using this model, the process���� evolves in the fixed in-
terval��	 � 	, but it resides most of the time in a predictable
tighter interval that we will assume as constant for the sake
of simplicity: ��	 �����	 �� ���	 � ��	 �� 	. Therefore, it
is possible to devise a control algorithm using two regions:
�� � ���� 	 �� 	 and� � ���	 �	, with �� � � . The con-
trol algorithm has to satisfy the following rules: 1) it has
to make� invariant, i.e. ����� � � and����� � ��	 � 	,
��� � �� � � must hold; 2) it has to make�� invariant
whenever���� respects the tighter bound, i.e.����� � ��
and����� � ��	 �� 	, ��� ��� � �� must hold; 3) it has to
make�� attractive from� if ���� respects the tighter bound
for a sufficient number of steps, i.e.����� � ���� a finite
natural� must exist s.t. for all sequences
���� � ��	 �� 	�

p. 5

with � � �	 � � �	 ��	 � � �� �, ��� � �� � �� holds. The
existence of a control law respecting these rules is stated in
the following result, which is a straightforward application
of theorems 1 and 2.

Corollary 2 Let �� � ���� 	 �� 	 and � � ���	 �	 be two
intervals of the real set with � � �� �
, � � � �
, � �
,
�� �
, and �� � � . Then there exists a feedback control
algorithm respecting the above cited three rules iff:

��������
�������

� � �� � �� � ���

�� � ���� � �� �� �"�

� � #��� � �� #� ���

�� � #�� � �� #� ���
�
� � ����� ���

	

�����
����

� � �
�

�� � ��
��

#� � �
��

#� � ��
�

(8)

The conditions found in the previous theorem can be used
to set up an optimization problem for which different cost
functions can be used. A possible cost function can be a
weighted sum of the measures of the two regions. Another
interesting possibility to evaluate is the ratio between�� and
� . This topic is currently under investigation.

5 Conclusions and future work

In this work we showed the application of control theoreti-
cal approaches to the management of the QoS supplied by
a set of task sharing a common CPU. Tasks are scheduled
using the resource reservation algorithms; in this frame-
work each task can be modeled as an uncertain switching
discrete-time system, whose evolution is observed upon the
occurrence of discrete event systems (i.e. the termination
of each job). We proposed the application of a feedback
controller to each task, that adjusts the bandwidth allocated
to each job based on the Quality of Service experienced by
the previous job and on the prediction of a variability range
for the computation demand of the job. The proposed tech-
niques are very simple, and thus implementable with low
computational cost inside operating systems or middle-ware
layers.

This work is only the first step toward the construction of
a more complete theory. There are at least two open re-
search issues that will be investigated in the near future. The
first one is a more complete study of the probabilistic bound
model: in particular it is of paramount importance to eval-
uate the steady state probability for the system to evolve
in the region dictated by the QoS specification. Another
challenging goal is to develop control strategies taking into
account the global evolution of all tasks.

References

[1] Luca Abeni and Giorgio Buttazzo. Integrating multimedia
applications in hard real-time systems. InProceedings of the IEEE
Real-Time Systems Symposium, Madrid, Spain, December 1998.
[2] Luca Abeni and Giorgio Buttazzo. Adaptive bandwidth
reservation for multimedia computing. InProceedings of the IEEE
Real Time Computing Systems and Applications, Hong Kong, De-
cember 1999.
[3] Luca Abeni, Luigi Palopoli, Giuseppe Lipari, and Jonathan
Walpole. Analysis of a reservation-based feedback scheduler.
In Proc. of the Real-Time Systems Symposium, Austin, Texas,
November 2002.
[4] F. Blanchini. Set invariance in control.Automatica, 1999.
[5] F. J. Corbato, M. Merwin-Dagget, and R. C. Daley. An
experimental time-sharing system. InProceedings of the AFIPS
Joint Computer Conference, May 1962.
[6] G.Lipari and S.K. Baruah. Greedy reclaimation of unused
bandwidth in constant bandwidth servers. InIEEE Proceedings of
the 12th Euromicro Conference on Real-Time Systems, Stokholm,
Sweden, June 2000.
[7] B. Li and K. Nahrstedt. A control theoretical model for
quality of service adaptations. InProceedings of Sixth Interna-
tional Workshop on Quality of Service, 1998.
[8] C. L. Liu and J. Layland. Scheduling alghorithms for mul-
tiprogramming in a hard real-time environment.Journal of the
ACM, 20(1), 1973.
[9] C. Lu, J. A. Stankovic, T. F. Abdelzaher, G. Tao, S. H. Son,
and M. Marley. Performance specifications and metrics for adap-
tive real-time systems. InProceedings of the 21th IEEE Real-Time
Systems Symposium, Orlando, FL, December 2000.
[10] Clifford W. Mercer, Stefan Savage, and Hideyuki Tokuda.
Processor capacity reserves for multimedia operating systems.
Technical Report CMU-CS-93-157, Carnegie Mellon University,
Pittsburg, May 1993.
[11] Tatsuo Nakajima. Resource reservation for adaptive qos
mapping in real-time mach. InSixth International Workshop
on Parallel and Distributed Real-Time Systems (WPDRTS), April
1998.
[12] L. Palopoli, L. Abeni, and G. Lipari. On the application of
hybrid control to cpu reservations. InHybrid systems Computation
and Control (HSCC03), Prague, april 2003.
[13] Luigi Palopoli and Tommaso Cucinotta. QoS control in
reservation-based scheduling. Technical Report ReTiS-TR-03-02,
Scuola Superiore S. Anna, 2003.
[14] Raj Rajkumar, Kanaka Juvva, Anastasio Molano, and
Shuichi Oikawa. Resource kernels: A resource-centric approach
to real-time and multimedia systems. InProceedings of the
SPIE/ACM Conference on Multimedia Computing and Network-
ing, January 1998.
[15] Dickson Reed and Robin Fairbairns (eds.). Nemesis, the
kernel – overview, May 1997.
[16] John Regehr and John A. Stankovic. Augmented CPU
Reservations: Towards predictable execution on general-purpose
operating systems. InProceedings of the IEEE Real-Time Tech-
nology and Applications Symposium (RTAS 2001), Taipei, Taiwan,
May 2001.
[17] David Steere, Ashvin Goel, Joshua Gruenberg, Dylan Mc-
Namee, Calton Pu, and Jonathan Walpole. A feedback-driven pro-
portion allocator for real-rate scheduling. InProceedings of the
Third usenix-osdi. pub-usenix, feb 1999.

p. 6

